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The low energy excitation spectrum of the critical Wilson surface is discussed between the roughening transition

and the continuum limit of lattice QCD. The �ne structure of the spectrum is interpreted within the framework

of two-dimensional conformal �eld theory.

1. INTRODUCTION

We believe that a deeper understanding of the
string theory connection with large Wilson sur-
faces will require a precise knowledge of the sur-
face excitation spectrum and the determination of
the universality class of Wilson surface criticality
in the continuum limit of lattice QCD. This ap-
proach will also require a consistent description
of the conformal properties of the gapless Wil-
son surface excitation spectrum. In this short
progress report we summarize our ab initio on-
lattice calculations (a more extended status re-
port was published recently[1]). In collaboration
with Mike Peardon, we have also studied the spec-
trum of a \closed" 
ux loop across periodic slab
geometry (Polyakov line) by choosing appropriate
boundary conditions and operators for selected
excitations without static sources[2].

2. QCD STRING FORMATION

The �rst attempt at a comprehensive determi-
nation of the rich energy spectrum of the gluon
excitations between static sources in the funda-
mental representation of SU(3)c in D=4 dimen-
sions was reported earlier[3,4] for quark-antiquark
separations r ranging from 0.1 fm to 4 fm. The ex-
trapolation of the full spectrum to the continuum
limit is summarized in Fig. 1 with very di�erent
characteristic behavior on three separate physi-
cal scales. Nontrivial short distance physics dom-

inates for r � 0:3 fermi. The transition region
towards string formation is identi�ed on the scale
0:5 fm � 2:0 fm. String formation and the onset
of string-like ordering of the excitation energies
occurs in the range between 2 fm and 4 fm where
we reach the current limit of our technology.
To display the �ne structure with some clarity,

error bars are not shown in Fig. 1. Our earlier re-
sults are compatible with extended new runs on
our dedicated UP2000 Alpha cluster which was
built to increase the statistics more than an or-
der of magnitude. The notation and the origin
of the quantum numbers used in the classi�ca-
tion of the energy levels are explained in earlier
publications[3,4]. The physical scale is set by the
Sommer r0 which, to a good approximation, is
r0 = 0:5 fm.
We also established that the main features of

string formation with three separate scales is re-
markably universal, independent of the gauge
groups SU(2) and SU(3), and space-time dimen-
sions D=3 and D=4: Although the level ordering
is approximately string-like in all cases at large
separation, there is a surprising and rather uni-
versal �ne structure in the spectrum with large
displacements from the expected massless Gold-
stone levels.

3. CONFORMAL THEORY

We believe that the �ne structure of the Wil-
son surface spectrum can be understood within
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Figure 1. Continuum limit extrapolations
are shown for the excitation energies where
an arbitrary constant is removed by subtrac-
tion. Color coding in postscript is added
to the numerical labelling of the excitations
(N=0,black:1), (N=1,red:2), (N=2,green:4,5,6),
(N=3,blue:3,8,9,10), and (N=4,cyan:7). The �ve
groups represent the expected quantum numbers
of a string in its ground state (N=0) and the
�rst four excited states (N=1,2,3,4). The ar-
rows in the inset represent the expected loca-
tions of the four lowest massless string excitations
(N=1,2,3,4) which have to be compared with the
energy levels of our computer simulations.

the framework of two-dimensional conformal �eld
theory. This is illustrated �rst with the D=3
Z(2) gauge model. The Abelian subgroup Z(2)
of SU(2) is expected to play an important role
in the microscopic mechanisms of quark con�ne-
ment suggesting that Wilson surface physics of
the D=3 Z(2) gauge spin model should have qual-
itative and quantitative similarities with the theo-
retically more diÆcult QCD3 case. In the critical
region of the Z(2) model we have a rather rea-
sonable description of continuum string formation
based on the excitation spectrum of a semiclassi-
cal defect line (soliton) of the equivalent �4 �eld
theory. The surface physics of the Z(2) gauge

model is closely related to the BCSOS model by
universality argument and a duality transforma-
tion: their surface spectra should show universal-
ity.

3.1. BCSOS Surface Spectrum

The body-centered solid-on-solid (BCSOS)
model is obtained from the SOS condition (ac-
curate to a few percent around the roughen-
ing transition) on the 
uctuating interface in
the body-centered cubic Ising model[5]. This
model can be mapped into the six-vertex formu-
lation for which the Bethe Ansatz equations are
known[6]. It follows from the Bethe Ansatz so-
lution that the surface has a roughening phase
transition at TR = J=(kB � 2ln2) which is of the
Kosterlitz-Thouless type. For T < TR the inter-
face is smooth with a �nite mass gap in its exci-
tation spectrum. For T � TR the mass gap van-
ishes and the surface exhibits a massless excita-
tion spectrum.
We determined the low energy part of the full

surface spectrum from direct diagonalization of
the transfer matrix of the BCSOS model and from
the numerical solution of the Bethe Ansatz equa-
tions. A periodic boundary condition was used,
which corresponds to the spectrum of a periodic
Polyakov line in the Z(2) gauge model. With a

ux of period L we used exact diagonalization
for L � 18, and the Bethe Ansatz equations up
to L=1024. The following picture emerges from
the calculation for large L values in the mass-
less Kosterlitz-Thouless (KT) phase. The ground
state energy of the 
ux is given by

E0(L) = �1 � L�
�

6L
c + o(1=L) ; (1)

where �1 is the string tension, c designates the
conformal charge, which is found to be c=1 to
very high accuracy. The o(1/L) term designates
the corrections to the leading 1/L behavior; they
decay faster than 1/L. At the critical point of the
roughening transition, the corrections can decay
very slowly, like 1=(lnL3 � L) for the ground state
energy. Away from the critical point, the correc-
tions decay faster than 1/L in power-like fashion.
These �nite size (or equivalently, �nite cut-o�)
e�ects in the �ne structure of the spectrum are
dominated by the Sine-Gordon operator in con-
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formal perturbation theory[7].
For each operator O� which creates states from

the vacuum (surface ground state) with quantum
numbers �, there is a tower excitation spectrum,

E�

j;j0 (L) = E0(L) +
2�

L
(x� + j + j0) + o(1=L) ; (2)

where the nonnegative integers j,j' label the con-
formal tower and x� is the anomalous dimension
of the operator O�. The momentum of each ex-
citation is given by

P�

j;j0 (L) =
2�

L
(s� + j� j0) ; (3)

where s� is the spin of the operator O�. We �nd
excitations of conformal towers built on the inte-
ger scaling exponents x=1,2 which are indepen-
dent of the coupling and correspond to naively ex-
pected string excitations. However, we also �nd
scaling dimensions x� which continuously vary
with the coupling J in the rough phase. This se-
quence can be labelled by anomalous dimensions

xGn;m =
n2

4�K
+ �Km2 ; (4)

where n,m are non-negative integers and the con-
stant K depends in a known way on the BCSOS
coupling constant J. The physical interpretation
of the rather peculiar excitations of the rough
gapless surface will be discussed elsewhere[7].
The surface spectrum is described by a compacti-
�ed conformal Gaussian �eld. The nontrivial part
of the spectrum corresponds to �eld con�guration
with line defects which describe the screw dislo-
cation pairs of the 
uctuating rough surface.

4. D=3 QCD STRING THEORY

If the QQ color sources are located along one
of the principal axes on the lattice in some spatial
direction, the Wilson surface at strong coupling
is smooth in technical terms. This implies the ex-
istence of a mass gap in its excitation spectrum,
as seen for example in the strong coupling tests
of our simulation technology. As the coupling
weakens, a roughening transition is expected in
the surface at some �nite gauge coupling g = gR
where the gap in the excitation spectrum vanishes
with the characteristics of the Kosterlitz-Thouless

phase transition. The correlation length in the
surface diverges at gR and it is expected to re-
main in�nite for any value of the gauge coupling
when g � gR. At the roughening transition, the
bulk behavior di�ers from that of the continuum
theory which is located in the vicinity of g = 0.
The low energy excitation spectrum of the Wil-
son surface for g � gR and not far from gR, in
the domain of the critical KT phase, should be
essentially identical to Eqs. (1-3) of our BCSOS
spectrum.
Now, is the critical Kosterlitz-Thouless picture

around g � gR identical to what we expect for
the Wilson surface in the low energy limit of con-
tinuum QCD3 string theory at g = 0? We guess
that according to the most likely scenario the
Wilson surface remains massless throughout the
0 � g � gR region but its critical behavior will
cross over from the Kosterlitz-Thouless class of
the conformal Gaussian behavior into the uni-
versality class of continuum QCD string theory
whose precise description remains the subject of
our future investigations. The low energy e�ec-
tive string Lagrangian will contain higher dimen-
sional operators which will signal the deviation
from the Gaussian universality class. These op-
erators introduce a physical �ne structure into the
low energy spectrum. It will remain a challenge
to disentangle this physical �ne structure from �-
nite cut-o� e�ects in the surface which manifested
themselves as �nite size corrections in the confor-
mal spectrum at the roughening transition.
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