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ABSTRACT

The angular distribution of galaxies encodes a wealth of information about large

scale structure. Ultimately, the Sloan Digital Sky Survey (SDSS) will record the angular

positions of order 108 galaxies in �ve bands, adding signi�cantly to the cosmological

constraints. This is the �rst in a series of papers analyzing a rectangular stripe 2:5Æ�90Æ

from early SDSS data. We present the angular correlation function for galaxies in four

separate magnitude bins on angular scales ranging from 0:003 degrees to 15 degrees.

Much of the focus of this paper is on potential systematic e�ects. We show that the
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�nal galaxy catalog { with the mask accounting for regions of poor seeing, reddening,

bright stars, etc. { is free from external and internal systematic e�ects for galaxies

brighter than r� = 22. Our estimator of the angular correlation function includes the

e�ects of the integral constraint and the mask. The full covariance matrix of errors in

these estimates is derived using mock catalogs with further estimates using a number

of other methods.

Subject headings: cosmology

1. Introduction

One of the most direct and powerful probes of models of structure formation is the two-point

function for galaxies, either the correlation function in real space or the power spectrum in Fourier

space. At least on large scales, observations of the power spectrum can be directly compared with

predictions of theoretical models. Indeed, this comparison is one of the strongest arguments (see

e.g. Peacock & Dodds, 1994) to date against the simplest Cold Dark Matter model with a matter

density equal to the critical density.

There are several ways to measure the power spectrum. The most direct is to use a redshift

survey, which contains information not only about the two dimensional angular position of each

galaxy but also about its radial distance from us. Angular surveys do not have any radial infor-

mation, but they are often just as powerful probes of the power spectrum because they contain

many more galaxies than do redshift surveys. Examples of angular surveys which have been used

to measure the power spectrum are the APM (Maddox et al., 1990; Efstathiou & Moody, 2000) and

the Edinburgh/Durham Southern Galaxy Catalogue (Collins, Nichol & Lumsden, 1992; Huterer,

Knox & Nichol, 2000).

The Sloan Digital Sky Survey (SDSS; York et al. 2000; Gunn et al. 1998; Fukugita et al. 1996)

will ultimately obtain angular positions for � 108 galaxies and redshifts for 106 galaxies. Both will

be powerful probes of cosmological models. This paper analyzes the angular correlation function

from early, imaging data taken during the photometric commissioning of SDSS. The survey data

will be of higher quality (mainly due to better image quality and photometric calibration), so some

of the systematic e�ects analyzed here will be less severe in the full survey. Likewise, since the

data is collected digitally, we expect to be free of a number of systematic e�ects related to earlier

surveys using scanned photographic plates (Nichol & Collins, 1993; Maddox et al. 1996).

The data were taken in two nights in March, 1999 with the SDSS Camera (Gunn et al. 1998)

on the 2.5m telescope (SDSS Runs 752/756). The area surveyed is centered on the Celestial Equa-

tor 2:52 degrees wide by approximately 90 degrees long. In equatorial coordinates, the observed

region runs from 9h40m48s to 15h45m12s in � (J2000), putting the very ends of the run at some-

what low Galactic lattitudes. This area was imaged in two interlaced strips of six columns (or
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\scanlines") which together form a continuous region. Although each object is sampled in �ve

bands (u�; g�; r�; i�; z�; Fukugita et al. 1996), the objects chosen here were selected based on their

r� model magnitudes. Ultimately, photometric redshifts can be obtained by using the multi-band

information, but here we make no estimate of the radial distance of each object. This pair of runs

has been used in previous early SDSS papers analyzing the galaxy luminosity function (Blanton et

al. 2001), number counts (Yasuda et al. 2001) and colors (Shimusaku et al. 2001; Strateva et al.

2001).

Photometric calibration is carried out using an auxiliary 20" telescope adjacent to the SDSS

2.5m telescope (the `Photometric Telescope', or PT). The PT observes a set of standard stars

which have been calibrated to the SDSS �lter system (Smith et al. 2001) in order to determine

the atmospheric extinction of a given night. Additionally, the PT observes regions of the sky

(`secondary standards') which overlap the imaging scans, setting the photometric zeropoints for

these. For runs 752 and 756, 11 and 16 secondary patches were observed, respectively. In later

calibrations, the photometric zeropoint of each chip was assumed to be constant through each run,

but the calibration of the data we used allowed for the zeropoint to vary from patch to patch. The

zeropoints from each secondary patch typically agreed with each other to 0.013 magnitudes in r0.

Every object in the survey is assigned a probability that it is a galaxy based upon its mor-

phology. The basic algorithm used to assign these probabilities is discussed in x2. In x3, we test

the star/galaxy separation scheme with a wide variety of systematic checks. We show there that

the separation predictably does not work well in regions of very poor seeing, so we mask out the

poor seeing regions. The resultant mask is presented in x4; it accounts for seeing, reddening, bright

stars, and saturated CCD columns. In x5, we look for systematic e�ects due to uncertainties in

magnitudes. Varying responses in di�erent parts of the camera are another possible source of sys-

tematic errors, both within a given scanline and from scanline to scanline. We check for these in

x6.

The �nal third of the paper discusses technical details related speci�cally to the measurement

of the angular correlation (w(�)). Two estimators are used to estimate w(�), one a point-based

approach, the other cell-based. While they are equivalent on scales larger than a cell size, each

carries with computational advantages and disadvantages. These are discussed in x7, as is the

integral constraint which becomes important on large scales (here on the order of a degree). The

errors on w(�) are particularly important because (i) they are due to both Poisson statistics and

cosmic variance and (ii) they are highly correlated from bin to bin. We present estimates of the

full covariance matrix in x8 using four techniques, each with its regime of validity. Finally, we o�er

some conclusions in x9.

With this prescription for avoiding photometric systematic e�ects in hand, there are a number

of clustering measurements possible. A companion paper (Connolly et al. 2001) will present the �nal

measurement of w(�) along with comparisons to previously published measurements. Additionally,

Tegmark et al. (2001) gives a measurement of the angular power spectrum (Cl). Dodelson et al.
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(2001) inverts the angular correlations and angular power spectra to extract the three-dimensional

power spectrum, which will then be used to do parameter estimation. In parallel, Szalay et al.

(2001) performs a Karhunen-Lo�eve decomposition of the data, allowing for a direct estimation of

the � and �8 parameters. Finally, Szapudi et al. (2001) presents the higher order correlation

functions for the data. All of these companion papers use a common data set, the EDR-P, taken

from the Early Data Release and extended to include the galaxy Probabilities described below.

2. Star/Galaxy Separation

The photometric data are processed using a series of interlocking pipelines (Stoughton et al.

2001) that 
at-�eld the images, match up the data in the di�erent bands, measure the properties

of all detected objects, and apply astrometric and photometric calibrations. A large number of

attributes are measured for each object, including a variety of aperture and model magnitudes.

Our object classi�cation algorithm uses the outputs of this pipeline to separate stars and

galaxies independent of the standard pipeline's binary decision about the stellar or galactic nature

of a given object. The pipeline's separation works well at relatively bright magnitudes where the

distinction between galaxies and stars is clear-cut, but at the faint end of the magnitude range

there is a de�nite need to know the degree of certainty in calling an object a star or a galaxy. With

that in mind, we developed a Bayesian method of star/galaxy separation based upon the outputs

of the pipeline. This method has proven e�ective enough that it will be a standard output of the

future versions of the pipeline. The details of this separation method are given in Lupton et al.

(2001) along with more detailed descriptions of the processing pipeline and tests of the reliability

of the morphological parameters. For pedagogical purposes, we present an outline of the method

employed for star/galaxy separation below.

2.1. Separation Method

The data processing pipeline provides a number of standard outputs which could be used for

star/galaxy separation. For our purposes, four magnitude measures are of principle interest: PSF

magnitudes, exponential magnitudes, deVaucouleurs magnitudes and model magnitudes. The �rst

of these is simply the magnitude of a given object within the FWHM of the point-spread function

(PSF) calculated locally based upon the measured PSF of nearby bright stars. The exponential

and deVaucouleurs magnitudes are measured within two dimensional pro�les where the axis ratio

and scale lengths are �t to the object; in addition the model has been convolved with the PSF.

Model magnitudes are the best �t of either the exponential or deVaucouleurs model in the r� band.

From these magnitudes, we derive our central tool for star/galaxy separation, the concentration,

which is de�ned for each object as c � r�PSF� r
�
EXP, where r

�
PSF is the r� PSF magnitude and r�EXP

is the exponential magnitude. In the case of a star, the concentration parameter should be very
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close to zero. For a galaxy, however, the concentration is positive for bright magnitudes and then

tends toward zero at fainter magnitudes as the galaxies become less and less resolved. Figure 1

shows the behavior of this parameter for several thousand objects over a range of model magnitudes

in the r� band.

The most striking feature of this plot is the clear separation between the stellar and galactic

loci at bright magnitudes. This clean separation degrades as the magnitude increases as the galaxies

become unresolved and the widening of the stellar locus as the photon errors become larger than the

intrinsic spread. Clearly, this will lead to some cross-contamination between the two populations,

which we will quantify below.

2.2. Bayesian Likelihood

While a straight-line binary cut in concentration-magnitude space has the advantage of simplic-

ity (provided that one can adjust the location and orientation of the demarcation line to maximize

the selection eÆciency), it produces little measure of the statistical con�dence in the classi�cation

of each object. The following gives a brief description of the probabilistic method of separation

used in our analysis of w(�). Again, this method will be covered in greater detail in Lupton, et al.

(2001).

Using the standard Bayesian formalism, we can express the likelihood that a given object is a

galaxy in terms of its magnitude (m) and concentration parameter (c) as

P (Gjm; c) =
P (m; cjG)P (G)

P (m; c)
: (1)

We can pull magnitude out of the �rst probability in the numerator as

P (Gjm; c) =
P (cjm;G)P (mjG)P (G)

P (m; c)
; (2)

where P (mjG) is simply the galaxy number counts for a given magnitude. We can �nd this by using

a simple straight line cut for the brighter magnitude objects (approximately 17 � r� � 19) where

the stellar and galactic populations are well separated. We can �t an exponential curve to this

relation and normalize it over the magnitude range to �nd the probability for a given magnitude.

Yasuda et al. (2001) have measured this power law from the same SDSS data; our independent

measurement con�rms their result for the fainter end of their sample.

Using the fact that the stellar and galactic probabilities for a given object must sum to one,

we can re-write the above as

P (Gjm; c) =

�
1 +

P (cjm;S)P (mjS)P (S)

P (cjm;G)P (mjG)P (G)

��1

; (3)

Again, we can use the empirical results from the easily separable bright objects to �nd P (mjG) and

P (mjS), taking into account the variation in stellar density as a function of Galactic coordinates. In
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practice, the sensitivity of the separation to the star-galaxy ratio is generally quite low for sensible

values. More explicitly, since we will be calculating these quanities over a small, �nite magnitude

range, we can re-express the above as

P (Gjm; c) =

�
1 +

P (cjm;S)P (Sjm)

P (cjm;G)P (Gjm)

��1

; (4)

where P (Sjm) and P (Gjm) folds in the relative abundance of galaxies and stars due to changes

in Galactic lattitude. This leaves us only P (cjm;S) and P (cjm;G) to calculate. To �nd these

probabilities, we bin the data from the magnitude-concentration plot in magnitude, resulting in

histograms like that in Figure 2. After applying a simple transformation on the concentration to

rein in the tail on the galaxy distribution, we �t a Gaussian to the galaxy locus and two Gaussians

to the stellar locus (to account for the slightly wider tails) for all of the magnitude bins. This

allows us to interpolate the parameters of the two probability distributions, giving us the galactic

and stellar probabilities for a given magnitude and concentration.

With minimal e�ort, we can expand the above to include information on the seeing conditions

(s) for a given object, resulting in

P (Gjm; c; s) =

�
1 +

P (cjs;m; S)P (Sjm;s)

P (cjs;m;G)P (Gjm; s)

��1

: (5)

This extension is needed to compensate for the di�erent behavior of the stellar and galactic loci

under di�erent seeing conditions as seen in Figure 1. In regions where the seeing is very good,

there is clear separation between the stellar and galactic loci to fainter magnitudes than in those

regions with poor seeing. Likewise, the centroid of the galactic locus is considerably closer to that

of the much wider stellar locus at fainter magnitudes in the bad seeing regions where the PSF has

increased.

In making this modi�cation, we are assuming that the measurement of the magnitude is

una�ected by seeing. For brighter objects this should be true and in the faint limit the e�ects

of the seeing on the magnitude would act in much the same manner for both galaxies and stars

since both types of objects have nearly the same light distribution. This e�ect should therefore

roughly cancel in Equation 5. This conjecture has been veri�ed by Ivezic et al. (2001) in their

examination of objects doubly imaged in those regions where scanlines in interlaced strips overlap.

They have found that, for reasonably bright objects imaged in very di�erent seeing conditions, the

magnitudes are very consistent. Just as importantly, at the faint limit the e�ect of di�erent seeing

on the magnitude was the same for stars and galaxies. Thus, we can safely bin the objects in

both magnitude and seeing before �tting the Gaussians to the concentration distributions and then

bilinearly interpolate in those variables to �nd P (cjs;m;G) for a given concentration, magnitude,

and seeing.

For the actual form of P (Gjs;m) and P (Sjs;m), we can use a similar method to that used for

the case without seeing included. The e�ect of worsening seeing is to brighten the faint magnitude
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limit. Since most of the objects at that limit have similar sizes anyway, we would again expect

that the e�ects for galaxies and stars in that limit would be the same and thus cancel out in the

formula. In fact, we can replace P (Gjs;m) with P (Gjm) and P (Sjs;m) with P (Sjm) without losing

information,

P (Gjm; c; s) =

�
1 +

P (cjs;m; S)P (Sjm)

P (cjs;m;G)P (Gjm)

��1

: (6)

With a star/galaxy separation scheme in hand, the �rst concern is verifying that it produces

a uniform sample of galaxies across the �eld of view. This will make checking the variation of the

sample against possible sources of contamination paramount if we want to assure ourselves we are

measuring the galaxy clustering independent of systematic e�ects. As we will show in the following

sections, the proper cuts on those systematic contaminants allow us to reliably separate stars from

galaxies down to a model magnitude of 22 in r�. The eÆcacy of the binary galaxy/separation

separation has been analyzed by Yasuda et al. (2001) down to r� � 21. Our tests verify that our

probabilistic separation matches this performance and allows us go to fainter magnitudes where

the binary method fails. This allows us to make the four unit magnitude cuts that we will use

for the rest of our analysis: 18 � r� � 19, 19 � r� � 20, 20 � r� � 21, and 21 � r� � 22, with

approximately 0.16, 0.31, 0.65 and 1.15 million galaxies, respectively. All of the magnitude cuts

are based on the model magnitudes, dereddened using the reddening map of Schlegel, Finkbeiner,

& Davis (SFD, 1998).

3. External Systematic Error Sources

By restricting the area of our survey, we can reduce the measured systematic errors in w(�)

due to variations in seeing and dust extinction below the errors in the measurement due to cosmic

variance and Poisson errors. We are also able to separate the stellar and galaxy populations to

the extent that their cross-contamination becomes negligible. In this section, we present various

diagnostic tests of the data to determine how best to de�ne the survey area. Although these tests

concentrate on the angular correlations, the resulting mask is equally valid for any measurement of

angular clustering (e.g. angular power spectrum or KL decomposition).

3.1. Galaxy Densities

Measuring the galaxy densities projected along the long and short axes of the survey area is

the �rst check that our galaxy sample is reasonably uniform. The �rst check is verifying that the

structure of the scanlines is not re
ected in the galaxy densities. The left panel of Figure 3 shows

the variation of the galaxy density in the raw data for each of the magnitude bins as a function

of declination with columns progressing from left to right; alternating scanlines are observed si-

multaneously. The width of each scanline is � 0:21Æ and the 12 scanlines are split evenly between
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positive and negative declination.

Here we obtain the galaxy densities by summing the galaxy probabilities of all objects in the

region. To �rst order, the appearance of boundaries between scanlines is minimal, but certainly

visible in the break at zero declination, for example. If we apply a mask to the data (the exact

details of which are explained and justi�ed in x3.4) to avoid the regions where the data quality is

questionable, we get the result plotted in the right panel of Figure 3. The masked sample avoids

the sharp dips near Æ � 0:4Æ and 0:65Æ and the tailing o� of the galaxy density toward the edge of

the camera.

In order to get a better idea of what data should be cut out if we want to avoid systematic

errors, we need to examine the behavior of the galaxy density while varying some of the possible

sources of errors.

3.2. Seeing Variations

As part of the photometric pipeline, a set of PSF eigencomponents are determined using

Karhunen-Lo�eve decomposition of the bright stars in each �eld of each scanline (the details of this

process are presented in Lupton et al. (2001)). By taking into account the position of these stars,

one can use interpolation to reconstruct the PSF from a combination of these eigencomponents for

any object in the �eld. To determine the seeing for each object, we calculated the second moment

of each of these eigencomponents and then used the same interpolation scheme to reconstruct the

seeing; the seeing is given as 2.355 times the second moment to match the assumption that the PSF

is Gaussian. This allows the seeing to be calculated at any object without the more time consuming

process of re-constructing the PSF at that point and calculating its second moment. It should be

noted, however, that this de�nition di�ers from that used by Yasuda et al. (2001) in their analysis,

resulting in qualitative, but not quantitative, agreement between our seeing and theirs.

The left panel of Figure 4 shows the mean seeing variation across the scanlines for the two runs

as a function of right ascension. The seeing for Run 756 is generally well-behaved throughout the

course of the run, with only the occasional departure above 100:6. Run 752, taken two days prior to

Run 756, is much more volatile; the entire �rst half of the run oscillates above 100:8 and then later

the seeing spikes to 200:0. This will require extensive masking and require careful checking against

false signal on the scanline scale.

In normal survey operations, regions where the seeing degraded to worse than 100:5 are marked

for re-observation, but we did not have that luxury for the commissioning data. In the left panel

of Figure 5, we plot the mean galaxy density for the combined stripe as a function of seeing. The

galaxy density varies considerably for the faintest magnitude bin over the factor of two in seeing

conditions, suggesting that poor seeing lowers the con�dence that a given object is a galaxy. Not

surprisingly, we also see that the e�ect of poor seeing is more pronounced at fainter magnitudes

than for the brighter objects. Already, the magnitude bin from 21 � r� � 22 clearly shows that we
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need to restrict the data to seeing better than 100:75, but the cross-correlation analysis below will

show that the cut needs to be even more restrictive. Figure 6 shows the area which would remain

unmasked for a given seeing cut.

3.3. Reddening Variations

Since we are only analyzing the e�ect of intermediary dust in a single band, the term \red-

dening" is not as appropriate as \extinction" or \absorption". However, the magnitude extinction

limits that we will set in constructing our mask will refer to the r� element of the reddening output

of the photometric pipeline, so we will adopt the use of \reddening" in favor of other alternatives

to avoid confusion.

The right panels of Figures 4 and 5 repeat the above analysis in terms of the SFD reddening.

The dependence of galaxy density on reddening is weaker than for seeing, but that is to be expected

since the survey area does not contain much area where the reddening is signi�cantly higher than

0:2 magnitudes. Likewise, the small fraction of the area with reddening less than 0:05 magnitudes

makes that density measurement highly dependent on large-scale structure variations in those

regions. Still, the fact that the scatter in density is so much larger than the Poisson error for those

higher reddening areas suggests that we should consider setting the limit for reddening around 0:2

magnitudes. Figure 6 shows that the area excluded by such a cut is small.

3.4. Cross-Correlations

Cross-correlations o�er the most powerful means for checking against contamination in the

galaxy sample. Not only can they detect systematic e�ects, they also o�er information on the

angular scale of that correlation. This is particularly important in the case of seeing, where we

have sharp variations between adjacent scanlines. Since cross-correlations depend to some degree

on the uniformity of the response in the system, they would not be appropriate diagnostics of the

observing system itself. Rather, they will give us information on how our separation scheme might

be confused by external conditions. With that in mind, we will cross-correlate the galaxy density

with seeing, reddening, stellar density and sky brightness.

To measure the cross-correlations, we generated a pixelized version of the data, breaking the

area in each 0:21Æ wide scanline into square cells approximately 0:04Æ on a side. This gives us �ve

cells in the Æ direction for each scanline and approximately 10,000 for the whole of a given scanline.

In each cell, we �nd the mean seeing, mean reddening in r� and mean sky brightness in r� for

all of the objects in the cell, as well as the sum of the galaxy and star likelihoods in each of the

four magnitude bins. In principle, these quantities could be found using the seeing, reddening and

sky brightness maps independently, but this measure weights our average toward the values most

relevant to the objects in the cell.



{ 11 {

The size of the cells ensures that the majority of the cells will contain on order 30 objects

down to r� = 22. Smaller cells would allow for greater resolution, but we suspect that most of

the systematic e�ects will occur on the scale size of the scanline. The cell size is also of order the

angular resolution of the SFD reddening map. Keeping the mean number of objects per cell high

also allows us to ignore cells without any objects (usually due to a missing area in the data, as

happens with a single unreduceable �eld in scanline 4 of run 752) without biasing ourselves against

genuine voids.

Having the information in this form allows us to calculate the cross-correlation of the galaxy

catalog with seeing, reddening, stellar density and sky brightness in each of the magnitude bins for

a variety of di�erent seeing and reddening cuts. Once we have established the limits on seeing and

reddening necessary to ensure an uncontaminated sample, we then use this pixelization to construct

the mask.

To measure the cross-correlation, we �rst divide the stripe into 35 separate square regions,

approximately 2.5 degrees on a side, each containing � 3600 cells. For each square, we calculate

the mean sum of galaxies probabilities (�ng) per cell in a given magnitude bin, as well as the mean

for the possible contaminant (�xc), where xc could refer to the sum of the stellar probabilities, mean

seeing, etc. This allows us to calculate the fractional galaxy and contaminant overdensity in a given

cell i,

Ægi =
ngi � �ng

�ng
(7)

Æci =
xci � �xc

�xc

The cross-correlation, wgc(�), is then simply

wgc(��) =

P
i;j Æ

g
i Æ

c
j�

�
ijP

i�;j� �
�
i�;j�

; (8)

where ��
ij is unity if the separation between cells i and j is within angular bin �� and zero otherwise.

Once the measurement has been done in each of the 35 sub-samples, we calculate the mean ( �wgc(�))

and error on the mean (� �wgc(�)),

(� �wgc(�))
2 =

1

N2

NX
i=1

( �wgc(�)� wgc;i(�))
2; (9)

where N = 35 in this case. In examining the cross-correlations below, one should bear in mind

that the galaxy auto-correlation signal at 1 degree is approximately 0:005� 0:0025 for the faintest

magnitude bin.
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3.4.1. Seeing

The cross-correlations between the seeing and the galaxy density for the faintest twomagnitude

bins in the sample (20 � r� � 21 and 21 � r� � 22) are shown in Figure 7. The goal here should be

a 
at curve, consistent with zero, and in particular one that shows no structure on the 0:21 degree

scale of the scanlines. Such structure is still seen with a 1".7 seeing cut for the faintest magnitude

bin. The cross-correlation signal is reduced to an acceptable level by using a cut at 100:6 seeing. It

should be noted that even the slight departure from zero seen with this cut is still well below the

measurement of w(�) on the same angular scales (Figure 10).

Making a cut at 100:6 is necessary for the faintest bin, but if we are interested in brighter

objects, we can relax this cut somewhat. The left panel of Figure 7 shows the same galaxy-seeing

cross-correlation for objects with magnitudes 20 � r� � 21. In this case, we see that we can raise

the seeing limit to 100:75 and still have a cross-correlation consistent with zero, although with some

slight variation on the scale of the scanlines. Since we want to include as much area as possible, we

use two cuts, one for the faintest bin cutting at seeing of 100:6 and a second excluding seeing worse

than 1:0075 to use for the other three brighter magnitude bins.

3.4.2. Reddening

Unlike the galaxy-seeing cross-correlations, there is not a strong relation between tightening

the restriction on the allowed reddening in the r� band and improved lack of cross-correlation

(Figure 8). This is not terribly surprising given the 
uctuations in galaxy density as a function

of reddening we saw in Figure 5, particularly for the fainter magnitude bins. However, while the

cross-correlations show some degree of angular dependence, they are easily within 2� of zero for all

angular scales and below the level of the galaxy auto-correlation errors.

Given this, we exclude those regions where the reddening is worse than 0:2 magnitudes in r�

as is suggested by the scatter in galaxy densities at higher reddening levels in Figure 5.

3.4.3. Stellar Density

With perfect star/galaxy separation, we would expect the stellar density auto-correlation to

be consistent with zero, except perhaps on the very smallest scales. Thus, in the case where we

have mistaken galaxies for stars and vice-versa, we would expect that the cross-correlation of these

samples would produce a damped version of the galaxy auto-correlation, diluted by the e�ectively

null stellar auto-correlation. For these tests, we use the limits on the seeing (better than 100:6 for

galaxies fainter than r� = 21 and better than 100:75 for brighter galaxies) and reddening (reddening

less than 0.2 in r�) established in x3.4.1 and 3.4.2. As shown in Figure 9, the cross-correlation

between the galactic and stellar populations is within the 2� limit of zero for magnitudes brighter
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than r� � 21. For the faintest magnitude bin, however, there is a de�nite correlation between the

two populations at small angles, again most likely due to some leakage between the two samples.

However, we can see from Figure 10 that the deviation from zero for the star-galaxy cross-correlation

is not only much less than the galaxy-galaxy auto-correlation itself , but is also less than the error

on that measurement even for the faintest magnitude bin.

3.4.4. Sky Brightness

We also consider the cross-correlation between the galaxy density and the sky brightness. Since

our faintest two bins approach the limit of the photometric system (York et al. 2000), we might

expect that the confusion between a 
uctuating sky brightness and the outer edges of galaxies might

result in an anti-correlation of sky brightness and galaxy density. We present this cross-correlation

in Figure 11. As expected, there is a slight, but non-zero, anti-correlation. However, the amplitude

of this cross-correlation is well below the level of the errors on w(�) (Figure 10).

3.4.5. Large Angle Cross-Correlations

Finally, we need to consider the large angle e�ects of variations in reddening and seeing. Our

previous calculations were primarily concerned with the e�ect of these variations on the scale size

of the scanlines, where we expected to see discontinuities in the seeing. While eliminating cross-

correlations on that scale is important, it does not guarantee that we do not have larger scale

cross-correlations which could cause problems for the Cl and KL measurements of the data in

Tegmark et al. (2001) and Szalay et al. (2001).

Unlike the smaller angle measurements, the sub-sampling method is not appropriate for cal-

culating the error on this measurement. Rather, we use a variation on the jackknife error scheme,

allowing us to use the whole data set. For a traditional jackknife, we would perform the measure-

ment N times, removing a single di�erent data point each time. In our form, we use sub-samples

similar to those described in x 3.4 as our unit of subtraction, calculating the galaxy auto-correlation

N times, each time excluding a di�erent sub-sample. To ensure that we have enough measurements

to constrain the 23 angular bins for this measurement, we used 26 samplings of the data. In this

scheme, the error is given as

(�w(�))2 =
N � 1

N

NX
i=1

( �w(�)� wi(�))
2; (10)

where �w(�) is the mean w(�) for the N = 13 measurements and wi(�) is the measurement of the

galaxy auto-correlation excluding the ith sub-sample.

Figure 12 shows the cross-correlation between the galaxy density and seeing, reddening and

stellar density using this method for the faintest two magnitude bins. As with the results in
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Figure 10, the galaxy-seeing cross-correlation is consistent with zero on all scales for both magnitude

bins. The galaxy-reddening and galaxy-star cross-correlations, however, di�er signi�cantly from the

small scales. This can be understood readily by recognizing that the variation in galactic latitude

over the course of the observing area leads to large-scale variations in the reddening and stellar

density while the seeing variation is basically a small-angle phenomena. (Since we calculated

the expected values for the contaminants independently for each sub-sample in Equation 8, these

large-scale variations would not factor into those measurements.) As a result, we see a rather


at cross-correlation in the large-angle measurements consistent with zero at the 1:5� level. The

e�ect of this cross-correlation is the uniform in
ation of the galaxy-galaxy auto-correlation when

calculated on large scales, similar to the integral constraint discussed in x 9.1.

4. Masks

In addition to making the cuts on seeing and reddening described in x3.4.1 and x3.4.2, we

also mask out all of the stars in the �eld that have saturated centers, including a rectangular area

around the star large enough to encompass any di�raction spikes. Similarly, we mask out two thin

regions (� 1500 wide) running the length of the data set where the data processing pipeline 
agged

nearly all of the objects as saturated due to a bad CCD column. As described later in x6.3, poor

telescope collimation caused the PSFs in scanlines 1 and 6 to be noticeably worse than those in the

central scanlines (this problem has since been corrected so will not a�ect any subsequent data). To

interpret this e�ect, we also consider a more restrictive mask that excludes scanlines one and six

from each strip.

Masking out the regions of substandard seeing makes the largest cut in our data (Figure 6),

taking out approximately 26% (24%) of the total (central) area for the bright mask (seeing better

than 100:75); the faint mask (seeing better than 100:6) removes 35% (31%). Imposing our cut on

reddening claims roughly another 2%. Finally, the area lost to bright stars is .05% of the total

area and the two saturated CCD columns mask another 0.35%. After combining these masks into

one unit and eliminating overlaps among the di�erent masks, the total area lost to masks is 28.5%

(26.8%) of the total (central) area in the bright mask and 37.9% (33.7%) for the faint mask. The

e�ect of the masks, excluding the bright star masks, are shown in Figures 13 and 14.

Figure 15 shows a comparison of the masked and unmasked w(�) measurements for the four

magnitude bins. In general, the e�ect of the mask is quite minimally apparent in the auto-

correlation. This does not hold true, however, for the faintest magnitude bin, where signi�cant

departures from the expected power-law shape can be seen, coinciding with our expectations of

variations on the scanline-scale due to cross-correlation with seeing.
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5. 2-D Auto-Correlations

For a further check on the performance of the mask and the data, we can break our auto-

correlations into two dimensions, splitting the angular separation between a given pair of objects

into its components along the scanline and orthogonal to the scanline (� and Æ in our case, since our

area parallels the Celestial equator). If we have variations in density correlated with the interlaced

scanlines, then we should see striping along the scan direction.

As shown in Figure 16, we recover a radially symmetric auto-correlation for the faintest two

magnitude bins, con�rming that our sample is uniform over the transitions between scanlines. We

can also use this measurement to demonstrate how the mask improves the auto-correlations. In

Figure 17, we show the results of subtracting the auto-correlation calculated without the mask from

the fainter magnitude bin shown in Figure 16. For the magnitudes brighter than r� = 21, there

is no obvious striping due to variations in the galaxy density between scanlines, but we do see a

rather modest uniform o�set, which is perhaps due to a decrease in stellar contamination for the

masked sample. This is not true for the faintest magnitude slice, however, which shows exactly the

striping in the unmasked measurement we predicted for variations in the galaxy density between

strips. The mask removes this behavior to the limit of our ability to measure it with this test.

6. Camera Column Variations

The previous sections dealt with errors that were the result of external e�ects on the galaxy

data set and we were able to set limits on the associated contaminants that would produce a

uniform galaxy catalog across the area of the survey to the best of our ability to measure. In

addition, however, uncorrected variations in sensitivity across the imaging camera could lead to

false correlations. We test for such e�ects in this section.

6.1. Intra-Column Variations

The �rst check is that the CCDs that create each of the camera columns has a uniform depth of

�eld. Variations in PSF due to telescope collimation errors or the like across a given detector could,

if not taken into account, lead to arti�cial density variations in object densities and classi�cations.

Improvements in the data processing pipeline have reduced the e�ect of this on our star/galaxy

classi�cation and photometry below our ability to detect it.

To demonstrate this, we use a �ner pixelized version of the data described in x3.4 (cells with

sides � 0:01Æ long instead of � 0:04Æ, using the masks describe in x4) and compare the fractional

over-density for a given cell i, Æi as calculated in 7, in each column to a series of over-density

gradients (�i) across the chip in the Æ direction. We choose stellar density rather than galaxy

density as it should be free of actual clustering due to large scale structure. The over-density



{ 16 {

gradients are constructed as sines and cosines:

�i;njm =

8<
:

An cos
�
2�n
ÆL

�xi
�

Bm sin
�
2�m
ÆL

�xi
�
9=
; (11)

where �xi is the mean declination for cell i, ÆL is the width of the column (� 2:52Æ), An and Bm are

chosen such that X
i

�i;njm = 0 (12)

X
i

�i;njm�i;njm = 1; (13)

and An = 0 for m > 0 and vice-versa. We de�ne

Cnjm �
1

N

X
i

Æi�i;njm; (14)

where N is the number of pixels and Cnjm = 0 provided that there is no correlation between the

two over-densities. This is e�ectively decomposing the projection of the stellar over-densities along

the scan direction into Fourier cosine and sine modes.

Since we have 216 cells in the declination direction, we can let n and m vary from 0 to 108

and still resolve the variations in �i;njm. Calculating the sum in Equation 14, we should detect any

fundamental variations orthogonal to the scanlines. We �nd, however, that the whole of the data

satis�es equation 14 to within 2� of the Poisson errors (Figures 18 and 19) for all 216 gradients in

the faintest two magnitude bins.

We can also repeat this exercise for each scanline independently, producing the results shown

in Figures 20 and 21 for the faintest two magnitude bins. Here, our maximum value for n and m

is reduced to 9 and ÆL� = ÆL
12 . Once again, we do not observe any statistically signi�cant non-zero

elements of Cnjm for any of the scanlines in either column, indicating that we are not producing

correlations due to di�erential response in the camera columns.

6.2. Cross-Column Correlations

As a further check on column-to-column variations, we calculated the galaxy auto-correlation

using the sub-sample method within each of our runs independently of the other, as well as the

cross-correlation between the galaxies in each of the runs. If our calibrations and sensitivities are

consistent from run to run, each of these should be consistent with the measurement we make from

the entirety of the stripe. The results of this measurement using the pixelized data set from x6.1

and the sub-sampling error method from x3.4 for the two faintest magnitude bins are in Figure 22.

In general, they con�rm that our system is behaving as we would hope. There is some spurious
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signal from the auto-correlation in Run 752 around the scale size of a scanline, but that is likely

due to the fact that most of that run is masked for the �rst half of the range in right ascension (see

Figures 13 and 14).

6.3. Central Scanlines vs. All Scanlines

The SDSS camera provides an extremely 
at depth of �eld, so as to make the observation

of objects as they drift across the �eld as uniform as possible. However, as mentioned above, at

the time that this data was taken, the telescope was not properly collimated (this has since been

corrected). The result was that the PSFs in the outer two scanlines of each run were noticeably

poorer than the central ones, particularly scanline 6 in each run. This, in turn, made calculation

of the photometric calibration more diÆcult in those scanlines.

As mentioned previously, the photometric calibration is generally done by setting photometric

zeropoints based upon secondary stars observed by the PT in the region imaged by the main camera.

The uniformity of this calibration can be checked by comparing the magnitudes of objects in the

� 20 overlap region between adjacent scanlines. In r�, the median photometric zeropoint o�set, as

determined from photometry of stars, is less than 2% for all scanlines of data except for scanline

6, which shows deviations of up to 5%. For galaxies with r� < 19, we �nd that the rms di�erence

between model magnitudes in the two runs in the overlap is typically 0.04 mag in r�, about 30%

larger than the nominal photometric errors would imply.

Clearly, this sort of calibration error could potentially lead to a change in the galaxy density for

a given magnitude range in those camera columns compared to the central scanlines, although such

a variation is not apparent from the galaxy density plots in Figure 3. We tested this possibility by

excluding the outer scanlines and re-calculating the cross-correlations and auto-correlations from

x3.4. In general, the central scanlines were somewhat less sensitive to systematic contaminants than

the whole of the data, but it appears that adding the outer scanlines does not e�ect the resulting

auto-correlation, as shown in Figure 23.

7. Limber Scaling Tests

To test the consistency of the w(�) measurements and check whether the variations in w(�)

are due to intrinsic clustering e�ects rather than systematic errors, a magnitude scaling test using

the relativistic form of Limber's equation was applied to the results. Since w(�) is given by the

two-dimensional projection of the spatial clustering function �(r), the w(�) measurements will be

scaled according to the depth of the survey (Peebles, 1980).

With a model for the redshift distribution dN
dz , we can scale the measurements of w(�) in disjoint

magnitude slices to the same depth. This method is essentially identical to the one employed in
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the APM survey (Maddox et al. 1996), described there in greater detail. We assume the same

two-slope form of �(r), with slopes of 
 = 1:7 at small angles and 
 = 3:0 at large angles, and

ignore e�ects of evolution in �(r).

As with the simulated catalogs discussed in x10.1 below, the dN
dz selection function was based on

the results of the CNOC2 survey (Lin et al, 1999), and calculations were performed for two di�erent

cosmologies: a critical-density universe (
m = 1;
� = 0) and an underdense model dominated by

a cosmological constant (
m = 0:3, 
� = 0:7).

Because the commissioning data is a narrow stripe, it does not allow us to accurately calculate

w(�) at angles larger than � 1Æ, so we cannot observe the expected break in the power law. The

break from power law form should occur at larger angles for fainter magnitudes, which is accounted

for in the scaling tests, but we cannot verify this using the commissioning data.

As seen in Figure 24, the critical-density calculations show good agreement for the brighter

magnitude bins, with progressive worsening for the fainter magnitudes. This does not contradict

the APM measurements (Maddox, 1996), since the APM survey had a magnitude limit of bJ = 20:5

and the discrepancy only becomes signi�cant for the faintest magnitude bins, due to the strongly

di�ering size of the volume element at large (z > 0:5) redshifts between the cosmological models

examined.

The lambda-dominated tests show much better agreement across all magnitude ranges. The

fact that the scaling tests should support an underdense, lambda-dominated universe is not sur-

prising, since measurements of dN
dz of faint galaxies (Fukugita et al. 1990) have been known to be

incompatible with a critical-density universe for some time.

8. Deblending Tests

As our �nal source of systematic errors, we consider the possibility of errors in deblending

nearby pairs of objects during data processing. Since the data pipeline is automated, the software

is required to make decisions as to what is a single object and which are close projections of two

distinct objects on the sky.

We consider two types of deblending errors: large galaxies that are split into multiple elements

and pairs of distinct objects that are not successfully separated. The �rst of these errors typically

occurs when a large spiral galaxy contains one or more HII regions which the deblender interprets

as super-imposed stars or when the arms of such a spiral galaxy are prominent enough to be

intrepreted by the deblender as separate objects. With the latest version of the pipeline this occurs

with minimal frequency. For our magnitude cuts, we are less concerned about losing galaxies to

this error than we are the introduction of fainter pieces of the shredded galaxy into our sample.

This problem was studied by Yasuda et al. (2001) in the course of their work on galaxy number

counts. After doing a visual inspection of bright objects, they concluded that, for parent objects
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fainter than r� = 15, there were no such \shredded" galaxies or galaxy fragments.

The second class of deblending error, where two objects are not successfully separated, is

expected to be more of a concern due to its greater frequency. This can happen under a number

of circumstances, most notably seeing variations that blur the object images to the point where

even pairs of morphologically simple galaxies cannot be clearly separated. Of course, since we are

interested in extended objects, we are more sensitive to these errors than we would be if we were

only interested in stellar objects. We have the additional concern that the objects causing this

sort of error need not be in our magnitude cut, but rather could be stars or galaxies in di�erent

magnitude bins.

The primary e�ect of this error is on the smallest angular scales, where we expect to see

a suppression of the number of pairs of objects, as multiple objects in high density regions are

interpreted as single objects. This e�ect can then propagate to larger angles due to the expected

high correlation between angular bins. Likewise, since we will have mis-counted the number of

objects, our estimation of the number density of objects on the sky could be signi�cantly skewed,

resulting in a suppression of the auto-correlation signal similar to an integral constraint (as discussed

in x9.1) on all angular scales.

8.1. Input Catalogs

Since we did not know a priori what the nature of the deblending errors were in our data, we

needed a training set of perfectly resolved data that could then be manipulated to simulate various

deblending failures. For this purpose, we used mock catalogs (described in section x10.1) that were

generated for the measurement of the w(�) covariance matrix. Since we expect that the rate of

deblending error is highly dependent on the density of objects on the sky, we concentrated on the

mock catalogs simulating the faintest magnitude bin. The other three magnitude bins as well as

a randomly distributed set of points with projected density approximately equal to the stars were

used to simulate foreground objects that might also cause deblending problems.

8.2. Small-Angle Test

To measure the suppression of the small-angle signal due to deblending errors, we concentrated

solely on the possible failure of the deblender to separate close pairs objects. To simulate the

eÆcacy of the deblender, we calculated the separation of all objects within the main sample and

the separation on the sky of those objects and objects in the foreground sample. This separation

(��) was used to generate a probability of being successfully separated using a sigmoid function of

the form

P (��) =
�
1 + e�(����c)=�s

��1
; (15)
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where �c represents the separation at which half the objects are successfully deblended and �s
controls the slope of the likelihood. Applying this treatment to the data resulted in a sample where

the likelihood of close objects being successfully deblended decreases according to their relative

separations. We let �c vary from 0" to 5" and �s from 0 to 1.25 (�s = 0 indicating a step-function

at �� = �c), calculating w(�) for each combination and comparing the result to the observed

suppression in the data:

Æw(�) �
wT (�)� wD(�)

wT (�)
; (16)

where wT (�) is the value expected from the template and wD(�) is the measurement with deblending

errors. For the actual data, we made the assumption that the \true" w(�) is well-described as a

power law; Connolly et al. (2001) gives the parameters for this �t. Treating this power law as the

wT (�) for the real data, we found the combination of �c and �s that produced residuals similiar

to the residuals in the data. The best �tting values for �c and �s are 3" and 0.5, suggesting that

we cannot trust the deblender to function on this data at better than 95% eÆciency for angular

scales smaller than � 600. In the mock catalogs, this level of deblending errors reduced the number

of galaxies by 2.6%, small enough not to have an apparent e�ect on the overall integral constraint.

Although the data on angular scales larger than 6" is consistent with a power-law and the

mock catalog with the simulated deblending errors is consistent with the template measurement,

the residuals plotted in Figure 25 suggest that the lower angular limit on deblender eÆciency

generates periodic variations in the data. The suspected source of these variations is due to the

aliasing of power into the third angular bin from the �rst two and the large covariance between the

angular bins. These variations are consistent with zero for this measurement, but improvements

in the errors due to a large observing area would likely make them discordant. This suggests

that future SDSS measurements of w(�) will need to take deblender e�ects into account to avoid

misleading signals on all scales.

Having checked both the internal and external sources of systematic errors, as well as developing

a mask and angular limit to avoid regions where we would have signi�cant systematic errors, we are

now ready to address more speci�c issues related to the measurement of w(�) and the associated

covariance matrices.

9. Estimators & Biases

We now turn our attention to the estimators for w(�). There are a number of estimators in

the literature (Peebles (1973), Sharp (1979), Hewett (1982), Landy & Szalay (1993), and Hamilton

(1993)), but we have generally relied on two:

ŵ(�) =
DD � 2hDRi+ hRRi

hRRi
; (17)

where DD is the number of galaxy pairs in a given angular bin, hRRi is the expected number

of random pairs for a random catalog of similar density and geometry and hDRi is the expected
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number of cross-population pairs; and

ŵ(��) =

P
i;j ÆiÆjUiUj�

�
ijP

i0;j0 UiUj��
i0;j0

; (18)

where Æi is the fractional overdensity in cell i (as given in Equation 7), Ui is the fraction of cell i

that is unmasked, and ��
i;j is 1 if cells i and j are separated by a distance in angular bin � and

zero otherwise. This is similar, of course, to the estimator in x3.4, but with a cell size determined

by the desired angular resolution and terms to deal with a mask that is independent of the cell

size. The estimators in Equations 17 and 18 are identical in the limit of in�nitely small cell sizes

(Szapudi & Szalay (1998)).

In its simplest form, the �rst estimator has the advantage in that it can, in principle, probe all

of the angular scales in a �xed amount of time. Traditionally the time to perform this calculation

goes as O(N2). We can take advantage of the shape of the data area to speed up the calculation,

sorting the objects by � and only considering pairs separated by angles less than the largest angular

bin.

While this o�ers an improvment, the large numbers of measurements necessary to calculate

the covariance matrices (see x10.1) require a more sophisticated technique. For this calculation,

we take advantage of kd-trees (k-dimensional data tree structures describing the distribution of the

data) to make the calculation run more or less linearly with the number of galaxies. The power of

kd-trees for pair counting calculations, as developed by Friedman, Bentley and Finkel (1997), comes

in the quick elimination of large fractions of the data, reducing the number of distance calculations

for each pair of objects. This is accomplished by recursively subdividing the data area into smaller

nodes (generally by splitting along the widest axis of the data area) until suÆcient resolution is

achieved, one object per node in our case. A search for objects within some radius of a given point

in the data area can simply trace back up the data tree until the nodes pass out of its accepted

radius, avoiding most of the data in the process. In addition, one can calculate numerous statistics

at each node (count, centroid, covariance, etc.) to create an mrkd-tree, improving the ability of the

code to determine whether it should progress to the next node to �nd viable pairs. To make our

calculations, we used a version of the mrkd-tree code (the NPT code) developed by Gray & Moore

(2001). The nature of this code makes it extremely fast for scales �� 0:2Æ, but it bogs down for

larger angles such that we prefer to use the pixelized version of the code for those scales.

The virtues of the second estimator are more apparent on large scales, where the number of

pixels needed is much less than the number of galaxies. It also has the advantage of a more natural

generalization to dealing with correlations between continuous phenomena (e.g., galaxy density

and seeing), allowing us to use it for the cross-correlations in x3.4. We have veri�ed that these two

methods give comparable measurements of w(�) over two decades of our angular bins (at 6 bins per

decade in degrees), although in the full measurement and calculation of the errors we restricted the

angular overlap region to four bins. By approximately matching the processing time for the two

codes, we used the pair counting estimator for scales from 0:001Æ to 0:15Æ and the pixelized version
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for scales from 0:03Æ to our upper limit at 14:7Æ. This gives us 26 angular bins, 14 for the pair

counting estimator and 18 for the pixelized estimator. Figure 26 shows the results of combining

these two estimators to give the full range of angular measurements, as well as the measurements

for each technique in the overlap range. As expected the two methods agree very well and the

transition is quite smooth.

9.1. Integral Constraint

Regardless of the method used, all estimators for w(�) are plagued by the integral constraint.

Again, there has been considerable work done on this problem in the literature (e.g. Peebles 1980,

Landy & Szalay 1993, Hamilton 1993, Bernstein 1994, Tegmark et al. 1998, Hui & Gazta~naga

1999, Szapudi et al. 1999). The central problem in these calculations lies in the fact that the

calculation of the mean number density (�n) for a given cell is not the \true" number density, but

only an estimator thereof (�̂n) based upon a �nite number of galaxies and cells. This estimator

enters into the estimator of the auto-correlation ŵ(�) in a non-linear fashion and generally tends

to suppress our estimate of the \true" w(�). We will explicitly give the corrections only for the

pixelized estimator (Equation 18), but the treatment for the particle-based estimator (Equation 17)

follows similar lines.

9.1.1. Bias Correction

Since our estimator for �̂n enters in the calculation of the over-density, we have to re-de�ne Æ̂

as

Æ̂i �
ni � �̂n

�̂n
= (Æi � �)(1� �+ �2 � : : :); (19)

where Æi is the true overdensity for pixel i and we have parameterized our bias in using a �nite

sample with �,

� �
1

N

X
i

Æi; (20)

where N is the number of pixels in the survey area. Plugging Equations 19 and 20 into 18, it can

be shown that our estimator for w(��) has an expectation value of (see e.g. Hui & Gazta~naga 1999

for details)

hŵ(��)i = w(��)�
1

N2

X
i;j

w(�i;j)�
2

N2

X
i;j;k

w3(�i;j;k)Wij;� + w(��)
3

N2

X
i;j

w(�i;j): (21)

where shot noise is excluded (which can be shown to contribute negligibly to the integral constraint

bias), and where Wij;� is our window function,

Wij;� =
��
ijUiUjP

i0;j0 �
�
i0 ;j0UiUj

: (22)
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The above expression for hŵ(��)i keeps all terms that are �rst order in N�2
P

i;j w(�i;j) (assuming

w3 is related to w in the usual hierarchical fashion), which can be regarded as the small parameter

of our expansion. Note that this expression does not assume w(��) is itself small. The second term

on the right hand side of Equation 21 is what Peebles (1980) originally derived.

To estimate the integral constraint correction, we use the hierarchical relation to approximate

the w3(�) term as

�
2

N2

X
i;j;k

w3(�i;j;k)Wij;� � �w(��)
2

N2

X
i;j

w(�i;j): (23)

Gathering terms, this gives us our correction (�ŵ(�)):

�ŵ(��) � hŵ(��)i � w(��) = (1 + (2c12 � 3)w(��))
1

N2

X
i;j

w(�i;j); (24)

where c12 � w3=w2 is the hierarchical amplitude. Bernardeau (1994) gives the value of this param-

eter as c12 = 68=21 + 
=3, where 
 is the logarithmic slope of the variance and galaxy biasing is

ignored. For reasonable values of 
, this gives c12 � 2. We note that the w3(�) term does not in

fact contribute signi�cantly to the bias on large scales (where the bias is most important), and so

the approximations made above do not unduly a�ect our estimate of �ŵ .

Note that this expression contains w(�) and not the estimator ŵ(�) that we have calculated.

However, since the sums involved in Equation 24 are suppressed by a factor of 1=N2, the total

amplitude of the correction is quite small compared to the value of ŵ(�) on most scales. This means

that the error that we would make by substituting the estimator values for w(�) into Equation 24

should also be quite small. Even if this is not quite the case for all scales, we can note the

amplitude of the correction to ŵ(�) and disregard those measurements where the correction is a

sizable fraction of the original estimator. This will come into play in the next section when we

consider the applicability of the various error calculations for the estimators.

9.1.2. Magnitude of the Bias Correction

In Figure 27, we plot the integral constraint bias suggested by equation 24 for the four mag-

nitude bins, comparing them to the auto-correlation and the error on the auto-correlation as de-

termined using the simulations described in x10.1. In all four cases, the di�erence between the

number of objects and pixels used in the estimators from Equations 17 and 18, respectively, lead

to di�erent integral constraint corrections on small and large angular scales. In all cases, however,

the magnitude of the integral constraint correction remains very small relative to the magnitude of

w(�) suggesting that our approximation of w(�) by ŵ(�) is fairly well justi�ed.
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10. Error Calculation and Correlation

As with any measurement, the calculation of the auto-correlation is only the �rst step; equally

important is the determination of the error matrix. While the Fourier modes in the density �eld are

expected to evolve independently (in the linear approximation), a given angular bin will sample a

combination of those modes. This demands that we calculate the correlations between angular bins

as well as the standard diagonal elements of the covariance matrix if we want to be able to use this

measurement in a meaningful way. Of course, we have to �nd a method of error calculation that can

be practically and reliably applied over more than three decades in angular scales. Unfortunately,

there is no single method of error calculation that can do so with the data available alone. Rather,

we use simulations to provide us with multiple realizations for error calculation and then check

those errors against less preferred data-based methods. Likewise, on large scales, we check the

simulation covariances against those calculated from the data under the assumption of Gaussianity.

10.1. Errors from Simulations

The mock catalogs were generated using a new algorithm (Scoccimarro & Sheth 2001) called

PTHalos. PTHalos works in two steps, �rst it generates the large-scale dark matter distribution

using second-order Lagrangian perturbation theory (2LPT), which reproduces the correct two and

three-point statistics at large scales, and approximates four-point statistics and higher (Moutarde

et al. 1991; Buchert et al. 1994; Bouchet et al. 1995; Scoccimarro 2000) very well. The second step

builds up the small-scale correlations using the amplitude of the 2LPT density �eld to determine

the masses using the algorithm in Sheth & Lemson (1999) and positions of halo centers, and

then distributing particles around the halo centers with NFW pro�les (Navarro, Frenk & White

1997). Thus in PTHalos, the large-scale correlation function are the result of the perturbative

growth of structure, whereas the small-scale behavior is due to the internal structure of virialized

halos. In addition, a \galaxy" distribution can be generated in PTHalos by specifying how many

galaxies populate halos of a given mass. Thus, it is possible to design \galaxy" distributions which

approximate the observed statistics; for this purpose, we use a similiar grid of models to those in

Scoccimarro et al. (2001).

The advantage of this method is that it approximates very well the fully non-linear, and thus

non-Gaussian, evolution of structure in a very small fraction of the time and cost of a full n-body

simulation; PTHalos takes about 10 minutes to generate a mock catalog for the four magnitude bins

used in this paper that would otherwise cost several expensive hours of CPU. Given the uncertainty

involved in modeling galaxy biasing, the approximate nature of PTHalos distributions is a small

price to pay in exchange for speed. In particular, the increase in speed means we can run many

(of the order of a hundred) realizations of the survey area, and compute errors and covariance

matrices for the clustering statistics from a Monte Carlo pool. Therefore, our errors automatically

take into account the non-Gaussianity of the galaxy distribution, cosmic variance, shot noise, and
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the geometry of the survey.

The catalogs are constructed from parent 2LPT simulations containing 54 million particles

that correspond to a �CDM model (
 = 0:3, 
� = 0:7; at z = 0). The evolution of structure

along the past light-cone is done approximately, by tiling boxes with di�erent values of the power

spectrum normalization �8. A \low redshift" box of side 600 h�1Mpc is used for z < 0:4 with 27

million particles and �mass
8 = 0:83. Another box of side 1200 h�1Mpc and same number of particles

with �mass
8 = 0:66 is used for 0:4 < z < 0:8.

Galaxies are assumed to populate dark matter halos according to the relation (similar to that

in Kau�mann et al. 1999, and Sheth & Diaferio 2001)

Ngal = 0:7x0:8+ y0:9; (25)

where Ngal is the mean number of galaxies per halo of mass m. Here x = m=4 � 1012M�=h

with x = 1 for m < 4 � 1012M�=h, and y = m=2:5 � 1012M�=h. In addition, Ngal = 0 for

m � 3� 1011M�=h. Such a biasing relation between galaxies and mass leads to a large-scale bias

parameter b � 0:7.

To generate the galaxy distribution we used the following radial selection functions (dn=dz /

z2 (z)):

 (z) =
A

za
exp(�(z=z0)

2); (26)

where A = 6:89; 28:34; 36:42, a = 1; 0:5; 0:5 and z0 = 0:21; 0:25; 0:35 for magnitudes bin 18 � r� �

19, 19 � r� � 20 and 20 � r� � 21, respectively. For the faintest magnitude bin, we had to use the

sum of two selection functions; the �rst was of the form in Equation 26 with A = 777:35, a = 0:5

and z0 = 0:21 and the second with the form

 (z) =
A

za
exp(�(z=z0)

3); (27)

where A = 50:025, a = 0 and z0 = 0:545. These selection functions are based on the CNOC2

luminosity functions (Lin et al. 1999). The details of this extraction and the conversion to SDSS

�lters are given the inversion of our w(�) in Dodelson et al (2001), which also provides an alternate

parameterization.

The three-dimensional data is then projected (using di�erent sections of the simulation box

without repeating any structures) into an angular stripe of 2.5 by 90 degrees, with the same

angular coverage to the actual data from 752-756 runs. In addition to the comparisons between the

measurements of w(�) in the mocks and data sets described below, we have also veri�ed that higher-

order moments such as skewness and kurtosis match the observed ones to a good approximation

(Szapudi et al. 2001).

In Figure 28, we see the direct comparison between the data and the mock catalogs for the four

magnitude bins. The \mock" measurement is the mean value of w(�) from 100 mock catalogs and

the errors come from the diagonal elements of the covariance between these 100 measurements. In
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general, we see a reasonable agreement between the mock catalogs and the data over the range of

angular scales. The one signi�cant discrepancy is in the small angle regime of the 21 � r� � 22 bin,

where the mock catalog over-predicts the auto-correlation compared to our measurement. This may

be due to a slight error in the selection function for this magnitude bin or possibly some evolution

in the biasing, but should not adversely a�ect the covariances from the mock catalogs.

10.2. Sub-Sampling Errors

In x3.4, we gave the formalism for calculating the cross-correlation errors from the variance

of the mean measurement determined in 35 non-overlapping square sub-samples of the data area.

This method works reasonably well for this purpose since we have a reasonable expectation that

the sub-sample measurements are not strongly correlated. Since our primary estimators work on

O(N2) time, this method also cuts down the processing time for the cross-correlation measurements

by a factor of 35.

For the galaxy auto-correlation, we have mixing between physical scales due to projection ef-

fects. This means that we have correlations in the sub-samples that are not modeled by Equation 9,

resulting in a likely under-estimation of the errors via this method.

10.3. Jackknife Errors

In x3.4.5, we presented the formulae and method for calculating cross-correlation errors on

large angular scales using the jackknife approach. We can also apply this method to the calculation

of the galaxy auto-correlation errors on our full range of angular scales using the estimator in

Equation 17. In order to constrain the 26 angular bins, we use 30 jackknife samplings of the data.

In principle, this should generate errors comparable to those from the simulations as this method

should not suppress covariances on large scales. In practice, however, the jackknife method appears

to generate anti-correlations between angular scales smaller than the regions blocked out for each

jackknife sample and the scale size of the blocked-out region (3 degrees in our implementation).

10.4. Gaussian Errors

At the large end of the angular spectrum, we can calculate the covariance matrix under the

assumption that the error distribution is Gaussian in nature. In this case, we will be using the

pixelized version of the estimator for the auto-correlation (Equation 18). The covariance for such

an estimator is generically given by

C(��; ��) � h(ŵ(��)� w(��))(ŵ(��)� w(��))i

= hŵ(��)ŵ(��)i � w(��)w(��) (28)
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In order to calculate this, we need the covariance for Æ,

C(�i;j) � hÆiÆji

= w(�i;j) +
Æij
Ni
; (29)

where Æik is the traditional Kronecker delta, and Ni is the number of galaxies in pixel i.

Taking this into account for the estimator in Equation 18, the covariance C(��; ��) becomes

C(��; ��) = 2
X
i;j

Wij;�

X
k;l

Wkl;�

�
w(�i;k) +

Æik
Ni

��
w(�j;l) +

Æjl
Nj

�
; (30)

where we have dropped the non-Gaussian terms. There are four terms to this sum, but we expect

the cosmic variance term (the product of the two auto-correlations) to dominate on large scales, so

we will calculate that to the exclusion of the others. Inserting the form of the weight function, we

must calculate

C(�a; �b) =

 
2P

i0;j0 �
a
i0;j0
P

k0;l0 �
b
k0 ;l0

! X
i;j;k;l

�a
ij�

b
klw(�i;k)w(�j;l); (31)

a calculation which goes as the fourth power of the number of pixels (and is the reason why we do

this with pixels instead of by pairs).

In this case both of our technical constraints push us in the same direction toward larger

angular scales. First, we pay a heavy penalty for increasing the number of pixels in order to

measure smaller and smaller angular scales. Even a modest pixel size of one third of a degree will

require on order 1013 computations. At the same time, we know that the Gaussian approximation

will break down at suÆciently small angles, so we have very little motivation for greatly increasing

the number of pixels. Indeed, the only reason to do so is to increase the range of angular scales

where the Gaussian method reliably overlaps with the errors from the simulation method so as to

allow for cross-checking.

10.5. Method Comparison

Despite the variations between the four error methods with respect to applicable angular range

and measurement technique, all of the methods produce covariance matrices that have large o�-

diagonal elements as expected. Qualitatively, we can see this by calculating the correlation matrices

for each of the three main methods (simulations, jackknife, and sub-sample). The elements of the

correlation matrix (r(��; ��)) are given by

r(��; ��) =
C(��; ��)p

C(��; ��)C(��; ��)
; (32)
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where r(��; ��) � 1 and plotted for the three methods in Figures 29 through 31 for the 20 � r� � 21

magnitude bin. No matter which set of matrices is to be used for further work (e.g. inverting w(�)

to recover the three dimensional power spectrum), it is clear that the full covariance matrix must

be employed.

For a more quanititative comparison, we can examine the diagonal elements of the covariance

matrix. Figures 32 and 33 show the ratios of �w(�) and �w(�)
w(�) for the error calculations using the

simulations, sub-samples and jackknife methods. The diagonals of the covariance matrices for the

three methods generally agree to within factors of 1 to 2 for the three methods for the angular

scales where they overlap, with considerable scatter as we approach the break in w(�). One can

see, however, that the di�erent scale size for in the sub-samples, compared to the simulation and

jackknife measurements, causes the w(�) for the sub-samples to fall o� faster than the other two

methods as � increases, rejecting this method as valid for all of the angular scales.

For a more complete comparison of the simulation and jackknife covariance measures, we need

to examine the o�-diagonal elements. To characterize the contribution of the o�-diagonal elements,

we calculate R(�), where

R(��) �

0
@ NY

�

jr(��; ��)j

1
A

1

N

: (33)

For a perfectly diagonal matrix, this quanity will be zero and would be equal to 1 for perfect

correlation (or anti-correlation) between each angular bin. Figure 34 shows the values of R(�) for

each of the methods in each of the magnitude bins. As expected, both methods show a fairly

high degree of o�-diagonal correllation by this measure, with the jackknife generally showing larger

amplitude o�-diagonal elements than the mocks. This con�rms our earlier prediction that the

jackknife errors are superior to other data-only measurements, but not as well-behaved as the

errors from simulations.

10.6. Gaussian Comparison

We can use the same tools developed in the previous sections to analyze the agreement between

the simuation errors and the Gaussian errors. Figure 35 shows the correlation matrix for the

Gaussian method in the 21 � r� � 22 magnitude bin and Figure 36 shows ratios of �w(�) and
�w(�)
w(�) comparing the Gaussian errors to the errors from the simulation. Likewise, in Figure 37, we

give the calculation for R(�) for the Gaussian errors along with the R(�) for the same elements of

the simulation correlation matrix. As with the previous analysis, the �w(�) ratios agree to within

factors of 1-2, although the ratios of �w(�)
w(�) do demonstrate a clear di�erence in the large-angle

behavior of w(�) for the simulations and the data. It is clear, however, that the disparity is due

to di�erent values for w(�) for the two data sets and not due to a large disagreement between the

errors.
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11. Conclusions

The SDSS will ultimately make de�nitive measurements of the angular clustering of galaxies.

To demonstrate the quality of the photometric data produced by the SDSS, we studied two nights of

commissioning data that will constitute roughly a third of the Early Data Release. We presented a

means to extract galaxy likelihoods from the output parameters of the photometric data processing

pipeline. With this in hand, we analyzed the e�ect of external factors (seeing variations, reddening

extinction, stellar contamination and sky brightness) on that star/galaxy method. After imple-

menting cuts due to seeing, and to a lesser extent reddening and bright stars, we �nd no evidence

for external systematic e�ects polluting the measurement of the angular correlation function.

Having addressed external sources of error, we turned our attention to internal sources. We

investigated the possibility of di�erential photometric response across the CCDs as well as the

introduction of correlations due to di�erent photometric calibrations between the two runs that

made up our data area. We veri�ed that the w(�) measurements scaled according to Limber's

equation in a �CDM cosmology and we were able to simulate possible deblending errors, placing a

lower limit on the angular extent of our clustering measurements. As with the external systematic

error checks, we were able to e�ectively eliminate systematic errors after placing some constraints

on the measurement.

Once the systematic errors were addressed for the broader catagory of angular measurements,

we shifted our focus to the actual measurement of w(�). Using two complementary estimators, we

were able to devise a scheme for calculating w(�) and its covariance using a reasonable amount of

CPU time. We presented a prescription for addressing the integral constraint incurred due to a �nite

survey size and veri�ed that the correction was much less than our measured w(�). Three methods

were discussed for calculating the covariance of w(�): simulations, sub-samples and jackknife. The

covariances from the simulations proved most reliable over the whole range of angular scales, but

the jackknife errors would likely prove adequate in the absence of simulations. Finally, we compared

the covariances from the simulations to estimates of the covariance using a Gaussian assumption.

The Gaussian covariances generally had smaller o�-diagonal elements, but the diagonal elements

agreed with the simulations to within a factor of 2.

Companion papers will present the results for the angular correlation function w(�) (Connolly

et al. 2001) and the angular power spectrum, Cl (Tegmark et al. 2001). Using these measurements

and estimates of the selection function, Dodelson et al. (2001) will extract the underlying 3D power

spectrum and �t cosmological parameters. A parallel analysis of the data using a KL decomposition

(Szalay et al. 2001) will provide another set of parameter constraints.

Though they consitute only a small fraction of the data, the initial results strongly suggest

that the remaining 98% of SDSS photometric data will provide a powerful and robust set from

which to gain cosmological information.
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Fig. 1.| Concentration-magnitude diagrams for regions of good (left) and bad (right) seeing.

Areas of poor seeing show increased width of the stellar locus, brighter merging of the stellar and

galactic loci and a shifting of the faint galactic locus centroid toward that of the stellar locus.
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Fig. 2.| Concentration histogram for a section of run 756 for objects with 20:0 � r� � 20:5.
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Fig. 3.| Galaxy density projected along the long axis of the survey area without using a mask

(left) and using a mask (right). Clockwise from the upper left, the magnitude bins are 18 � r� � 19,

19 � r� � 20, 20 � r� � 21, 21 � r� � 22 .

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

R
un

 7
52

 S
ee

in
g 

(a
rc

se
co

nd
s)

160 180 200 220

RA (degrees)

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

R
un

 7
56

 S
ee

in
g 

(a
rc

se
co

nd
s)

160 180 200 220

RA (degrees)

0.05

0.1

0.15

0.2

0.25

0.3

0.35

R
ed

de
ni

ng
 in

 r
’
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as a function of � (right).
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Fig. 5.| Galaxy density for four magnitude bins as a function of the local seeing (left) and

reddening (right).
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Fig. 7.| Galaxy-Seeing cross-correlations for magnitude bins 20 � r� � 21 (left) and 21 � r� � 22

(right). The size of the error bars on the preferred seeing cut are typical of those for the other

seeing cuts which have been eliminated for clarity.
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Fig. 8.| Galaxy-Reddening cross-correlations for magnitude bins 20 � r� � 21 (left) and 21 �

r� � 22 (right). Again, the error bars on the favored cut are typical of the other limits.
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Fig. 9.| Galaxy-Star cross-correlations for magnitude bins 20 � r� � 21 (left) and 21 � r� � 22

(right). The error bars on the favored limit are typical of the other restrictions
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Fig. 10.| Comparison of the galaxy auto-correlation to the cross-correlation of the galaxy density

with seeing, reddening and stellar density, respectively, for the magnitude bins 20 � r� � 21 (left)

and 21 � r� � 22 (right).
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Fig. 11.| Cross-correlation of galaxy density and sky brightness for the magnitude bins 20 � r� �

21 and 21 � r� � 22. The anti-correlation between these two populations is non-zero, but well

below the size of the errors in Figure 10.
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Fig. 12.| Large-angle cross-correlation of galaxy density and seeing, reddening and stellar density

for the magnitude bins 20 � r� � 21 (left) and 21 � r� � 22 (right). The anti-correlation for the

reddening and stellar density is due to variations on the scale of the observed area.
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Fig. 13.| The survey area in the limit that the seeing was better than 100:75 and reddening better

than 0.2 magnitudes, as appropriate for objects brighter than 21 in r0.
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Fig. 14.| Same as Figure 13, but requiring that the seeing be better than 100:6. This mask was

applied to the magnitude bin 21 � r� � 22.
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Fig. 15.| Comparisons of the masked and unmasked measurements of w(�) for the four magnitude

bins. The left panel shows the 18 � r� � 19 (upper) and 19 � r� � 20 (lower) bins and the right

panel shows the 20 � r� � 21 (upper) and 21 � r� � 22 (lower) bins.
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Fig. 16.| Galaxy auto-correlations (positive contours are �lled and negative are in wire-frame)

with the angular separation broken into its component parts along the � and Æ axes. Both the

20 � r� � 21 (left) and 21 � r� � 22 (right) magnitude bins show good symmetry in the scanwise

and orthogonal directions, indicating suÆcient masking of bad regions. X and Y axes are the

logarithms of the angular bin in degrees in the � and Æ directions, respectively.
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Fig. 17.| Residual di�erence between the masked and unmasked 2-D galaxy auto-correlations for

21 � r� � 22. This faintest bin shows signi�cant banding on the scale of the scanlines, a clear sign

that the mask is necessary for the faintest bin.
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Fig. 18.| Cross-correlation between the star sample and the density gradients described in x6.1

for the magnitude bin 20 � r� � 21. Error-bars are the 1� Poisson errors for each set of pixels.
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Fig. 19.| Same as Figure 18, but for the magnitude bin 21 � r� � 22.
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Fig. 20.| Same as Figure 18, but with Cnjm calculated independently for each scanline of each

run.
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Fig. 21.| Same as Figure 20, but for the magnitude bin 21 � r� � 22.
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Fig. 22.| Galaxy auto-correlations for each of the runs in the stripe and the cross-correlation

between the runs as compared to the auto-correlation for the whole stripe for the 20 � r� � 21

(left) and 21 � r� � 22 (right)
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Fig. 23.| Comparison of galaxy auto-correlations for the full data set and the central scanlines

for the magnitude bins 20 � r� � 21 (left) and 21 � r� � 22 (right).
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Fig. 24.| Limber scaling tests for the four magnitude bins assuming a 
at, matter-dominated

cosmology (left panel) and 
at, �-dominated cosmology (right). In both cases, the measurements

in the fainter bins have been scaled to the brightest magnitude bin.
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Fig. 25.| The Æw(�) residuals for the best �tting model of the deblending errors. In both the

data and the simulation, aliasing of power and non-zero covariances between angular bins lead to

variations which are, however, consistent with zero.
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Fig. 26.| The upper panel shows the results of w(�) measurements using the estimator in Equa-
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Fig. 27.| Comparison of the galaxy auto-correlation and its errors to the integral constraint bias

correction suggested by equation 24. The di�erent bias correction levels are due to the di�erence

between the number of pixels and number of objects in the large-angle and small angle techniques,

respectively. The lower panel gives the ratio of the bias correction and the error on w(�).
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Fig. 28.| Comparisons of w(�) measurements from mock catalogs and data. In the left plot, the

upper panel shows the comparison for 18 � r� � 19 and the lower panel for 19 � r� � 20. The

right plot does the same for 20 � r� � 21 (upper) and 21 � r� � 22 (lower).
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Fig. 29.| Correlation matrix from simulations for the 21 � r� � 22 magnitude bin. X and Y axes

are the logarithms of the angular bins in degrees.
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Fig. 30.| Same as Figure 29, but for the sub-sample method.
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Fig. 31.| Same as Figure 29, but for the jackknife method.
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Fig. 32.| Ratios of �w and �w(�)
w(�) for the errors calculated using simulations, sub-sample and

jackknife techniques for the 18 � r� � 19 (left) and 19 � r� � 20 (right) magnitude bins.
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Fig. 33.| Same as Figure 32, but for the 20 � r� � 21 (left) and 21 � r� � 22 (right) magnitude

bins.
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Fig. 34.| R(�) calculations for the simulations and jackknife correlation matrices in all four

magnitude bins.
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Fig. 35.| Correlation matrix from Gaussian estimates for the 21 � r� � 22 magnitude bin.
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Fig. 36.| Ratios of �w and �w(�)
w(�) for the errors calculated using the Gaussian method compared

to those found using the simulation technique for the four magnitude bins.
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Fig. 37.| R(�) calculations for the Gaussian correlation matrices and the corresponding elements

of the simulation correlation matrices.


