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Abstract

We report a measurement of the diffractive structure function F ﬁ of the antiproton obtained
from a study of dijet events produced in association with a leading antiproton in pp collisions at
+/5 = 630 GeV at the Fermilab Tevatron. The ratio of Fﬁ at /s = 630 GeV to Fﬁ obtained from a
similar measurement at /s = 1800 GeV is compared with expectations from QCD factorization and
with theoretical predictions. We also report a measurement of the £ (z-Pomeron) and 3 (z of parton
in Pomeron) dependence of F}; at /5 = 1800 GeV. In the region 0.035 < ¢ < 0.095, |¢| < 1 GeV?
and 8 < 0.5, Fﬁ(ﬂ,{) is found to be of the form B~ 0%01 ¢=02+01 " which obeys B-¢ factorization.

PACS number(s): 13.87.Ce, 12.38.Qk, 12.40.Nn

In a previous Letter [1], we reported a measurement of the diffractive structure function of the antiproton extracted
from events with two jets produced in association with a leading (high momentum) antiproton in pp collisions at
+/8 = 1800 GeV at the Fermilab Tevatron. Conceptually, diffractive jet production may be thought of as a two-step
process, p+p — [0 + P]+p — p + Jet; + Jets + X, where a Pomeron [2], IP, emitted by the p interacts with the
proton to produce the jets. In this picture, the structure function of the Pomeron in terms of 8 (momentum fraction
of P carried by its struck parton) at a given value of £ (momentum fraction of p carried by IP) is directly related to
the “diffractive structure function” of the antiproton in terms of the familiar Bjorken variable z through the relation
z = BE. A question of interest is whether the Pomeron, which in QCD is a color-singlet construct of (anti)quarks and
gluons carrying the quantum numbers of the vacuum, has a unique partonic structure. This question was addressed
in our previous Letter [1] by comparing our measured Pomeron structure with a prediction based on diffractive parton
densities extracted by the H1 Collaboration from a QCD analysis of deep inelastic scattering (DIS) data obtained at
the DESY ep collider HERA. A disagreement was found, expressed mainly as a suppression of @(10) of the overall
normalization of our data relative to the prediction, indicating a severe breakdown of QCD factorization in diffractive
processes.

The suppression of the p diffractive structure function at the Tevatron relative to that at HERA is generally
attributed to low-z partons in the proton interacting with the final state leading p and thus spoiling the diffractive
signature of the event [3—6]. Consequently, the diffractive structure function is expected to increase as the pp c.m.s.
energy, /s, decreases. An indirect indication of such an effect may have been seen in our measurement of the
diffractive structure function of the proton in events with a leading antiproton, whose presence in the event restricts
the maximum energy available in the diffractive subsystem [7]. In this Letter, we report a measurement of the
diffractive structure function of the antiproton at /s — 630 GeV and test QCD factorization by comparing it with
our measurement at /s — 1800 GeV. In addition, we examine the question of 3-¢ factorization within the differential
form of the diffractive structure function at /s —1800 GeV. Diffractive dijet production in pp collisions at /s — 630
GeV has been studied by the UA8 Collaboration at the CERN SppS collider [8], but the results reported were not
presented in terms of a normalized Pomeron structure function which could be directly compared with our 1800 GeV
measurement.

The present study is identical to our previous diffractive dijet study in the experimental setup used for data collection
and in methodology [1]. Briefly, a Roman Pot Spectrometer (RPS) was employed to trigger the CDF detector on
leading antiprotons from single diffractive (SD) events, pp — §' X. In the off-line analysis, the fractional momentum
loss £ of the § and the 4-momentum transfer squared ¢ were determined with resolutions 66 = +1.5 x 10~2 and
8t = £0.02 GeV? using RPS information and the event vertex. The RPS acceptance at /s = 630 GeV is very similar
to that at 1800 GeV at the same £ and for ¢ scaled down by a factor of (1800/630)? = 8.2. The data were collected in
1995-96 (Run 1C) with the Tevatron running at /s = 630 GeV at an average instantaneous luminosity of ~ 1.3 x 103¢

ecm ™2 sec™!. After applying off-line cuts requiring a reconstructed track in the RPS, a single reconstructed vertex in



the CDF detector within |z,:,| < 60 cm, and a multiplicity of less than 5 in a forward beam-beam counter (BBC)
array on the downstream side of the p beam, BBC;, we obtained 184327 SD events in the region 0.035 < £ < 0.095 and
lt| < 0.2 GeV2. BBC; is one of two 16 channel scintillation counter arrays which covers the region —5.9 < n < —3.2 [9],
where 7 is the pseudorapidity of a particle defined in terms of the polar angle § as n = —In tan% (the other BBC
array, BBC,, covers the region 3.2 < 7 < 5.9). The BBC; multiplicity cut is applied to further reject overlap events
that pass the single vertex requirement. The overlap events, consisting of a non-diffractive (ND) event superimposed
on a SD, are due to multiple interactions occurring in the same beam-beam bunch crossing. The fraction of SD events
rejected by this cut is ~ 2.1%, and the ND background in the remaining SD sample is ~ 2.9%.

Using the above inclusive SD data set, we selected a SD dijet sample containing 1186 SD events with at least two
Jets of corrected transverse energy Eé«d > 7 GeV. Similarly, a ND dijet sample of 104793 events was selected from
a data set of 2.5 million events collected with a trigger requiring a BBC,-BBC; coincidence. The ngt was defined
as the sum of the calorimeter Ep = E'sin§ within a cone of radius 0.7 in 7-¢ space [10], where ¢ is the azimuthal
angle. The jet energy correction included subtraction of an average underlying event E7 of 0.5 (0.9) GeV for SD (ND)
events. These values were determined experimentally, separately for SD and ND events, from the > Er of calorimeter
tower energy measured within a randomly chosen 7-¢ cone of radius 0.7 in events of the inclusive SD and ND data
samples.

The diffractive dijet sample contains a residual (6.4 & 2.2)% overlap events, as determined from an analysis of
the BBC multiplicity distributions. Each diffractive data distribution presented below is corrected for the overlap
background by subtracting the corresponding ND distribution normalized to the overlap fraction. Another correction
is due to the single vertex selection requirement. In addition to rejecting events from multiple interactions, this
requirement also rejects single interaction events with multiple vertices caused by reconstruction ambiguities in high
multiplicity events. From an analysis of the BBC and forward calorimeter tower multiplicities, the single vertex cut
efficiency (fraction of single interaction events retained by the single vertex cut) was determined to be (88.0 + 1.2)%.

Figure 1 presents the dijet mean Er and mean 7 distributions, E} = (E’Tm1 + E§8t2)/2 and n° = (el 4 g7 ¢t2)/2,
for the SD (points) and ND (histograms) event samples. Asin the 1800 GeV case, the SD EJ. distribution is somewhat
steeper than the ND, and the SD 7" is boosted towards the proton direction (positive n*). These features indicate that
the z dependence of the diffractive structure function of the antiproton is steeper than that of the ND, as discussed
further below.

The p diffractive structure function is evaluated following the procedure described in our previous Letter [1]. The
fraction z of the momentum of the p carried by the struck parton is determined from the Er and 7 of the jets using the
equation z = \/i; 27:1 E%«e_"l. The sum is carried out over the two leading jets plus the next highest Er jet, if there

is one with E7 > 5 GeV. In leading order QCD, the ratio R(z) of the SD to ND rates is equal to the ratio of the SD
to ND structure functions of the p. The diffractive structure function may therefore be obtained by multiplying R(z)
by the known ND structure function. The absolute normalization of the SD dijet sample is obtained by scaling the
dijet event rate to that of the inclusive diffractive sample and using for the latter the previously measured inclusive
cross section [11]. The normalization of the ND dijet sample is determined from our previously measured 39.9 & 1.2
mb cross section of the BBC trigger.

Figure 2 shows the ratio R(m) of the number of SD dijet events, corrected for RPS acceptance, to the number
of ND dijets, after normalizing both SD and ND samples to correspond to the same luminosity (black points). For
comparison, R(m) is also shown for our 1800 GeV data (open circles) within the same kinematic region. The tilde over
R indicates integration over (¢, ¢, Eé«d) for SD and Eé«d for ND events. The integration is carried out over the regions
of [t| < 0.2 GeV?, 0.035 < £ < 0.095 and Eéwdl’z > T GeV. To minimize possible normalization shifts between the two
data sets resulting from the different underlying event levels at the two energies, or from the influence of the third
jet on the Ep values of the leading jets, a cut was imposed on the average dijet transverse energy requiring E7. > 10
GeV. The ratios R(m) exhibit similar # dependence at the two energies, but the 630 GeV points lie systematically
above the 1800 GeV ones. A discrepancy between the two ratios would be evidence for a breakdown of factorization.
The observed effect is quantified below after discussion of the relevant systematic errors.

As mentioned above, R(z) represents the ratio of the diffractive to ND parton densities of the antiproton, as viewed
by dijet production. The associated structure functions can be written as Fjj(z) = z[g(z) + %q(m)], where g(z) is
the gluon and g(z) the quark density, which is multiplied by % to account for color factors. The diffractive structure

function 17’]-[])- (B) is obtained by multiplying R(m) by the ND structure function F]-J}TD(m) and changing variables from
z to B using the relation ¢ = B¢. The ND structure function was evaluated using GRV98LO parton densities [12].

Figure 3 shows F]-[])- (8), expressed per unit £, for the 630 GeV (black points) and 1800 GeV (open circles) data.
The curves are fits of the form ﬁ'f;(,@) = B(8/0.3)"™ in the range 0.1 < 8 < 0.5. The value 8 = 0.1 corresponds to
the limit %,,;, = 4 x 1073 imposed on the 630 GeV data to guarantee full detector acceptance for the dijet system



from diffractive events associated with the lowest £ value of 0.035; the upper limit of 3 = 0.5 is the value below which
the measured F]-[])- (B) at 1800 GeV was found to have a power law behaviour [1]. The fits yield B = 0.262 + 0.030

(0.193+0.005) and » = 1.440.2 (1.2340.04) at 4/s = 630 (1800) GeV, where the quoted uncertainties are statistical.
Within these uncertainties, the n parameters are consistent with being equal at the two energies. Fitting the 630 GeV
data using the parameter n measured at 1800 GeV yields Bgzo = 0.255 4 0.029.

The ratio of the 630 to 1800 GeV B parameters is Rg = 1.3 + 0.2 (stat)fg'_g (syst). The systematic error is due
to two sources. The first source is the uncertainty in the relative normalization between the two energies. This is
taken to be the sum in quadrature of a +4.5% uncertainty in the ratio of the BBC trigger cross sections at the two
energies, and a +0.4 signed uncertainty resulting from the difference between the experimentally measured inclusive
SD cross section at 4/s = 1800 GeV within our (£, ) region, ¢°*? = 0.57 4 0.03 (stat) mb (obtained from Egs. (3) and
(4) in [11]), and the cross section derived from a global fit to SD cross sections, o/ = 0.40 4+ 0.04 (syst) [13]. The
second source of systematic uncertainty is a signed uncertainty of —0.3, representing the difference in Rp resulting
from using only two or up to four instead of three jets in an event in determining the values of z-Bjorken. Other
possible systematic uncertainties, for example those associated with jet energy scale, are less important, as they tend
to cancel out in the measurement of SD to ND ratios, and to an even higher degree in the measurement of the ratio
of ratios.

A deviation of Rp from unity quantifies the breakdown of factorization. The measured value of Rp is consistent
with factorization, but is also consistent with the prediction RY" = (18002/6302)2["‘(0)_1] = 1.55 of the renormalized
Pomeron flux model [3], evaluated using «(0) = 1.104 [13] for the Pomeron intercept, and with the value of 1.8
expected in the rapidity gap survival model of [6].

To further characterize the diffractive structure function, we have measured its dependence on 3 and £ (Fig. 4)
using the higher statistics 1800 GeV data sample of events with Eéwdl’z > 7 GeV. In the region 8 < 0.5 and
0.035 < £ < 0.095, the data are well represented by the factorizable form

Fh@B,¢)=C-pgm-¢&m (1)

The circle-points in Fig. 4a [Fig. 4b] are the values n [F]-[; (8, €)|s=0.1] of a fit of Eq. (1) to the data with 8 < 0.5 within
the indicated £-bin. A straight line one parameter fit to the points in Fig. 4a and a fit of the form £~™ to those in
Fig. 4b yield n = 1.0+£0.1 and m = 0.9+£0.1, respectively, where the errors are mainly due to the systematic uncertainty
associated with the measurement of the 3 of the struck parton of the antiproton. The observed ¢ dependence is steeper
than that of the inclusive SD data sample, which is also shown in Fig. 4b (triangles). In Regge theory, the rather
flat shape of the inclusive dN/d¢ distribution results from the superposition of a Pomeron exchange contribution,
which has a ¢~%(0) & ¢=11 dependence, and a Reggeon exchange contribution, which enters with an effective pion
trajectory [13] and is ~ €. The measured £~%°*01 dependence indicates that dijet production is dominated by
Pomeron exchange.
D(3)

A similarly steep £ dependence is exhibited by the F, “”/(83, £, Q?) structure function extracted from diffractive DIS
at HERA in the region £ < 0.04 [14,15]. Our result of m a2 1 shows that a predominantly Pomeron-like behaviour,
which is generally expected in the small £ region explored by HERA, is also realized at moderately large ¢ values
in diffractive dijet production at the Tevatron. Such behaviour is predicted by models in which the structure of the
generic Pomeron is effectively built from the non-diffractive parton densities by two exchanges, one at the high Q*
scale of the hard scattering and the other at the hadron mass scale of O(1 GeV?) [5,6,16].

In summary, we have measured the diffractive structure function of the antiproton from dijet production in pp

collisions at /s — 630 GeV and compare it with that measured previously at /s — 1800 GeV to test factorization.

We find shape agreement between the two structure functions and a normalization ratio of 1.3 £+ 0.2 (stat)fg'_g (syst).

Within the quoted uncertainties, this ratio is compatible with the factorization expectation of unity, but is also
compatible with the phenomenological predictions of 1.55 and 1.8 of the Pomeron flux renormalization [3] and gap
survival probability models [6], respectively. We have also measured the 3 and £ dependence of the diffractive structure
function at /s = 1800 GeV and find that it obeys 8-¢ factorization for 8 < 0.5. The observed £ ~%-°*%1 dependence
shows that Pomeron-like behaviour extends to moderately high £ values in diffractive dijet production, which is mainly
sensitive to the gluon content of the diffractive structure function. Such behaviour is expected in models in which
the Pomeron emerges from the quark-gluon sea as a combination of two partonic exchanges, one on a hard scale
that produces the dijet system and the other on a soft scale that neutralizes the color flow and forms the rapidity
gap [5,6,16].
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FIG. 1. Mean transverse energy and mean pseudorapidity distributions for single-diffractive (points) and non-diffractive
(histograms) events with two jets of E4°* > 7 GeV at /s = 630 GeV.
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FIG. 2. Ratio of single-diffractive to non-diffractive production rates as a function of z-Bjorken for events with two jets of

E7 > 7 GeV and mean E7 greater than 10 GeV at /s = 630 GeV (black points) and 1800 GeV (open circles). The errors are
statistical only.
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FIG. 3. The diffractive structure function versus 3, F’ﬁ(ﬂ), integrated over the range 0.035 < ¢ < 0.095 and |t| < 0.2 GeV?
and expressed per unit £, at /s = 630 GeV (black points) and 1800 GeV (open circles). The errors are statistical only. The
lines are fits of the form 87" with the parameter n common at both energies. In the fit region, the systematic uncertainty in
the ratio of the 630 to 1800 GeV data is T5;% (see text).
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FIG. 4. Distributions versus { for 1800 GeV data: (a) the parameter n of a fit to the diffractive structure function of the form
Fﬁ(ﬂ,{)k = CpB~" for B < 0.5; (b) the diffractive structure function at 8 = 0.1 fitted to the form Fﬁ(ﬂ,{)m:o_l =C¢ ™
(circle-points and curve), and the inclusive single-diffractive distribution (triangles). The errors shown are statistical. The fits
yield » = 1.0 £ 0.1 and m = 0.9 £ 0.1, where the errors are mainly due to the systematic uncertainties in the determination of

8.



