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Abstract

By means of linear optics, an arbitrary uncoupled beam
can be locally transformed into a round (rotation-invariant)
state and then back. This provides an efficient way to round
beams in the interaction region of circular colliders.

1 ROUND BEAMS AND
ROTATION-INVARIANT MAPS

Round beams in the interaction region of a circular col-
lider are widely believed to be an effective way to increase
the luminosity (see e. g. [1] and the references therein).

Canonical angular momentum (CAM) preservation by
the IP revolution mapping might play a crucial role in the
luminosity upgrade of circular colliders. The CAM is pre-
served when 2 conditions are satisfied:

¢ The lattice IP revolution map is CAM-preserving;
¢ The beams are round in the IR.

General form of the CAM-preserving matrices was found
by E. Pozdeev and E. Perevedentsev [2]:
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The CAM-preserving group is identical to the symplectic
rotation-invariant transformations.

Parameterization of the 2 x 2 unimodular matrix T can be
taken in the conventional Courant-Snyder form, in terms of
its input vy, B and output og, B2 parameters and a phase
advance p: (see e. g. [3]):
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where s = sin i ¢ = cos , the subscript 1 of the Courant-
Snyder parameters telates to an initial and 2 to a final states.
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2 CIRCULAR BASIS

The simplectic basis which form is preserved by the
rotation-invariant transformations:
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where c: = cos sy = sin¢ with arbitrary phases
@+. Similar, but not exactly same presentation of the circu-
lar modes was used by V. Lebedev and S. Bogacz [4]. A
great feature of this parameterization:

Under the rotation-invariant transformations (1) the circu-
lar set (3) is transformed similar to how the linear basis does
under the uncoupled mappings:
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Any phase space vector z can be expanded over this ro-
tating basis:
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Taking the amplitudes from their definition (5), the actions
can be expressed in terms of 2D vectors of the offset and
transverse momentum 7 = (z,y) , = (Pz, py):

Jy =y 4+ orP/2+ Bp° AL M/2 (T

where v = (1 + a?)/8 and M = zp, — yp, is the CAM.
Note a similarity of this expression to the corresponding
formula in the uncoupled case.

Preservation of the circular actions J under the invari-
ant mappings means that both their sum and difference are
preserved as well:

Jy —J. = M = const;

Jp+ J_ =4 /24 ofp + Bp%/2 = const.  (8)

Inverse expressions are found as
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where ¥ = ¢, + x4 +é_ +x—. When only one of the two
circular modes is excited (either J, or J_ is zero), then

P=08J, F=v], FF=-al, M=+J. (10

3 ADAPTERS

Both uncoupled V' and circular U (3) basic sets are sym-
plectic; therefore, they can be mapped on each other. Sym-
plectic transformations

C=U-V7' and C=V.U? (1D



map the uncoupled basis V on the circular basis U, and
back, respectfully. Note that the uncoupled-to-circular
transformation C maps the horizontal and vertical phase
spaces on the modes of opposite helicities. So the cor-
responding uncoupled and circular Courant-Snyder invari-
ants are equal:

Je=Jdy s Jy=J_. (12)

Adaptive transformations are illustrated schematically
by Fig. 1.

4 IMPLEMENTATION OF ADAPTERS

A particular solution for the adaptive transformation [ Ya.
Derbenev]:

C = R(n/4)(M, N)R (—/4) (13)

where (M, N) stands for a block-diagonal 4 x 4 matrix with
M and N as its 2 x 2 diagonal blocks:
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The matrices M, N are related as
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this particular adapter transforms initial uncoupled basis
(subscript 0) into a circular basis at its waist point (a = 0).

5 CIRCULAR EIGENMODES FOR A
SOLENOID

Circular eigenmodes of an extended solenoid: CS pa-
rameters remain constant, and only the phases run. The
solenoidal transformation:

7; = R(_es) : <T87 Ts> (17)
with
_ cos 0, B, sin 6,
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Here 8, = eBz/(2poc) = z/(2p) is the Larmor phase ad-
vance and

Bs = 2c/(eB) (19)
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~ boundary particle with the offset r,,, and K =

can be referred to as the Larmor §-function. The Courant-
Snyder parameters of the circular basis with # = (s and
a = 0 are preserved inside the solenoid: the first pair of the
basis vectors turns by an angle A¢4. = 8, + 0s = 265 and
the second pair by A¢_ = —0; + 68, = 0, i. e. remains
constant.

The canonical variables & associated with these circular
modes describe the kinetic momenta

ky =py+ -'L'/ﬁs kr =ps — y/ﬁs (20)
and coordinates of the Larmor center
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namely,
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When the adapter C is matched with an adjacent down-
stream solenoid, i. e. @ = 0,8 = [, the horizontal
degree of freedom of the incoming uncoupled beam trans-
forms into the cyclotron mode inside the solenoid, while the

vertical one transforms into the drift mode, and the emit-
tances are preserved:

2
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with the brackets (...) standing for an ensemble averaging.
For a particular case of the round beam inside the solenoid,

‘when (d2) = (d2) = d?, (dydy) = 0 and similar momen-
tum relations, it yields
e. = Pk2/2, e, =2d%/3. (24)

The solenoid with an opposite field switches mapping: the
horizontal degree of freedom is mapped onto the drift mode
and the vertical plane is mapped onto the cyclotron mode.

Similar relations take place for the reverse, circular-to-
uncoupled transformations C.

6 LOCAL ROTATION INVARIANCE

When the rotation invariance is local (continuous):
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Here 5 and -, are the relativistic factors, po = mcfyyo is
the total (longitudinal) momentum, M, is the CAM of the
21e
me3 B33
is the so-called generalized perveance, which takes into ac-

count the space charge.
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Figure 1: Schematic illustration of the uncoupled-to-circular beam adapter: horizontally and vertically polarized modes
are transformed into circular modes of opposite helicities. Blue and red dots represent particles with smaller or r actions.
Arrows on the circular mode portrets show particle momenta, proportional to the offsets. For simplicity, all the phase
portrets are depicted as circles; generally, tilted ellipses are mapped onto each other. Direction of external arrows =>
specify the direction of transformation. Reverse direction of both upper and lower arrows (<=) would correspond to the
reverse, circular-to-uncoupled adapter.

7 DIAGONALIZATION OF BEAM
MATRIX

The beam matrix
Lij = {miz;)

describes the beam distribution. If M is a transfer matrix,
then the new Y-matrix is MEMT. The uncoupled state
is described by the block-diagonal Y-matrix in the origi-
nal Cartesian coordinates; its 4D emittance is a product of
the 2D emittances. Normally the phase distributions are ho-
mogeneous, in this case the X-matrix is diagonal in the
matched uncoupled basis (the transfer matrix in this case
M=V"1y

Y = Diag(es, €5, €y, &), 27

where Diag(...) is a diagonal matrix with elements listed as
the arguments. In the same way, the Y-matrix of a round
beam is diagonal in the matched circular basis.
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The X-matrix of a round beam can be expressed in
rotation-invariant terms:

23 (o ) (0 R);

(28)
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This beam matrix is diagonalized by the circular basis
with

ho ) P
2% — ()% (r2){p*) — (7p)?
(29)
leading to
Y = Diag(e1, €1, €2, £2) (30)
with the emittances
2610 = (M) + /{r?)(p?) - (FP)2 > 0. 3D



[7] S. Henderson et al. in Proc. Part. Acc. Conf., New York,

These partial emittances are preserved by any symplectic
1999, p. 410.

transformation.
The total 4D emittance is a product of these partial emit-

tances :
de = de169 = (r2)(p?) — (FP)? ~ (M)? (32)

[S. Nagaitsev, A Shemyakin]. The 4D emittance in terms
of the canonical and kinetic momenta are absolutely identi-
cal: a transfer from one to another is equivalent to rotation
imposed on the beam as a whole, which does not change the

total emittance.

8 ROUND BEAMS FOR CIRCULAR
COLLIDERS

For circular colliders, round beams in the interaction re-
gion (IR) are known to be beneficial: angular momentum
preservation allows to increase the beam-beam tune shift
and so the luminosity. Conventional round-beams schemes
require €, = &y and v; = v, Another approach to
get the beams round, the Mébius accelerator [5], based on
beam rotator optics [6], is studied experimentally at CESR
[7]. This scheme also leads to emittance identity and effec-
tive tune degeneration:x the resulting normal tunes are in-
evitably separated by 1/2.

Matched adapters bounding the IR opens a way that is
free from all these limitations.
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Figure 2: Beam Rounder
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This beam rounder allows to have:

e round beam inside it;
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¢ the same uncoupled beam outside it, as it was without
the rounder;
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