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Abstract

A topological monopole-like �eld con�guration exists for Yang-Mills gauge
�elds in a 4 + 1 dimensions. When the extra dimension is compacti�ed to
3+1 dimensions with periodic lattice boundary conditions, these objects reap-
pear in the low energy e�ective theory as a novel solution, a gauged-bosonic
Skyrmion. When the low energy theory spontaneously breaks, the Nambu-
Goldstone mode develops a VEV, and the gauged-bosonic Skyrmion morphs
into a `t Hooft{Polyakov monopole.
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1 Introduction

This is a tale of three well-known topological solitons: the instanton, the Skyrmion, and

the `t Hooft-Polyakov monopole. All three of these objects arise from a common source

when Yang-Mills �elds propagate in a 4 + 1 bulk compacti�ed by periodic boundary

conditions to 3 + 1 dimensions. A consistent description of this dimensional descent is

most readily obtained through deconstruction, or latticization, of the extra compacti�ed

dimension. The structures of the conserved Chern-Simons currents neatly match, as they

must, between the e�ective descriptions.

We start in 4+1 dimensions with an SU(2) Yang-Mills theory and note that there are

\instantonic monopoles" (IM). These are static, topologically stable solutions of the pure

Yang-Mills gauge theory and represent nontrivial homotopy of �3(SU(2)), the winding

of the �eld con�guration on the surface S3 at in�nity in four spatial dimensions. These

objects were considered about a year ago by Ramond and the present author [1, 2],

and they are evidently the anticipated pure-Yang-Mills solitons that can exist only in

4 + 1 by Deser [3]. These are essentially instantons [4, 5] \lifted" to become the spatial

con�gurations of a static object. For the Instantonic Monopole we can choose in 4 + 1

the (noncompacti�ed) vector potentials (where A;B; :: run from 0 to 4, x4 is our 5th

dimension; time is x0).:

Aa
4

�a

2
= �1

g

~x � �
�2 + r2

Aa
i

�a

2
=

1

g

(x4�i + ~xj�
ijk�k)

�2 + r2
(1.1)

This �eld con�guration has an associated conserved topological current [1]:

QA =
g2

16�2
�ABCDE Tr(FBCFDE) (1.2)

The resulting �eld strength is self{dual as static con�guration, i.e., FAB = ~F0AB. It has

a mass given by 8�2=g2 where g is a 4 + 1 coupling constant with dimension (mass)�1=2.

This mass is essentiallyMKK=� whereMKK is the lowest KK-mode mass when the theory

is compacti�ed.

If we compactify the 5th dimension and \deconstruct," or latticize the compacti-

�ed dimension, we obtain an equivalent low energy e�ective theory in 3 + 1 dimensions

[6, 7, 8]. With periodic boundary conditions in our compacti�cation, the Aa
4
vector po-

tential becomes a Nambu-Goldstone zero mode, and the product of Wilson links in the x4

dimension becomes a low energy chiral �eld U , the exponentiated Nambu-Goldstone zero
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mode. Keeping only a single lattice brane as an approximation, the e�ective low energy

3 + 1 theory is then the gauged chiral Lagrangian:

L =
1

2
v2 Tr[D�; U

y][D�; U ]� 1

2
TrF��F

�� (1.3)

where F�� � F a
���

a=2, and with U = exp(i�=v), � = �a�a=2, where � is essentially the

Wilson line � ig
R
dx4A4 in 4 + 1.

What then is the fate of the instantonic monopole in this low energy theory viewed as

a dimensional deconstruction? In an attempt to clarify what the instantonic monopole is

in a compacti�ed theory originally motived the present author to consider latticizing the

extra dimension [6, 7]. As we will see, there is a remarkable correspondence.

The �rst problem is to ask whether a compacti�ed IM solution exists? This question

was approached in ref.[1], but see [2]. One employs the method of images and exact

multi-instanton solutions to construct a solution satisfying the periodic boundary condi-

tions. This is well known in the case of �nite temperature applications of instantons, and

has been studied in detail, [9]. For compacti�cation with periodic boundary conditions,

the low energy pseudoscalar Aa
4
remains as a zero mode, while with orbifold boundary

conditions this mode is absent. Correspondingly, while it is straightforward to compactify

the IM with periodic boundary conditions, it is not with antiperiodic. This is because of

topology; the topology is determined by the winding of �eld U = exp(ig
R
dx4A4) through-

out the manifold, and this will form the basis of the correspondence with a low energy

e�ective Lagrangian description below.

One important consequence of compacti�cation of the IM is the following [9]. In an

in�nite bulk the IM is conformally invariant. The solution has a scale parameter � but

the action is independent of �. The action density is concentrated in an arbitrarily large

region r <� �, ergo arbitrarily large instantons exist. When a dimension is compacti�ed

with a length scale Æ, however, the �eld strength con�guration changes, and the action

density has appreciable values only over r <� Æ. Hence, compacti�cation e�ectively cuts-o�

the large instantonic monopoles and gives them a size of order the compacti�cation scale.

For the e�ective description of the 4 + 1 IM in the 3 + 1 e�ective Lagrangian we note

that the theory of eq.(1.3), which is just a conventional gauged chiral Lagrangian, does

indeed contain a novel soliton, a \bosonic gauged Skyrmion." This, we will argue, is the

3 + 1 correspondence of the instantonic monopole of 4 + 1. This object is an \inverted

Skyrmion" built out of the exp(i�=v) Wilson link chiral �eld. At in�nity �=v ! �x̂ � ~� is

a hedgehog, while at the origin �=v ! 0. This is inverted from the usual Skyrmion, but
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still trivially represents the nontrivial �3(SU(2)) mapping into the 3 + 1 spatial volume

(which, of course, corresponds to the spatial S3 surface of 4+1). There are, however, other

key di�erences between the Bosonic Gauged Skyrmion BGS and the usual Skyrmion.

The usual Skyrmion has a nontrivial Wess-Zumino (WZ) term which gives it unusual

spin and statistics. Choosing the quantized WZ term coeÆcient to match to Nc = 3 QCD,

the WZ term makes the Skymion into a spin�1

2
baryon. In the present case the gauging

by SU(2) forbids the WZ term, and the gauged Skyrmion is a bosonic object of spin�0.
The usual Skyrmion carries a nontrivial topological charge determined from a Chern-

Simons current. This current is nontrivially modi�ed in the present case, and is seen

to involve a new term which is seen to match the current of eq.(1.2) under dimensional

descent.

2 Gauge Invariant Chern-Simons Current

The usual Skyrmion is associated with the conserved, normalized Chern-Simons current,

and carries a unit charge:

Q� =
1

24�2
����� Tr

�
U y(@�U)U

y(@�U)U
y(@�U)

�
(2.4)

The index for the usual Skyrmion anzatz, U = cos(f(r)) + ~̂x � � sin(f(r)), is thenZ
d3x

1

24�2
�ijk Tr

�
U y@iUU

y@jUU
y@kU

�
=

1

2�
[2(f(1)� f(0)) + sin(2f(1))� sin(2f(0))]

(2.5)

f(r) = �(r)=v is a kink-like con�guration that runs from f(0) = 0 to f(1) = �, and

thus has unit charge. Note that f ! �f +N� is a discrete symmetry, so the usual QCD

Skyrmion with f(0) = � to f(1) = 0 is equivalent. Including gauge �elds and the S2

Skyrme term de�ned below breaks this discrete symmetry to f ! f +N�.

When we go over to the gauged case, we might guess that the gauge invariant gener-

alization of the Chern-Simons current is:

Q�
1 =

1

24�2
����� Tr

�
U y[D�; U ]U

y[D�; U ]U
y[D�; U ]

�
(2.6)

Note that Q�
1 = V + A is constructed from purely right-handed (or left-handed) chiral

currents. One cannot build a conserved Chern-Simons current out of the product of

mixed vector V = (1=2)(U y[D�; U ] + U [D�; U
y]) and axial vector A = (1=2)(U y[D�; U ] �

U [D�; U
y]) currents, even in the ungauged case. Q�

1 transforms, however, as a vector under
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parity, since � ! �� hence U $ U y, ����� $ ������ and D� ! �D�, so Q� ! �Q�.

Note also,

Q�
1 = ������ Tr

�
U [D� ; U

y]U [D�; U
y]U [D�; U

y]
�

(2.7)

using U y[D� ; U ] = �[D� ; U
y]U and cyclicity of the trace, hence Q1 is equivalent to a

current built out of pure left-handed chiral currents, i.e., the Chern-Simons current is

unique.

However, Q1 is not conserved, as seen by explicit calculation:

@�Q
�
1 =

ig

16�2
����� Tr

�
F��[D�; U ][D�; U

y]� F�� [D�; U
y][D�; U ]

�
(2.8)

On the other hand, we can introduce two new currents:

Q�
2 =

ig

16�2
����� Tr

�
F��U

y[D�; U ]� F��U [D�; U
y]
�

(2.9)

Q�
3 =

ig

16�2
����� Tr

�
F��U

y[D�; U ] + F��U [D�; U
y]
�

(2.10)

These latter currents are expected to play a role in the gauged Skyrmion because in 4+1

dimensions we had the conserved current of the instantonic-monopole:

�ABCDE Tr(FBCFDE) � ����� Tr(F��U
y[D�; U ]) (2.11)

and U y[D�; U ] � F�4 is the dimensional descent correspondence. We see that Q2 has

normal vectorial parity, and it can thus form a vector combination with Q1. Q3 is an

axial vector under parity. Computing the divergence of Q2 we obtain the opposite of the

rhs eq.(2.8), and we thus arrive at the conclusion that there is a new conserved current:

eQ� = Q�
1 +Q�

2 @�
� eQ�

�
= 0 (2.12)

eQ� is the 3+1 current corresponding to the 4+1 eq.(1.2) under dimensional descent. For

completeness, notice that the axial current is not conserved:

@�Q
�
3 = � ig

16�2
����� Tr

�
F�� [D�; U ][D�; U

y] + F��[D�; U
y][D�; U ]

�
+

ig

16�2
����� Tr

�
F��U

yF��U � F��F��
�

(2.13)

The latter term somewhat resembles an anomaly. If, for the usual Skyrmion, we gauged

only the left-handed or right-handed pieces of U , e.g., as in the electroweak theory, then

we would obtain the normal current algebra anomalies through these manipulations, but

our baryon number current must be modi�ed as in eq.(2.12).
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The usual Skyrmion in a pure chiral lagrangian is unstable to core collapse. It's core is

stabilized by adding the \Skyrme term" which is a short-distance correction to the action:

S0 =
1

32
Tr ([U y@�U; U

y@�U ])
2 (2.14)

In the present case there will indeed be gauge invariant generalizations of the Skyrme-term

induced by higher order e�ects of KK-modes and loops,

S1 =
1

32
Tr ([U y[D�; U ]; U

y[D� ; U ]])
2 =

1

32
Tr ([[D�; U

y]; [D�; U ]])
2 (2.15)

The gauge invariant Skyrme term S1 stabilizes the solution on distance scales Æ � 1=v.

There are also candidate new d = 4 Skyrme terms in the present case,

O1 = iTrF��(D
�U y)(D�U) O2 = iTrF��(D

�U)(D�U y) (2.16)

Under parity we have U $ U y, and hence P : O1 $ O2 and under charge conjugation

C : Oi ! Oi (note that C : F�� ! �F�� , but we must treat C : ig ! �ig for consistency

with C : D� ! D�). Hence, an odd combination under CP , but odd under P and even

in C is:

S2 = � ig
8
TrF �� [U y[D�; U ]; U

y[D�; U ]] = � ig
8
TrF ��([D�U

y][D� ; U ]]� [D�U ][D� ; U
y])

(2.17)

while:

S3 = � ig
8
TrF ��([D�U

y][D� ; U ] + [D�U ][D� ; U
y]) (2.18)

is even under CP , even under P and even under C. These terms are always destabilizing,

and determine the sign of the Skyrmionic �eld con�guration.

The stable Skyrmion solution necessarily involves the nontrivial near-zone gauge �eld

con�guration in the core, which we will see below is identical to the short-distance core

of a BPS monopole, as well as the conventional gauge invariant Skyrme term.

3 Energetics

The existence of the conserved current eQ� guarantees that there are nontrivial Skyrmionic

con�gurations including the gauge �elds. The core pro�le of the Skyrmion must act as a

source to Yang-Mills �elds. Moreover, the GBS is the deconstructed dimensional analogue

of the original instantonic monopole. The chiral �eld �=v is identi�ed with the Wilson

line
R
dx4A4 and we thus choose the anzatz:Z

dx4A4 � �=v = f(r)x̂ � ~� (3.19)
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For the vector potential we choose:

Aa
i

�a

2
=
h(r)

g
~xj�

ijk�k (3.20)

The energy ((�1)�action for static con�gurations) then takes the form:

E =
4�

g2

Z
dr

24r2  h0(r) + h

r

!
2

+
1

2
r2
 
h2(r)� h2

r

!35
+
1

2
v2
Z
dr
h
r2(f 0(r))2 + 2(H(r))2 sin2(f(r))

i
(3.21)

where it is convenient to introduce the combination:

H(r) = 1� rh(r) (3.22)

If we substitute any particular anzatz into eq.(3.21) we obtain:

E =
4�

�g2
c0 +

1

2
v2�c1 (3.23)

where c0 and c1 are determined from the Yang-Mills and Skyrmionic energies respectively.

The energy of the particular anzatz is then relaxed to the minmum of eq.(3.23) with the

choice:

�2 =
8�c0
g2v2c1

(a); E =
2v

g

p
2�c0c1 (b) (3.24)

The energy is equipartitioned between the two terms of eq.(3.23), which accounts for the

factor of 2 in eq.(3.24.b).

To verify that a nontrivial Yang-Mills �eld is part of a stable solution we check that

it is required for binding. We can compare to the energy of the same Skyrme pro�le in

the case that the Yang-Mills �eld is switched o�:

Eoff =
1

2
v2
Z
dr
h
r2(f 0(r))2 + 2 sin2(f(r))

i
� 1

2
v2c2 (3.25)

Thus, we must have:
E

Eoff
< 1; or,

c1
c2

<
1

2
: (3.26)

Various choices of anzatze for the GBS have been explored numerically. One is inspired

from the instantonic monopole. Matching f(r) to
R
dx4A4 and h(r) to the x

4 = 0 behavior

of Ai we obtain:

f(r) =
�r

�2 + r2
; h(r) =

2rp
�2 + r2

; (3.27)
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In fact, we �nd that this anzatz is not bound, and numerically E=Eoff = 1:4, not close

to a binding a solution. The reason is as follows; we can easily see that for small r, and

f(r), our action is equivalent to that of a BPS monopole (e.g., see the analysis of [10]).

The core structure of the previous anzatz is far from that of a BPS monopole. After some

numerical experimentation we are led to the following:

~f(r) =
�
p
rp

��+ r
; ~h(r) =

2

�+ r
; (3.28)

Let us initially choose � = 1. Then we �nd:

~c1 =
Z 1

0

dx
�2x

4(1 + x)3
+ 2 sin2

 
�
p
xp

1 + x

!�
1� x

1 + x

�2

~c2 =
Z 1

0

dx
�2x

4(1 + x)3
+ 2 sin2

 
�
p
xp

1 + x

!
(3.29)

and this leads to a net binding:

E

Eoff

=
2~c1
~c2

= 0:883 < 1 (3.30)

While the form of eq.(3.23) suggests stability of the core of a solution supported by the

Yang-Mills �eld, generally we �nd that the Skyrme pro�le can be deformed to collapse

and reduce the energy in the absence of the Skyme S1. We can, for example, deform the

above solution by choosing � 6= 1. We �nd that the energy is reduced, and the Skyrme

core is unstable.

The Skyrme terms can be added and take the form in an anzatz:

S1 = 2�
Z
dr
�
sin2(f)(1� rh)2

�
2(f 0)2 +

1

r2
sin2(f)(1� rh)2

��
(3.31)

and, for example, should we choose to include it:

S2 = 2�
Z
dr

"
�f 0 sin(2f)H(r)(rh0 + h) + sin2(f)H2(r)

 
h2 � 2h

r

!#
(3.32)

S1 must enter the energy with a positive coeÆcient and always dominates at extreme

core collapse. Note that positivity of the energy is gauranteed if one de�nes ~Fij = Fij +

~c[[Di; U
y][Dj; U ]] and de�nes the energy density by Tr ~Fij ~F

ij=2. This �xes the Skyrme

term coeÆcients.
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4 Spontaneouly Broken SU(2)

We can imagine adding terms to the Lagrangian consistent with the SU(2) symmetry

of the form
P

p cp(Tr(U))
p + h:c:. Indeed, such terms must arise at the quantum level,

as in a computation of the Coleman-Weinberg potential ref.[8]. We presently add them

by hand. With such terms we can then destabilize the vacuum; � becomes a Higgs-�eld

which breaks SU(2)! U(1), (as in the recent model of ref.[8], though we do not presently

want an I = 1

2
Higgs). This means that h�i = (1��)v where � 6= 0 is not gauge equivalent

to the unbroken vacuum,

When � is an isovector �eld we have all of the conditions required for a nontrivial

�2(SU(2)=U(1)). In this case the the Gauged-Bosonic Skyrmion grows into a 't Hooft-

Polyakov monopole. The monopole charge is measured by a Chern-Simons charge in one

less dimension, integrated over the surface at in�nity. This contains the dual of Fij, e.g.,

Tr��ijkFij which is integrated over the surface d�k at in�nity. We have:

Z
r2 sin �d�d� ~Fr

����
r2!1

= 4�r2
H2 � 1

2gr2
= �2�

g
(4.33)

where H(r) is de�ned in eq.(3.22), and we see that asymptotically H(1) (as well as

H(0)) tends to zero [10]. The Skyrme terms now play no role in the core stability since

the nontrivial potential is determining the �eld value at in�nity and it costs energy to

shrink the core.

Remarkably, however, we see that our monopole is nontrivially charged under the

original 3 + 1 Chern-Simons charge eQ as well. Including the gauge degrees of freedom in

the Chern-Simons current in 3 + 1 we �nd that the Chern-Simons charge density is an

exact di�ential and the result:Z
d3x

1

24�2

~Q0 =
1

2�
[2(f(1)� f(0)) + sin(2f(1))H(1)� sin(2f(0))H(0)] (4.34)

Note that no manipulations involving the Chern-Simons current rely upon the use of

equations of motion. The monopole anzatz for f(r) is similar to the Gauge Bosonic

Skyrmion, with f(0) = 0 but now the asymptotic value f(1) = (1 � �)� is not �. The

Chern-Simons charge is now (1� �), and is an arbitrary fractional quantity. The reason is

that by forcing f(1) to a value less than � we do not completely, but only partially, map

SU(2) into the 3-volume. Essentially, some fraction of the Skymion's charge has 
owed

out to in�nity as the �eld relaxes into it's nontrivial VEV.
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5 Conclusions

We have explored the dimensional descent of a pure Yang-Mills gauge theory in 4 + 1

dimensions, via deconstruction, into a 3 + 1 e�ective low energy description. We have

seen that topologically nontrivial objects, Instantonic Monopoles, exist in 4 + 1 with

nontrivial conserved charges. Under deconstruction these objects morph into Gauged

Bosonic Skyrmions, carrying a conserved gauge Chern-Simons charge. The scale size

and masses are determined by the compacti�cation scale. With spontaneous symmetry

breaking, the GBS's further morph into `t Hooft{Polyakov monopoles. The latter objects

carry the usual magnetic charge, i.e., the magnetic 
ux crossing the surface at in�nity, as

well as a fractional Chern-Simons charge in 3 + 1

All of this occurs with pure-gauge SU(2) Yang-Mills theory (it is imbeddible into

SU(N)) with no explicit Higgs �elds, or explicit chiral �elds! It is a consequence of

dimensional compacti�cation, and deconstruction, which requires the latticization of the

extra dimensions to maintain the explicit manifest gauge invariance. It is an explicit

demonstration of the descent cohomology of the classical topological solutions themselves.

Moreover, such objects appear to be a necessary consequence of Yang-Mills gauge theories

propagating in the bulk with periodic boundary conditions.
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