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ABSTRACT

The excursion set approach allows one to estimate the abundance and spatial dis-
tribution of virialized dark matter haloes e�ciently and accurately. The predictions
of this approach depend on how the nonlinear processes of collapse and virialization
are modelled. We present simple analytic approximations which allow us to compare
the excursion set predictions associated with spherical and ellipsoidal collapse. In par-
ticular, we present formulae for the universal unconditional mass function of bound
objects and the conditional mass function which describes the mass function of the
progenitors of haloes in a given mass range today. We show that the ellipsoidal col-
lapse based moving barrier model provides a better description of what we measure
in the numerical simulations than the spherical collapse based constant barrier model,
although the agreement between model and simulations is better at large lookback
times. Our results for the conditional mass function can be used to compute accurate
approximations to the local-density mass function which quanti�es the tendency for
massive haloes to populate denser regions than less massive haloes. This happens be-
cause low-density regions can be thought of as being collapsed haloes viewed at large
lookback times, whereas high-density regions are collapsed haloes viewed at small
lookback times. Although we have only applied our analytic formulae to two simple
barrier shapes, we show that they are, in fact, accurate for a wide variety of moving
barriers. We suggest how they can be used to study the case in which the initial dark
matter distribution is not completely cold.

Key words: galaxies: clustering { cosmology: theory { dark matter.

1 INTRODUCTION

Bond et al. (1991) described an approach which allowed
them to use the statistical properties of the initial density
uctuation �eld to derive an estimate of the number density
of collapsed dark matter haloes at later times: the so-called
universal, unconditional mass function (Press & Schechter
1974). Lacey & Cole (1993) showed how this model could
be extended to estimate the rate at which small objects
merge with each other to produce larger objects. This al-
lowed them to estimate the conditional mass function of
subhaloes within parent haloes. Lacey & Cole also provided
formulae for the distribution of halo formation times; Nusser
& Sheth (1999) provided formulae for the distribution of the
halo mass at formation. Sheth (1996) and Sheth & Pitman
(1997) showed how various higher order statistical proper-
ties of the forest of merger history trees associated with the
formation of these objects could also be estimated within
this approach. Mo & White (1996) and Sheth & Lemson

(1999a) showed how information about the forest of merger
history trees could be used to quantify the extent to which
dark haloes are biased tracers of the matter distribution. Mo,
Jing & White (1997) provided predictions for the higher or-
der moments of the spatial distribution of the haloes, and
Sheth (1998) showed how to use the approach to estimate
the probability that a randomly placed cell contains a cer-
tain amount of mass. Clearly, the approach has been very
useful.

The approach combines the simple physics of the spher-
ical collapse model with the assumption that the initial
uctuations were Gaussian and small. The problem of es-
timating any one of the quantities listed above is reduced
to solving a problem associated with the crossing of an ap-
propriately chosen barrier by particles undergoing Brownian
motion; the Brownian nature of the motion comes from the
assumption of Gaussian initial conditions, and the barrier
shape is speci�ed by the spherical collapse model (e.g. Sheth
1998). Hence, this is often called the excursion set approach.
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2 R. K. Sheth & G. Tormen

Tormen (1998) reported that the spherical collapse
based excursion set predictions did not describe the con-
ditional mass function of subclumps in his simulations well.
Motivated by this, Sheth, Mo & Tormen (2001) discussed
a simple way of modifying the excursion set approach to
incorporate the e�ects of ellipsoidal, rather than spherical
collapse. On average, initially denser regions collapse before
less dense ones. This means that, at any given epoch, there
is a critical density which must be exceeded if collapse is to
occur. In the spherical collapse model, this critical density
does not depend on the mass of the collapsed object. How-
ever, in their parametrization of ellipsoidal collapse, Sheth,
Mo & Tormen showed that, of the set of objects which col-
lapse at the same time, the less massive ones must initially
have been denser than the more massive ones, since the less
massive ones would have had to hold themselves together
against stronger tidal forces. They argued that this could
be incorporated into the excursion set approach, simply and
e�ectively, if not rigorously, by changing the barrier shape.
In essence, whereas the barrier associated with spherical col-
lapse is one whose height does not depend on distance from
the origin of the walk, the one associated with ellipsoidal dy-
namics increases with distance. They showed that the excur-
sion set approach with a moving barrier was able to provide
a good �t to the universal halo mass function.

This paper is devoted to a more detailed discussion of
moving barrier models. In general, moving barrier models
have a richer structure than the constant barrier model.
For example, the approach with spherical dynamics predicts
that, at any given time, all the mass in the universe is bound
up in collapsed objects, whereas a small fraction of the mass
remains unbound in the case of ellipsoidal dynamics. In ad-
dition, whereas clustering is strictly hierarchical in the case
of spherical dynamics, incorporating ellipsoidal collapse into
the excursion set approach results in a model in which frag-
mentation as well as mergers may occur|the approach pre-
dicts that some small haloes fragment before they are sub-
sumed into larger ones. Appendix A describes some of these
features, which may (or may not!) provide better approxi-
mations to the physics of graviational instability than does
the constant barrier model, in more detail. The Appendix
also describes how the results of this paper can be used to
model the halo mass function in warm dark matter scenarios
such as that revisited by Bode, Ostriker & Turok (2001).

Section 2 shows how moving barrier models can be used
to make simple analytic estimates of a number of statistical
quantities which are routinely measured in numerical cos-
mological simulations. The primary results of Section 2 are
equations (4) and (7), which are accurate for a large class
of moving barrier shapes. To illustrate how these formulae
work, we show the result of inserting the ellipsoidal collapse
moving barrier of Sheth, Mo & Tormen (2001) into these
formulae. Section 2.1 presents the number density of bound
objects as a function of mass (the unconditional mass func-
tion), and Section 2.2 describes a simple e�cient algorithm
for generating it. Section 2.3 presents the average number
of progenitor subhaloes as a function of subhalo mass, for a
wide range of speci�ed parent halo masses (the conditional
mass function), and Section 2.4 shows how the halo mass
function depends on the surrounding density �eld (the local-
density mass function). Comparison with simulations shows
that the approach, with the ellipsoidal collapse based mov-

ing barrier shape, is quite accurate. Section 2.5 shows that,
at small lookback times, neither the constant nor the moving
barrier predictions describe the conditional mass functions
in the simulations particularly well, although the agreement
at large lookback times is quite good if the spherical collapse
constant barrier is used, and even better if the ellipsoidal
collapse moving barrier is used.

Section 3 shows the result of considering more compli-
cated moving barrier excursion set models. In particular, it
shows the result of considering the full six-dimensional ran-
dom walk associated with Gaussian random �elds, rather
than the one-dimensional simpli�cation proposed by Sheth,
Mo & Tormen (2001). It shows that their simpli�cation is
actually quite accurate. Details associated with the calcula-
tions in this section are presented in Appendix B.

Section 4 discusses some simple implications of our �nd-
ings. Although, in this paper, we concentrate on the moving
barrier derived by Sheth, Mo & Tormen (2001), we think
it worth stressing that our analytic formulae are more gen-
eral: they are accurate for a wide variety of moving barrier
shapes.

2 THE MOVING BARRIER MODEL

As discussed in the introduction, we will mainly be inter-
ested in the �rst crossing distributions of uncorrelated Brow-
nian motion random walks. Following Bond et al. (1991)
and Lacey & Cole (1993), these �rst crossing distributions
can be used to provide useful approximations to what have
come to be called the conditional and unconditional mass
functions of the dark halo distribution. The results of this
section should be thought of as generalizations of the re-
sults in Lacey & Cole (1993). Whereas they restricted their
attention to a barrier of �xed height, this section presents
analytic formulae which approximate the barrier crossing
distribution for a wide class of moving barriers.

Before we begin, we think a word on notation is helpful.
We have chosen to present our formulae for the �rst crossing
distributions using the same notation as Lacey and Cole
(1993). This means that we use the symbol S to represent
the variance in the density uctuation �eld when smoothed
on some scale, which is usually denoted �2. However, some
of our formulae can be written in terms of the scaled variable
(�=��)

2 � S=S�, for some suitably de�ned S�. When this is
possible, we also write our formulae in terms of � � S�=S.

2.1 The unconditional mass function

To illustrate how our formulae work, rather than use the
spherical collapse barrier of constant height, we will use
the moving barrier shape derived by Sheth, Mo & Tormen
(2001)|the one associated with ellipsoidal collapse:

B(�2; z) =
p
a �sc(z)

�
1 + � (a �)��

i
; (1)

where � � [�sc(z)=�(m)]2. In the expression above, �sc(z) is
the critical overdensity required for spherical collapse at z,
extrapolated using linear theory to the present time (it is
approximately 1.686(1 + z) if 
 = 1), and �(m) is the rms
of the initial density uctuation �eld when it is smoothed
on a scale which contains mass m, extrapolated using linear
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An excursion set model of hierarchical clustering: Ellipsoidal collapse and the moving barrier 3

theory to the present time. The parameters � � 0:485 and
� � 0:615 come from ellipsoidal dynamics (the spherical
collapse model has � = 0 and � = 0), and the value a � 0:7
comes from normalizing the model to simulations (as we
discuss later, it may be more accurate to set a � 0:75 or so).
The spherical collapse model sets B(�2; z) = �sc(z); because
B is then independent of �, spherical collapse is said to be
associated with a barrier of constant height.

As Sheth, Mo & Tormen noted, B(�2; z) scales simi-
larly to the natural scaling associated with random walks:
multiplying the barrier height by c and rescaling � by the
same factor results in a barrier of the same shape. They
exploited this property as follows: �rst, they studied what
happens when z = 0. Whereas an analytic expression for
the �rst crossing distribution of a barrier of constant height
has been known for some one hundred years or so, there
is as yet no analogous solution for the ellipsoidal collapse
moving barrier. (One of the main results of this section is to
provide a good analytic approximation to this solution.) So,
Sheth, Mo & Tormen simulated a large number of random
walks and computed the distribution of �rst crossings, f(S),
of the barrier B(�2 = S; z = 0) numerically. The scaling of
the barrier shape meant that their numerical solution could
be scaled to represent the �rst crossing distribution at any
other time also. Therefore, when providing an analytic �t to
their simulated �rst crossing distribution, they expressed it
in scaled variables:

� f(�) = A
h
1 + (a �)�p

i �
a �

2

�1=2 e�a�=2p
�

; (2)

where f is the distribution of �rst crossings, � and a are
the variables de�ned above, p = 0:3 and A is determined by
requiring that the integral of f(�) over all � give unity. The
distribution associated with the spherical collapse constant
barrier is got by setting a = 1, p = 0 and A = 1=2.

In the excursion set approach, the average comoving
number density of halos of massm, often called the universal
or unconditional halo mass function n(m;z), is related to
the �rst crossing distribution (this is why the shape of the
barrier inuences the shape of the mass function) by

� f(�) �m2 n(m;z)

�

d lnm

d ln �
; (3)

where � denotes the average comoving density of the back-
ground. Because the �rst crossing distribution evolves self-
similarly, so does the halo mass function. Fig. 2 in Sheth &
Tormen (2001) shows that, in the GIF simulations of clus-
tering in SCDM, OCDM and �CDM cosmologies, n(m;z) is
well �t by this expression (at least over the range z = 0 to
z = 4). That is to say, the excursion set prediction that the
universal unconditional mass function evolves self-similarly,
is actually a very good approximation.

Although this �tting function (equation 2) for the �rst
crossing distribution is extremely useful, when we consider
conditional mass functions in the next section, it will turn
out that we need to compute a new �tting function for each
parent mass range of interest. This is, in principle, a compu-
tational bottleneck. For this reason, we think it more useful
to provide a formula for the �rst crossing distribution which
is more amenable for use in what is to follow.

We have analytic formulae for the �rst crossing distri-
bution only in the case of constant (e.g. Bond et al. 1991)

Figure 1. First crossing distributions and the universal uncondi-
tional halo mass function. Histogram shows the distribution ob-
tained by simulating random walks which are absorbed on the
ellipsoidal collapse moving barrier; solid curve shows our analytic
approximation to this distribution (equation 4). Dashed curve
shows the distribution which �ts the halo mass function in cos-
mological simulations (equation 2), and dotted curve shows the
distribution associated with spherical collapse.

and linear (Sheth 1998 and Appendix A of this paper) bar-
riers. These solutions suggest the following approximation
which we have found to work rather well. For a wide range
of moving barrier shapes B(S), the �rst crossing distribution
is well approximated by

f(S) dS = jT (S)j exp
�
�B(S)2

2S

�
dS=Sp
2�S

; (4)

where T (S) denotes the sum of the �rst few terms in the
Taylor series expansion of B(S):

T (S) =

5X
n=0

(�S)n
n!

@nB(S)

@Sn
:

Notice that this expression gives the correct answer in the
case of constant and linear barriers (in which only the �rst,
or the �rst two terms of the series are non-zero). For the
ellipsoidal barrier shape, we �nd we get reasonable accu-
racy to the numerical result if we truncate this expansion
at n = 5. The accuracy of this formula increases as the dis-
tance between the start of the walk and the barrier height
at that initial position, increases (this distance is

p
a for the

ellipsoidal collapse barrier of equation 1).
To illustrate, Fig. 1 shows the result of setting the bar-

rier B(S) to equal that given by equation (1) at z = 0,
then generating a large ensemble of random walks, and so
constructing the �rst crossing distribution. The histogram
shows this Monte-Carlo distribution, and the solid curve
shows the approximation presented in equation (4):

� f(�) =
q

a�

2�
e�a�[1+�(a�)

�� ]2=2
�
1 +
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4 R. K. Sheth & G. Tormen

�

(a�)�

h
1� �+

�(�� 1)

2
+ � � �

i�
�

�
1 +

0:094

(a�)0:6

�q
a�

2�
e�a�[1+0:5(a�)

�0:6 ]2=2: (5)

These should be compared with the distribution of �rst
crossings of a barrier of constant height set equal to �sc(z =
0) (dotted curve), and equation (2) which �ts the GIF sim-
ulations (dashed curve). With the exception of the dotted
curve (the one associated with the constant barrier spheri-
cal collapse model) the other three curves are in reasonably
good agreement. We will exploit this fact in the next subsec-
tion, when we derive a simple expression for the conditional
mass function associated with ellipsoidal collapse.

Before we do so, however, we think it useful to point
out that there are some generic properties of moving barrier
models which arise from the scaling of the barrier shape. The
fact that the barrier shape scales in the way it does means
that moving barrier models in which the barrier height in-
creases with S are somewhat more complicated than the
constant barrier model, so they may be used to model a
wider variety of physical processes. For example, our �nal
expression for the moving barrier crossing distribution is not
normalized to unity (notice that the solid curve is always be-
low the dashed one). This is because, if the barrier height
increases more steeply than linearly with � then not all walks
cross the barrier. Appendix A uses a simple analytic moving
barrier model to illustrate some of these features.

2.2 Generating the unconditional mass function

Before we move on to study the conditional mass function,
we thought it useful to describe a fast and simple algorithm
for generating random numbers which can be used to pro-
vide the correct distribution of halo masses. To generate
numbers drawn from the spherical collapse mass function
(equation 2 with A = 1=2 and p = 0) is easy because, in this
case, f(�) can be got by generating a Chi-squared random
variate. This means that, in the case of spherical collapse,
the unconditional mass function can be generated quickly
and easily because generating Gaussian random variates is
easy. In particular, one simply generates a Gaussian random
variate x, and then sets a� = x2.

The ellipsoidal collapse mass function (equation 2 with
A = 0:32218 and p = 0:3) cannot be transformed to a Gaus-
sian, so constructing an algorithm for generating it is not
so straightforward. We have found that �rst generating a
Gaussian variate x, and then setting a� = jxj3:6=(1 + jxj1:6)
is accurate to within a percent or so over the range 0:01 �
� � 100. The speed of this algorithm compensates for the
fact that it does not exactly produce variates drawn from
the ellipsoidal collapse mass function.

2.3 The conditional mass function

As stated above, we do not know of an analytic expres-
sion for the �rst crossing distribution associated with bar-
riers which have the form given in equation (1). How-
ever, we do have two reasonably accurate �tting formulae|
equations (2) and (4)|to this distribution. One might have
thought that we could use them to make an estimate of the
conditional mass function as follows.

Figure 2. Examples of random walks used to construct the con-
ditional mass functions associated with the ellipsoidal collapse
moving barriers at z = 0 (dotted curve) and z = 2 (solid curve).

Bond et al. (1991) and Lacey & Cole (1993) argued that
conditional mass functions could be estimated by consider-
ing the successive crossings of boundaries associated with
di�erent redshifts. The �rst crossing of two constant barri-
ers of di�erent heights has an analytic solution, so they were
able to provide analytic estimates for the conditional mass
function associated with the spherical collapse model. Such
a formula is very useful, because, once the conditional mass
function is known, the forest of merger history trees can be
constructed using the algorithm described by Sheth & Lem-
son (1999b), from which the nonlinear stochastic biasing as-
sociated with this mass function can be derived using the
logic of Mo & White (1996) and Sheth & Lemson (1999a).

In the constant barrier case, the conditional mass func-
tion is computed by considering walks which start from
[�2 = S; �sc(z0)] rather than from the origin, and then in-
tersect the constant barrier �sc(z1) at, say, s. This is eas-
ily computed, because, despite the shift in the origin, the
second barrier is still one of constant height. Since the
�rst crossing distribution of a barrier of constant height is
known, (recall it was just such a distribution which was as-
sociated with the universal, unconditional mass function),
the conditional mass function can also be written analyti-
cally. Essentially, f(sjS) has the same form as the uncondi-
tional mass function f(S), but with the change of variables:
�sc(z)! �sc(z1)� �sc(z0) and S ! s� S.

One might have wondered if the same change of vari-
ables in equation (2) provides a good description of the con-
ditional mass function associated with the ellipsoidal col-
lapse moving barrier. Unfortunately, because the barrier
shape is not linear in S, changing the origin of the coor-
dinate system does not yield a barrier of exactly the same
functional form. Speci�cally, the shape of

B(s; z1)�B(S; z0) =
p
a �1

�
1 + � s�=(a �21)

�
i

�pa �0
�
1 + � S�=(a �20)

�
i
;

where �1 � �(z1) etc., can be written as a constant plus
a term which scales as (s � S)� only when � equals zero
or one. This means that, formally, the solution to the two
barrier problem associated with ellipsoidal dynamics is not
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An excursion set model of hierarchical clustering: Ellipsoidal collapse and the moving barrier 5

given by a simple rescaling of the unconditional ellipsoidal
collapse mass function. Therefore, we cannot simply rescale
the �tting function of equation (2) to get a reliable estimate
of the conditional mass function: the two barrier problem
associated with moving barriers must, in general, be solved
numerically.

This is discouraging because it means that, in principle,
we must �nd a di�erent �tting function for each choice of
condition, because each condition corresponds to a di�er-
ent origin, say, (B0; S0), and so to a slightly di�erent bar-
rier shape. Of course, the result can be generated relatively
quickly in at least two ways. The �rst is to solve the integral
equation associated with this barrier numerically (Monaco
1997b; Sheth 1998). The second is to simply simulate the
random walk trajectories and so construct the �rst crossing
distribution directly.

Fig. 2 shows an example of what is involved in solv-
ing the two barrier problem numerically in this way. The
smooth dotted and solid curves show the ellipsoidal col-
lapse barrier B(S; z) of equation (1) scaled to z = 0 and
z = 2, respectively. Jagged curves show a few representative
random walk trajectories: they start at the barrier position
B(S; z = 0), where S(M) is given by the GIF SCDM power
spectrum, and M=M� = 2. These random walks are followed
until they �rst cross the barrier B(s; z = 2). The value of
S at which this happens is stored and used to make plots
like those shown below. The random walks were generated
by the same Monte{Carlo code that was used to generate
Fig. A1, except that there the barrier shape was given by
equation (A1). Fig. A1 shows that this Monte{Carlo code
works correctly. One possible approach to the excursion set
conditional mass function, then, is to simply generate it nu-
merically, as the need arises.

Before providing a detailed comparison of the condi-
tional mass functions generated using this Monte{Carlo
model and those in numerical simulations, it is useful to
study a simple limiting case. Fig. 2 shows that for S=S� <
0:5, the height of the barrier is approximately constant. At
small S, the only di�erence between the barrier at two red-
shifts, and the spherical collapse constant barriers, arises
from the factor of a = 0:707. This has the following conse-
quence. At small lookback times (small redshift di�erences),
most random walk trajectories will intersect the barrier be-
fore they have travelled very far along the S axis. For these
trajectories, the barrier is, e�ectively one of constant height.
This means that the conditional mass function for massive
haloes at small lookback times will have the same shape as
that predicted by the constant barrier, with one small dif-
ference. The factor of a = 0:707 has the e�ect of slightly
reducing (by a factor of

p
a) the e�ective redshift di�erence

relative to the original constant barrier model. As a result,
the GIF barrier suggests that massive haloes at small look-
back times will be slightly more massive than the original
constant barrier model predicts. Since

p
0:707 is close to

unity, this e�ect will be small. In practice, we only expect
the barrier predictions to di�er signi�cantly from those of
the constant barrier for small haloes, or at large lookback
times (high redshift). This is encouraging, because these are
precisely the regimes in which simulations suggest that the
constant barrier model is inaccurate (Tormen 1998).

In addition to Monte-Carloing the conditional mass
functions, we can use the results of the previous subsec-

tion to derive a simple analytic expression for their shape.
We can do this because our barrier crossing formula is rea-
sonably accurate for a rather wide range of barrier shapes.
A glance at Fig. 2 shows that the barrier shapes associated
with the conditional mass functions are not likely to be too
di�erent from those associated with the unconditional func-
tion, so we should be able to use equation (4) to approximate
most of the conditional mass functions we will be interested
in. In practice, this can be done by simply making the ap-
propriate replacements B ! B(s) � B(S) and S ! s � S
in equation (4). At the risk of being repetitive, our approx-
imation for the conditional mass function is:

N (m; �1jM;�0) dm � M

m
f(m;�1jM;�0) dm (6)

where f(mjM) dm = f(sjS) ds with

f(sjS) ds = jT (sjS)jp
2�(s� S)

exp

�
� [B(s)� B(S)]2

2(s� S)

�
ds

s� S
; (7)

and

T (sjS) =
5X

n=0

(S � s)n

n!

@n[B(s)�B(S)]

@sn
:

Fig. 3 compares this approximation with the actual nu-
merical Monte-Carlo distribution, and compares both with
the actual distribution measured in the cosmological sim-
ulations. (We will show a comparison with what one gets
by rescaling equation 2 shortly.) The histograms (without
error bars) show the conditional mass functions generated
using our Monte{Carlo code, for parent haloes in the mass
range 1 �M=M� � 2 (upper curves) and 16 �M=M� � 32
(lower curves); the upper curves have been shifted upwards
by a factor of ten for clarity. The smooth curves show the
associated analytic approximation; they describe the results
of our numerical walks reasonably well. Therefore, in the
comparisons to follow, we will sometimes only show the an-
alytic curves. Recall that the analytic formula should be
most accurate for the high-redshift progenitors of massive
parents, and least accurate when the parents are not very
massive. The �gure shows some evidence that this is true.
Both these curves should be compared with the symbols
which have error bars|they show the conditional mass func-
tions measured in the �CDM simulations. The �gure is quite
encouraging: our excursion set predictions are in reasonably
good agreement with the cosmological simulations. In addi-
tion, the �gure shows that the analytic approximation (equa-
tion 7) is reasonably accurate.

Fig. 4 shows a similar comparison in the case of SCDM.
In this case, we have chosen to not show the random walk
histogram, since it is quite well �t by our formula. Instead,
the �gure shows the conditional mass functions measured in
the SCDM simulations (symbols with error bars) and the
various analytic approximations discussed earlier (smooth
curves). In order of accuracy, these are equation (7) (solid),
the distribution associated with rescaling the unconditional
mass function of equation (2) (dashed), and the conditional
distribution associated with the constant barrier, spherical
collapse model of Lacey & Cole (1993) (dotted). (The �nite
mass resolution of the simulations means that the distribu-
tions are arti�cially truncated at low masses.)

Notice that the spherical collapse based dotted curves
are often quite di�erent from the N-body simulation sym-
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6 R. K. Sheth & G. Tormen

Figure 3. Excursion set conditional mass functions at z, for parent haloes identi�ed at the present time. The two sets of curves in
each panel are for parent haloes in the mass range 1 � M=M� � 2 (upper curves) and 16 � M=M� � 32 (lower curves); the upper
curves have been shifted upwards by a factor of ten for clarity. Symbols with error bars show the distributions measured in the �CDM
simulations, histograms show the result of generating the �rst crossing distribution by simulating an ensemble of 104 random walks,
smooth solid curves show the analytic approximation discussed in the text, and dotted curves show the distribution associated with
barriers of constant height.

bols. This discrepancy is similar to that �rst noticed by Tor-
men (1998); haloes in the simulations seem to hold them-
selves together at higher redshift than the spherical collapse
model predicts. Notice also that, whereas the dashed curves
we get by rescaling the unconditional halo mass function
are certainly better �ts to the cosmological simulations, the
solid curves, in which the relation between the excursion set

model and the conditional mass function are accounted for
more carefully, are almost always even more accurate.

2.4 Dependence on local density

Following Mo & White (1996), knowledge of the conditional
mass function allows one to estimate how the distribution of
dark matter haloes today depends on the average density in

c 0000 RAS, MNRAS 000, 000{000



An excursion set model of hierarchical clustering: Ellipsoidal collapse and the moving barrier 7

Figure 4. Conditional mass functions in the SCDM simulations (symbols with error bars). The two sets of curves in each panel show
parent haloes with masses in the range 1 � M=M� � 2 (upper curves) and 16 � M=M� � 32 (lower curves); the upper curves have
been shifted upwards by a factor of ten for clarity. Dotted curves show the spherical collapse prediction (Lacey & Cole 1993), dashed
curves show the distribution one gets by rescaling the unconditional mass function (equation 2), and solid curves show our analytic
approximation to the random walk with moving-barrier simulations (equation 7).

which the haloes are. In essence, they argued that a dense
region should be thought of as an object which will collapse
and form a virialized halo in the near future. This means
that the haloes in it today can be thought of as `progenitor
subhaloes' viewed at `low redshift'. In contrast, it will be
a much longer time before an underdense region collapses
(if it collapses at all), so the haloes within it today are like
the progenitor haloes viewed at high redshift. In hierarchical
models, massive haloes form later, and less massive haloes

form earlier. The discussion above means that one expects
haloes in dense regions to be more massive, on average, than
in underdense regions. The precise dependence of halo mass
on local density depends on the precise relation between the
local density today and the e�ective `redshift'. Mo & White
used the spherical collapse model to provide this relation.
They provided a simple �tting formula to this relation in
an Einstein-deSitter universe. Lemson & Kau�mann (1999)
and Sheth & Lemson (1999a) showed that this provided a
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8 R. K. Sheth & G. Tormen

Figure 5. Mass functions as a function of local density in the
SCDM simulations (symbols with error bars), plotted as a func-
tion of relative mass, so as to resemble the conditional mass
functions presented earlier. Dotted curves show the spherical col-
lapse prediction, dashed curves show the distribution one gets by
rescaling the unconditional mass function (equation 2), and solid
curves show our analytic approximation to the random walk with
moving-barrier simulations (equation 7). The curves have been
o�set upwards by a factor of ten and a hundred, in the case of the
middle and topmost curves, respectively. The upper most curves
show the densest cells.

reasonably good description of how, in their simulations, the
density of haloes depended on local density. We have checked
that the following simple modi�cation to their formula is
reasonably accurate for all cosmologies of interest:

�0(�; z0) =
�sc(z0)

1:68647
�
"
1:68647� 1:35

(1 + �)2=3

� 1:12431

(1 + �)1=2
+

0:78785

(1 + �)0:58661

#
; (8)

where M=��V � (1 + �) is the nonlinear density of a re-
gion containing mass M within the volume V at z0, and
�sc(z0) denotes the critical density for spherical collapse
at z0. The number density of m-haloes in regions of non-
linear density � is got from the conditional mass function
N [m; �sc(z1)jM;�0(�; z0)] of equation (6).

The previous section showed that, in fact, the condi-
tional mass functions are better �t by ellipsoidal collapse
based curves. Therefore, one might reasonably expect that
the same will be true for n(mj�). To emphasize how similar
n(mj�) is to the conditional mass function, we have chosen
to do the following. We have divided the simulation volume
up into into cubes, each 10Mpc/h on a side. We then divided
the cubes into three classes: the densest, and least dense ten
percent of the cells, and the ten percent around the median
density. Figs. 5 and 6 show m2 n(mj�) for the haloes in the
cells, plotted as a fraction of the mass of a cell. Symbols

Figure 6. Same as the previous �gure, but for �CDM.

with error bars show the measurements in the cosmological
simulations, histograms show the associated random walk
distributions, solid curves show our analytic approximation
to the random walks, dashed curves show the result one
gets by rescaling the unconditional mass function, and dot-
ted curves are for the spherical collapse, constant barrier
model. The curves for the three types of cells have been o�-
set from each other for clarity; the lowest density cells are
the lowest curves, and they have not been shifted, average
density cells have been shifted upwards by a factor of ten,
and the densest cells have been shifted upwards by a factor
of a hundred. In all cases, the random walk model provides
the best �t to the simulation data.

Notice how similar these curves appear to the condi-
tional mass functions presented earlier. Because most of
haloes in the densest cells are a signi�cant fraction of the
total mass in the cell, the mass function in dense cells looks
very like the low redshift conditional mass functions. In con-
trast, the mass function in underdense cells looks much more
like the high redshift conditional mass functions. This is pre-
cisely what the model predicts.

Figs. 7 and 8 show what this trend means for the ac-
tual number density of haloes in dense and less dense re-
gions. The various symbols and curves are the same as in
the previous two �gures; the only di�erence is that now
the x-axes have been multiplied by the total mass in the
cell to show physical, rather than relative masses. Clearly,
less dense cells have essentially no massive haloes. In addi-
tion, the ratio of massive to less massive haloes is higher
in denser cells. In particular, note that the density of less
massive haloes in dense regions is actually smaller than the
density of less massive haloes in underdense regions. One
might have thought that dense regions simply have more
haloes on average. For example, one might have thought
that n(mj�) = (1 + �)n(m). Our �gures show that this is
wrong, but that a good estimate of n(mj�) can, nevertheless,
be computed analytically. We conclude this section with the
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Figure 7. Same as Fig. 5, but now presented as a function of
physical, rather than relative, mass. Massive haloes occupy the
densest cells (upper most curves).

observation that our moving barrier based formulae provide
a more accurate �t to the simulations than does the spheri-
cal collapse based constant barrier model.

2.5 Rescaling the conditional mass function

In the excursion set model with a constant barrier height, the
unconditional mass function, when expressed as a function
of � � �2c=�

2(m), is expected to be a universal function
which is independent of redshift, cosmology or initial power
spectrum. In addition, if the conditional mass function is
expressed in units of (�c1��c0)

2=(s�S), then it is expected
to have the same shape as the unconditional mass function.

The previous section we noted that, although the un-
conditional mass function is a universal function of �, this
function is not the one predicted by the constant barrier
model. We argued that if we interpret the unconditional
mass function as coming from a moving barrier, then we no
longer expect the conditional mass function to be a univer-
sal function of �. Figs. 9 and 10 show this explicitly: they
show the result of applying this rescaling to the conditional
mass functions in the SCDM and the �CDM simulations we
presented earlier.

The four panels in each �gure show the conditional mass
function at each of the four redshifts we have been studying
so far. The symbols show the result of rescaling the con-
ditional mass functions in the simulations for parent haloes
with mass in the range 1-2 (�lled circles) and 8-32 M� (open
triangles) at z = 0. Notice that the symbols in each panel do
not overlap exactly|at �xed z, the conditional mass func-
tions for di�erent parent haloes do not rescale exactly. In ad-
dition, the band traced out by the symbols at z = 4 is quite
di�erent from the band traced out at z = 0:5; the mass func-
tions at di�erent output times do not rescale either. Both

Figure 8. Same as the previous �gure, but for �CDM.

these �ndings illustrate our main point: the conditional mass
function is not a universal function of the scaling variable �.

The dotted curves which are the same in all the panels
show the predictions of the constant barrier model; they do
not provide a good �t at any time for any mass range. The
dashed curves which are also the same in all the panels show
the result of assuming that, upon rescaling, the conditional
mass function will have the same shape as the unconditional
mass function; although they provide a good �t at large z,
they are increasingly in error at small z. This is true both
for the SCDM and the �CDM models.

The solid lines in the various panels show the predic-
tions of our moving barrier model. In this case, the predic-
tions depend both on the parent mass range, and on the red-
shift at which the progenitors are identi�ed: we have chosen
to show the predictions for the 1-2M� haloes only. Whereas
the model is in reasonable agreement with the simulations
at large z, it has the wrong shape an small z. This is not
terribly surprising, because our formula for the �rst crossing
distribution of the moving barrier model was only supposed
to work at large z, but it is unfortunate that the disagree-
ment at low z is so bad! One might have thought that the
actual �rst crossing distribution may be in good agreement
with the GIF simulations, and that it is only the analytic ap-
proximation which is in error at small z. Unfortunately, this
is not so. The histograms in Fig. 10 show the result of sim-
ulating an ensemble of random walks to construct the con-
ditional mass functions; although they are in slightly better
agreement with the simulations, they are still quite di�erent.

The discrepancy between the simulations and our mov-
ing barrier model predictions are most pronounced when
the subclump mass is m=M � 1=2. This suggests that our
model is unable to describe the histories of clumps at small
lookback times. At small lookback times, one might worry
that the spherical overdensity group�nder we use to iden-
tify the subclumps in the simulations might �nd a di�erent
set of objects than a friends-of-friends algorithm. Plots of
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10 R. K. Sheth & G. Tormen

Figure 9. Rescaled conditional mass functions in the SCDM model. Panels show the di�erent redshift bins we studied earlier. Symbols
in each panel show the di�erent mass ranges we considered. Dotted line shows the constant barrier prediction (in these variables it is
the same as the unconditional mass function), dashed line shows the result of rescaling the actual unconditional mass function, and solid
curves show the result of rescaling the moving barrier predictions.

the rescaled conditional mass function constructed using a
friends-of-friends algorithm look very similar to the spheri-
cal overdensity results presented above|the discrepancy be-
tween model and simulations is independent of the choice of
group�nder.

In addition, because the theory assumes that mass is
conserved|all the mass of a subclump becomes part of the
�nal halo|whereas this is not true in the simulations: some
of the particles which make up the �nal object may have
come from a subclump which merged along with most of

its particles into a di�erent object. This means that there
is some freedom associated with how we decide if a clump
at an early time should be counted as a subclump of a halo
at the �nal time. We have tried two schemes for iden�fying
subclumps: a progenitor is a clump which donates at least
half its mass to the �nal object, or which donates at least one
particle to the �nal object. Once we have made this decision,
we must also decide what we wish to count as the mass of the
parent object: two natural choices are the mass at the �nal
time (which, by de�nition is �xed for all earlier redshifts), or
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Figure 10. Same as the previous �gure, but for �CDM.

the mass which is got by summing up the masses of all the
progenitor subclumps (which may depend on redshift). The
�gures above are for the case in which a subclump is any
clump which donates at least one particle to the �nal ob-
ject, and the parent mass is de�ned as the mass at the �nal
time (so it is independent of redshift). Although the actual
conditional mass functions depend slightly on which com-
bination of the above choices we make, the generic results
shown above are independent of this choice.

Before moving on, we think it worth noting that the dis-
crepancies between the SCDM simulations and the dotted or
dashed curves are qualitatively similar to the discrepancies

in the �CDM case. This suggests that one should be able
to �nd a model which can account for these discrepancies in
a way which is independent of power-spectrum, redshift or
cosmology. Our moving barrier model is just not up to the
task. The next section studies why.

3 AN EXTENSION

In the ellipsoidal collapse model envisaged by Bond & Myers
(1996) and implemented by Sheth, Mo & Tormen (2001),
the collapse of a patch is determined by the surrounding
shear �eld. In a Gaussian random �eld, the �eld around a
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Figure 11. Distribution of overdensities and scales at which the
six-dimensional randomwalks crossed the ellipsoidal collapse bar-
rier. Solid curve shows the approximation used by Sheth, Mo
& Tormen (2001) in their, considerably simpler, one-dimensional
random walks.

patch may di�er from patch to patch. Appendix B provides
a simple prescription for choosing a set of patches which
have the correct ensemble averaged properties|in essence,
this requires studying the �rst crossing distribution of six-
dimensional random walks.

Because a six-dimensional walk is computationally ex-
pensive, rather than choosing the distribution of initial
patches from this exact statistical distribution, Sheth, Mo &
Tormen suggested it should be a good approximation to use
an appropriately chosen mean value, and neglect the scat-
ter around this value. This allowed them to reduce what is
a six-dimensional random walk to a one-dimensional walk.
It is this one-dimensional walk which we have considered
so far. One might worry, however, that the discrepancy be-
tween model predictions and simulation results we found in
the previous section may actually be due to our neglect of
the scatter around the average value. The main purpose of
this section is to study this possibility.

Fig. 11 shows the result of generating an ensemble of
four thousand six-dimensional random walks associated with
Gaussian random �elds as described in the Appendix. The
walks are stopped when they cross the barrier associated
with the ellipsoidal collapse model of Bond & Myers (1996).
The crosses show the values of � and � at which the six-
dimensional walks crossed the ellipsoidal collapse barrier
�crit(e; p): we actually used the simple �t, equation 3 in
Sheth, Mo & Tormen (2001), to the critical density required
for collapse �crit(e; p). The solid curve shows the approxima-
tion used by Sheth, Mo & Tormen; it provides a rather good
description of how �crit increases with increasing �. The Ap-
pendix describes the reason for this in more detail. For now,
we simply note that because the solid curve provides a rea-
sonably good description of the crosses, the �rst crossing

Figure 12. Scaled unconditional (jagged curves) and conditional
(�lled circles) mass functions associatedwith six-dimensional ran-
dom walks which cross the ellipsoidal collapse barrier. Dashed
line shows the unconditional mass function which �ts the mass
function of bound objects in simulations of clusteringwell. As dis-
cussed in the previous section, the dashed curve is well described
by the distribution of �rst crossings by one-dimensional random
walks, of a barrier which is associated with ellipsoidal collapse.
Dotted line shows the corresponding spherical collapse prediction.

distributions of the six-dimensional walks considered here
are unlikely to be very di�erent from the �rst crossing dis-
tributions associated with the (considerably simpler) one-
dimensional walks studied in the previous sections of this
paper.

The two jagged curves in Fig. 12 show this explicitly.
They show the �rst crossing distributions associated with
the six-dimensional walks which cross the z = 0 and z = 0:5
six-dimensional ellipsoidal collapse barriers. They have been
rescaled similarly to how the unconditional mass functions
in simulations rescale: � = (�sc=�)

2. After rescaling, the two
curves appear similar, as they should; note that they are
reasonably like the dashed curve, which shows equation (2),
and they are rather di�erent from the dotted curve which
shows the spherical collapse prediction.

Recall that the dashed curve is very similar to the mass
function one gets by simulating one-dimensional random
walks. Because the jagged curves are in quite good agree-
ment with the dashed curve, the �rst crossing distributions
associated with the six-dimensional walks are actually rather
similar to those associated with the (considerably simpler)
one-dimensional walks studied in the previous sections. This
agrees with what our conclusions from Fig. 11. The Ap-
pendix describes the reason for this in more detail.

Having shown that the unconditional mass functions as-
sociated with the six-dimensional random walks are in rea-
sonable with numerical simulations, we now turn to the con-
ditional mass functions|the test which our one-dimensional
random walks failed. The solid symbols with error bars
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show the conditional mass functions associated with the six-
dimensional walks, expressed in the scaled units of the pre-
vious section: � = 0:707 �2sc 0:5

2=(s�S), where s denotes the
value of �2 at which the z = 0:5 six-dimensional boundary
was crossed, and S is the scale on which the lower z = 0
six-dimensional boundary was crossed. Note the excess of
points at large values of �; these conditional mass functions
are quite di�erent from the conditional mass functions in
simulations. Indeed, the discrepancy between the excursion
set predictions and the simulations of hierarchical clustering
has got worse!

There are at least two reasons why the excursion set
approach with one-dimensional random walks may fail at
small lookback times. The �rst is the excursion set neglect
of correlations between scales (Peacock & Heavens 1990;
Bond et al. 1991). At large lookback times most subclumps
are a small fraction of the mass of the parent halo, so the
smoothing scale associated with the subclumps is su�ciently
di�erent from that of the parent that the neglect of correla-
tions between the two scales is probably justi�ed. At smaller
lookback times the parent and subclump scales are not so
well separated, so the neglect of correlations is a more likely
to be a bad approximation. This is one possible reason for
the agreement at large lookback times despite the discrep-
ancy at low redshift. The second possibility is that the one-
dimensional parametrization of ellipsoidal collapse outlined
by Sheth, Mo & Tormen (2001) is too simple. The results
of this section suggest that, in fact, it is the �rst possibility
which is the cause of the discrepancy.

4 DISCUSSION

Sheth, Mo & Tormen (2001) argued that a simple modi�-
cation to the original excursion set approach was enough to
improve agreement between the predictions of the approach
and numerical simulations. The modi�cation they suggested
was to the value of the linearly extrapolated critical over-
density �c associated with the collapse of an object. The
spherical collapse model assumes that this value is indepen-
dent of the mass of the collapsed object, whereas ellipsoidal
collapse makes �c depend on m. In the context of the ex-
cursion set approach, this corresponds to studying the �rst
crossing statistics of a set of moving, rather than constant
barriers. We also argued that a moving barrier also provides
a simple way in which the excursion set appraoch can be ex-
tended to apply to models in which the initial dark matter
distribution is not completely cold.

Because moving barrier models are so useful, we pro-
vided analytic approximations for the required �rst crossing
distributions (equations 4 and 7), and showed that they were
reasonably accurate. Although our formulae for the condi-
tional mass functions (solid curves in Figs. 3{8) are slightly
di�erent from, and usually more accurate than, those one
obtains by a simple rescaling of the unconditional mass func-
tion (dashed curves in the same �gures), this simple rescal-
ing of the unconditional mass function is still more accurate
than what one gets if one rescales the constant barrier for-
mulae (dotted curves). We showed that the predicted uncon-
ditional and conditional mass functions were in reasonably
good agreement with results from numerical cosmological
simulations (Figs. 3{8), and we also provided a simple e�-

cient algorithm which allows one to generating masses which
have the correct universal mass function (Section 2.2).

However, we showed that neither the constant nor the
moving barrier models were able to describe the simulation
results at small lookback times (Figs. 9 and 10). This means
that our results for the conditional mass functions cannot
be used to generate realizations of the forest of merger his-
tory trees. We argued that this discrepancy was most likely
due to the excursion set approach's neglect of correlations
between scales (e.g. Peacock & Heavens 1990; Bond et al.
1991; Monaco 1997b). While this neglect is a bad approx-
imation at small lookback times, it is reasonably accurate
at large lookback times. This is why the excursion set ap-
proach is able to provide a reasonably good description of
clustering at high redshift, even though it is inaccurate at
small redshifts.

Before concluding, we will consider how some of our re-
sults are related to other work in the literature. Recently,
Jenkins et al. (2001) showed that, although the mass func-
tions in their simulations scaled in accordance with the ex-
cursion set prediction, our equation (2) slightly overesti-
mated the unconditional mass functions in their simulations.
We thought it would be interesting to show the various ap-
proximations to the mass function which we presented in this
paper on one plot. The dot-dashed curve in Fig. 13, with
cuto�s at low and high masses shows the �tting function
Jenkins et al. proposed, which �ts their simulations well, the
dashed curve shows the �tting formula of equation (2) with
a = 0:707 (following Sheth & Tormen 1999), the histogram
shows the distribution one gets by simulating random walks
with the ellipsoidal collapse moving barrier (equation 1, fol-
lowing Sheth, Mo & Tormen 2001), the solid curve shows
our approximate formula for this �rst crossing distribution
(equation 4), and the dotted curve shows the spherical col-
lapse, constant barrier prediction (Press & Schechter 1974;
Bond et al. 1991). Simulations currently available do not
probe the regime where � � 0:3 or so (the Jeans mass is at
about � � 0:03).

The upper set of curves show the residuals between
our formulae and the one provided by Jenkins et al., in the
regime to the right of the low-mass cut-o� (marked by an ar-
rowhead). In addition to the previously mentioned formulae,
we have included a new dashed curve which shows the result
of changing a in equation (2) from 0.707 to 0.75. This simple
change appears to be all that is necessary to reduce the dis-
crepancy between it and the simulations substantially. Our
formula di�ers dramatically from the one Jenkins et al. pro-
pose at small masses. We hope that simulations in the near
future will be able to address which low mass behaviour is
correct.

To illustrate that our formulae really do work for a large
class of barrier shapes, Fig. 14 shows the �rst crossing dis-
tribution associated with the barrier discussed by Monaco
(1997a,b):

B(S) = �sc

h
1:82=�sc � 0:69

p
S=S�

i
;

where, as throughout this paper, S� � �2sc. The height of
this barrier decreases with S, so it really is quite di�erent
from ours (Sheth, Mo & Tormen 2001 discuss the physical
reason why). (We chose not to present results for the bar-
rier shape studied by Del Popolo & Gambera (1998) because
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Figure 13. Comparison of the various mass functions described
in this paper, with the one which �ts the Hubble volume simu-
lations presented in Jenkins et al (2001). Upper curves show the
residuals between our analytic formulae and the Jenkins et al.
�tting formula.

Figure 14. The unconditional mass function associated with
a model of collapse which was presented in Monaco (1997a,b).
Whereas the height of the barrier studied in our paper increases
with distance, the one proposed by Monaco decreases with dis-
tance. Despite the dramatic di�erences between the two barriers,
inserting this shape into our equation (4) provides a good �t (solid
curve) to the exact result (histogram).

their shape is not so di�erent from ours, whereas Monaco's
really is quite di�erent. The fact that this barrier decreases
with S means that all walks are guaranteed to cross it, and
that there is no fragmentation associated with this barrier
shape. (This is in contrast to barriers whose height increases
su�ciently strongly with S; for the Sheth, Mo & Tormen
2001 barrier shape studied in the main text, unbound mass
and fragmentation are features which are formally possible
but rare in practice.) The histogram shows the numerical
Monte-Carlo �rst crossing distribution, and the two solid
curves shows our analytic approximation, computed by in-
serting this barrier shape into our equation (4). The curve
which provides a slightly worse �t to the histogram shows
the result of using the �rst �ve terms in the series (as we did
for the other �gures in this paper); the other curve shows
what happens if we use the �rst ten terms instead. Just for
comparison, the dotted and dashed curves show the spher-
ical collapse prediction, and the one which actually �ts the
cosmological simulations (equation 2). The �gure shows that
we are able to describe the �rst crossing distribution of this
barrier shape well. This means that one could, in principle,
use our formula, with Monaco's barrier, to study the con-
ditional mass functions associated with his parametrization
of nonlinear collapse|we have not pursued this further, al-
though comparison of this �rst crossing distribution with
the z = 0:5 panels in Figs. 9 and 10 suggest that this might
be a useful exercise.

In summary, we have provided a formula which de-
scribes the �rst crossing distribution of independent uncor-
related Brownian motion random walks, for a wide class of
moving barriers. This formula can be used to provide simple
accurate predictions for a number of statistical quantities as-
sociated with the formation and clustering of dark matter
haloes, all within the same formalism.
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APPENDIX A: THE LINEAR BARRIER

Suppose that the barrier shape increases linearly with in-
creasing variance S = �2:

B(S; z) = �c(z)
�
1 + S=S�(z)

�
; (A1)

where �c(z) = �c0(1 + z) and S�(z) = S�0(1 + z)2 if 
 =
1. These scalings with z are what is required by the self-
similarity of Brownian motion. In the Bond et al. (1991)
formulation of the constant barrier problem, it is customary
to express the S axis in the units it had at some �ducial
time, say z = 0, and to study the successive crossings of
barriers having di�erent values of z. In e�ect, the constant
height Press{Schechter barrier has S�0 =1, so in that case
only the scaling of the y-axis was apparent.

This linear barrier shape is motivated by the observa-
tion that the GIF simulations have fewer low mass haloes
relative to high mass ones, as compared to what is predicted
by the constant barrier model. This means that, at least for
some range of S, the moving barrier must have a positive
slope, since this would make it relatively easier to cross at
small S (large mass) than at large S (small mass), as com-
pared to a barrier of constant height.

An additional reason for considering this linear barrier
is the following. Recent work (Bode, Ostriker & Turok 2001)
suggests that the halo mass function in which the dark mat-
ter is warm initially has even fewer low mass halos than cold
dark matter based ellipsoidal collapse models predict. In the
context of the approach outlined by Sheth, Mo & Tormen
(2001), the physical reason for this is relatively simple: low
mass haloes do not form because they are hotter initially, so
a larger overdensity is required to hold them together against
the thermal pressure which prevents collapse, or against the
stronger shearing from the velocity �eld. This suggests that
the critical density required for collapse by the present time,
�ec(m), should increase even more strongly with decreasing
m than it does when the dark matter is cold. The warm
dark matter model is not particularly well motivated, and
its free parameters have not yet been �xed, it seems prema-
ture to provide a detailed �WDM

ec (m) relation at the present
time. For this reason, the linear barrier considered in this ap-
pendix should be thought of as an example of what happes

when the barrier height increases even more steeply with
decreasing mass than it does in the Sheth, Mo & Tormen
cold dark matter models.

In the constant barrier model, all random walks were
guaranteed to cross the barrier. This is because the rms
height of random walks at S is proportional to

p
S, so at

su�ciently large S, all walks will have crossed the constant
barrier. As a result, the associated �rst crossing distribution
is normalized to unity: since each random walk is associated
with a volume element in the initial Lagrangian space, this is
usually interpretted as meaning that, in the constant barrier
model, all the mass in the universe is bound up in collapsed
objects of some mass, however small. In contrast, the lin-
ear barrier (A1) increases to arbitrarily high values at high
S. Because the rms height of the random walk grows more
slowly than the rate at which the barrier height increases,
there is no guarantee that all random walk trajectories will

intercept this barrier. Indeed, only a fraction e�2�
2

c
(z)=S�(z)

of them will. So, in the linear barrier model, not all initial
volume elements are associated with bound haloes. Since not
all particles in numerical cosmological simulations are asso-
ciated with bound haloes anyway (the fraction of unbound
mass is typically on the order of �10%, though how much of
this is a consequence of limited resolution in the simulations
is uncertain), this feature of the moving barrier model may
or may not be a good thing. In any case, this is one qual-
itative di�erence between the moving boundary model and
a model with constant barrier height. (Readers who dislike
this feature of the linear model are invited to patch a con-
stant barrier of height �c0 at small S to a linearly increasing
one at intermediate S to another constant one (but now at
at a greater height, of course) at a large S of their choice,
and to compute the associated mass function! This can be
done relatively easily using the results presented below.)

In addition to the question of normalization, barriers
whose heights increase with S more rapidly than S0:5 will
have mass functions in which the low mass end is depleted
relative to the constant barrier case. In the linear barrier
model studied below, the mass function has an exponen-
tial cuto� at both low and high masses. Because the barrier
shape associated with ellipsoidal collapse grows only as S0:6

both these e�ects are extremely weak. Nevertheless, it is
worth bearing these features in mind as bigger and better
simulations become available.

The second important qualitative di�erence between
a moving barrier model and the original constant barrier
model is the following: whereas the y-intercept B(0; z) in-
creases as z increases, the slope decreases as (1+ z)�1. This
means that it is possible for barriers to intersect at �nite
values of S. For example, two linear barriers B(S; z0) and
B(S; z1), with z1 > z0, will intersect at that critical value of
S at which B(S; z0) = B(S; z1): S01=S�0 = (1 + z0)(1 + z1).
This means that all trajectories which �rst cross B(z0) at
S > S01 must have crossed B(z1) at a smaller value of S. The
logic of Lacey & Cole (1993) then says that all haloes at z0
that are less massive than the associated critical mass M01

were formed by fragmentation of a halo which, at z1 > z0,
was more massive.

Again, this may or may not be a good thing. Simula-
tions show that �20% of the total mass ever associated with
progenitors of a halo does not �nd its way to the parent halo
(Tormen 1998). Presumably this reects the fact that while
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Figure A1. The conditional mass functions associated with the linear barrier. Smooth solid curves show the analytic linear barrier
prediction, dashed curves show the conditional constant barrier distribution for comparison, and histograms show the result of our
numerical Monte{Carlo calculation.

small haloes may fragment, the fragmented mass is not a
very large fraction of the total mass. Simulations also show
that some subclumps pass through the virial radius of a
given parent halo a number of times, each time depositing
some fraction of their mass, before they �nally become part
of the parent halo. It may be that a moving barrier model is
able to incorporate and perhaps even quantify these e�ects.

The �rst crossing distribution of trajectories that do
cross the linear barrier is Inverse Gaussian:

f(S; z) dS =
B(0; z)p
2�S

exp

�
�B2(S; z)

2S

�
dS

S
; (A2)

(Whitmore 1978; also see Sheth 1998). The associated un-
conditional mass function is got by inserting this in equa-
tion (3). Whereas the mass function in the constant barrier
case has an exponential cuto� at the high mass end, the
mass function in this linear barrier model has exponential
cuto�s at both low and high masses. Recall this arises from
the fact that barrier height increases so rapidly at large S.
Therefore, the mass function associated with this linear bar-
rier has fewer small mass objects than the constant barrier
predicts, in qualitative agreement with the GIF simulations.
(The agreement is certainly not quantitative, but the linear
barrier is only used here for illustrative purposes.)

Since a linear barrier is linear whatever the origin of the
coordinate system, the solution to the two barrier problem
is also Inverse Gaussian. That is, given z1 > z0 and given
that the �rst crossing of B(z0) occured at S0 � S01, the
probability that the �rst crossing of B(z1) occurs in the
range dS1 about S1 is given by equation (A2), with the
substitutions S ! (S1 � S0), and B ! B10, where

B10(S1 � S0) = B(S1; z1)�B(S0; z0):

As was the case for the unconditional mass function, the
height of this barrier diverges as S1 � S0 ! 1, so not all
trajectories intersect it. Again, it seems reasonable to as-
sociate the fraction that do not with the fraction of the
parent halo mass that is not associated with bound sub-
clumps. (Those readers who computed the mass functions
associated with the patched constant{linear{constant barri-
ers may disregard the previous two sentences, provided they
�rst compute the associated two-patched-barrier problem!)

The smooth solid curves in Fig. A1 show this condi-
tional distribution for a few representative choices of the
parent halo mass M . The parents were assumed to have
formed at z0 = 0, and the progenitor distributions are shown
at an earlier redshift z1. The underlying power spectrum was
chosen to be the same as the GIF SCDM power spectrum.
It is also straightforward to solve this problem numerically:
for the values of M shown in the �gures, the histograms
show the distribution generated by simulating the crossings
of the higher linear barrier by 103 random Brownian motion
trajectories that started at the initial positions B(S; z = 0),
where S(M) is given by the GIF power spectrum. This �g-
ure has been included mainly to show that our Monte{Carlo
code works, because we will use the code in the next section.
We have also veri�ed that the numerical code gives the cor-
rect conditional and unconditional mass functions when the
barrier heights are constant.

For completeness, we also show the bias relations asso-
ciated with this model. Following Mo & White (1996) (also
see Sheth & Tormen 1999), the mean Lagrangian bias be-
tween haloes and mass is

�Lh (1j0) = f(S1; z1jS0; z0)
f(S1; z1)

� 1: (A3)
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The limit M0 � M1 and j�0j � �1 is sometimes called the
peak-background split. In this limit

�Lh (1j0)! (�1=�1) �0; where �1 � �2c (z1)=S1

for the linear barrier model. Massive haloes have small values
of S, so they have large values of �. Small haloes have � � 0.
Thus, in this limit, less massive haloes are unbiased relative
to the mass, whereas massive haloes are positively biased.
For comparison, the corresponding limit for the constant
barrier is

�Lh (1j0)! �0 (�1 � 1)=�1:

Thus, the predictions of the linear and constant barriers are
similar for massive haloes, but they di�er for less massive
ones. In particular, less massive haloes in Lagrangian space
are anti-biased in the constant barrier model, whereas they
are unbiased in the linear barrier model.

The halo-to-mass bias in the evolved Eulerian space for
the constant barrier can be computed by expanding

�Eh (1j0) = (1 + �)
�
1 + �Lh (1j0)

�� 1 (A4)

to lowest order in � (Mo & White 1996). In this limit, � � �0,
so �Eh (1j0) = (1 + [�1 � 1]=�1) � for the constant barrier.
The same logic gives �Eh (1j0) = (1 + �1=�1) � for the linear
barrier. Again, the predictions of the constant and linear
barriers agree for massive haloes, but are di�erent for less
massive ones; the haloes in the linear barrier model are more
positively biased. This is encouraging, because, as mentioned
in the introduction, this is in qualitative agreement with the
trend seen in numerical simulations.

The rate of increase of the ellipsoidal collapse barrier
is shallower than for the linear barrier discussed here. Since
it is intermediate between the linear barrier and the con-
stant spherical collapse barrier, we might reasonably expect
the large scale bias factor of less massive haloes in the el-
lipsoidal collapse model to be greater than that associated
with the spherical collapse model. Since the ellipsoidal col-
lapse barrier rises less steeply than linear, the modi�ed large
scale bias will be somewhat less than the linear barrier pre-
diction. Fig. 4 of Sheth, Mo & Tormen (2001) shows that
this is, indeed, the case.

We argued at the start of this section that warm dark
matter models can be parametrized by making the criti-
cal density for collapse depend more strongly on mass than
when the dark matter is cold. In this respect, a comparison of
the linear barrier formulae given here with the results for the
barrier written down by Sheth, Mo & Tormen (2001) shows
why, generically, warm dark matter models are expected to
have fewer low mass haloes and, consequently, di�erent bias
relations, particularly at the low mass end, than cold dark
matter models. This is in qualitative agreement with the
numerical simulations of Bode, Ostriker & Turok (2000).

APPENDIX B: DISTRIBUTION OF DENSITY

AND ANGULAR MOMENTUM OF A PATCH

IN A GAUSSIAN RANDOM FIELD

Let dij = rij�, where � is the initial potential, denote the
various components of the deformation tensor D (here 1 �
i � 3 and similarly for j). Following, e.g. Bardeen et al.

(1986), these components are

d11 = (�y1 � 3y2=
p
15� y3=

p
5)=3

d22 = (�y1 + 2y3=
p
5)=3

d33 = (�y1 + 3y2=
p
15� y3=

p
5)=3

d12 = y4=
p
15

d23 = y5=
p
15

d13 = y6=
p
15 (B1)

where the yis are independent Gaussian variates with zero
mean and variance �2. Poisson's equation says that the trace
of this matrix, Tr(D) equals the overdensity �. Thus,

� = d11 + d22 + d33 = �y1; (B2)

the �nal expression shows explicitly that � is a Gaussian
random variate.

The eigenvalues of this matrix are the roots of the char-
acteristic equation

P (�) = Det[D� �I] = �a0 � a1�� a2�
2 � �3; (B3)

where I is the identity matrix, and the aks are various com-
binations of the dijs got by expanding the expression above
and ordering by powers of �. Since D is a 3 � 3 real sym-
metric matrix, P (�) is a cubic with three real roots which
satisfy

�1 + �2 + �3 = �a2
�1�2 + �2�3 + �1�3 = a1

�1�2�3 = �a0: (B4)

Because rotations leave the trace unchanged, the overden-
sity � is the sum of the three eigenvalues, so �a2 = � = �y1.
In addition, the square of the angular momentum is propor-
tional to

r2 =
(�1 � �2)

2

2
+

(�2 � �3)
2

2
+

(�1 � �3)
2

2

= a22 � 3a1 (B5)

(e.g. Heavens & Peacock 1988; Catelan & Theuns 1998).
This shows that to get r2 we don't need to solve the cubic|
we just need to read o� the appropriate coe�cients of the
characteristic equation. Thus, we �nd that

r2 = �2 + 3(d212 + d213 + d223 � d11d22 � d11d33 � d22d33)

= (y22 + y23 + y24 + y25 + y26)=5 (B6)

Although the �rst line suggests that r2 is coupled to �, the
�nal expression shows that it is not. In particular, the ex-
pressions above show that � is distributed as a Gaussian,
and r2 is an independent variate drawn from a Chi-square
distribution with �ve degrees of freedom, �25(�). The fact
that the overdensity and the square of the angular momen-
tum are independent does not seem to have been noticed
before. A �25(�) distribution is rather similar in shape to a
Lognormal, so this provides a simple way to see why spins
of peaks in Gaussian random �elds are also approximately
lognormal (Heavens & Peacock 1988).

The results above can be used to generalize the excur-
sion set algorithm studied in the main text. Set n = 0 and
yi(n) = 0 for 1 � i � 6. Thereafter, at each step labeled by
n, choose six, rather than one, independent Gaussian ran-
dom variates gi, each with variance s. For each i = 1; 6 set
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Figure B1. Comparison of two prescriptions for collapse, both of
which give good agreementwith the unconditionalmass function.
Crosses show the actual values of collapse densities and scales,
and solid curves show the approximation assumed by Sheth, Mo
& Tormen (2001).

yi(n) = yi(n � 1) + gi, and use these to compute � and r2.
These can be used to give the values of the overdensity and
the angular momentum for the scale on which the variance
is �2 / ns (recall that n is the number of steps taken).
Now check to see if � = �y1(n) exceeds a critical value,
say �crit(�; r

2). If it does, the six-dimensional walk stops at
this scale. If not, the walk continues to smaller scales. Be-
cause each of the gis is chosen independently of the values
of the yis or of �, the walk takes independent steps in the
six-dimensional space; it is in this sense that this algorithm
generalizes the one-dimensional excursion set random walk
studied in the main body of this paper.

The analysis above shows clearly that the one-
dimensional random walk approach of Sheth, Mo & Tormen
(2001) corresponds to the following approximation. Replace
the dependence of �crit(�; r

2) on the random variate r2 by
a dependence on its average value hr2i / �2. This means
that the critical density for collapse is a function of � alone,
�crit(�). As a result, the random walk in six-dimensions can
be reduced to a walk in one-dimension only, thereby greatly
reducing the complexity of the problem.

Recently just such a six-dimensional random walk al-
gorithm has been used by Chiueh & Lee (2001), although
they did not notice the considerable simpli�cations which
follow from the algebra presented above. They simulated
an ensemble of six-dimensional random walks, and set the
parameters of the barrier to be crossed by requiring that
the resulting �rst crossing distribution give the uncondi-
tional mass function. In particular, they showed that �crit =
1:5[1+(2r2=3)2=0:15]0:15 provided a good �t to the required
critical value of the overdensity.

The algebra above allows one to see what such an ap-
proach implies. To do this, suppose the barrier is �crit =

1:686(1 + r2). The dependence on r2 means that if the par-
ticle has walked to � = 1:686, it will still not have crossed,
because r2 is always certainly greater than zero. So, to
cross, the particle needs to have some � > 1:686. How much
greater? This depends on the typical value of r2. Because
r2 is drawn from a �25 distribution, hr2i � �2. Now suppose
that the �25 distribution is very sharply peaked at its mean
value (it quite well peaked, but taking the extreme case helps
to see the argument). This means that the barrier shape is
something like �crit = 1:686(1 + �2). The fact that a �25 dis-
tribution is not very sharply peaked at its most probable
value simply means that sometimes when � = 1:686(1 + �2)
the particle will still be less than �crit, so the walk must go
on. Of course, sometimes r2 < �2, and in this case the walk
will stop even if � < 1:686(1 + �2). So, this means that we
can think of the dependence on r2 as making the critical
value of the boundary height, when expressed as a function
of �2 (the way Sheth, Mo & Tormen 2001 did) a little fuzzy.
So, provided the �25 distribution is not too broad, the con-
siderably simpler one-dimensional random walk approach of
Sheth, Mo & Tormen (2001) should be a reasonable approx-
imation.

Fig. B1 shows the result of doing this for two choices of
the barrier shape, both of which produce �rst crossing dis-
tributions which, when inserted into equation (3), give mass
functions of bound objects which are similar to the one in
simulations of hierarchical clustering. The upper panel was
constructed using a barrier whose height increased linearly
with r2, and the lower panel shows results for the barrier
shape used by Chiueh & Lee (2001), which increases as
r4. The crosses show the values of � and � at which each
six-dimensional random walk crossed the barrier. The solid
curve shows the approximation used by Sheth, Mo &Tormen
(2001); it provides a reasonable description of the increase
of �crit with �.

Determining the barrier shape by requiring agreement
with the clustering simulations is unsatisfying, especially
in view of the fact that the two di�erent boundaries given
above provide equally adequate approximations to the mass
function. For this reason, the main text shows the result
of combining the six-dimensional walk described above with
the ellipsoidal collapse model of Bond & Myers (1996). This
was relatively easy to do, because a simple �tting function
for how the critical collapse boundary associated with this
ellipsoidal collapse depends on the initial shear �eld has been
given by Sheth, Mo & Tormen (their equation 3 and their
Fig. 1).
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