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1 Introduction

It is widely believed that the main low energy signature of extra dimensions [1] is the

appearance of the tower of Kaluza-Klein (KK) modes. For example, if QCD lived in the

bulk, experimentalists would see massive spin-1 degenerate color octet vector bosons (col-

orons) appearing at large mass scales corresponding to (inverse) compacti�cation scales.

As these new massive KK particles begin to emerge in accelerator experiments, we might

ask how would we describe them in an e�ective four-dimensional renormalizeable La-

grangian that is an extension of QCD, without an a priori knowledge of the existence

of extra dimensions? The main goal of the present paper is to give a manifestly gauge

invariant e�ective Lagrangian description of KK modes in 1 + 3 dimensions.

It is important to realize at the outset that there is an implicit dynamical assumption

underlying such a theory of extra-dimensions and KK modes. This is the assumption that

there is a meaningful separation of scales between the compacti�cation scale, Mc � 1=Rc

and the \string" or \fundamental scale"Ms at which the extra-dimensional theory breaks

down as a perturbative local �eld theory. To have N >> 1 KK modes in a 4 + 1 theory

we require Ms=Mc
>� N >> 1. It is not obvious how such a separation of scales occurs in

the theory. The separation of scales is a requirement of very low mass, or infrared states,

in an essentially strong-dynamical theory at the scale Ms.

Now, in a strong theory like QCD we know how, in principle, to engineer far infra-

red physics, i.e., states with masses much less than the fundamental scale �QCD. To

do so we introduce approximate or exact chiral symmetries, e.g., we take mu and md

very small. Then the pions, the pseudo-Nambu-Goldstone bosons associated with the

spontaneous breaking of chiral symmetry become light as m2
� � (mu + md)�QCD (and,

we must switch o� explicit breaking of the chiral symmetries due to electromagnetism

which produce m2
�+ � m2

�0 � ��2
QCD, etc.). We say, then, that the chiral symmetry

is the \custodial symmetry" of the hierarchy m2
�=�

2
QCD. Now, all meson couplings are

suppressed on scales � << �QCD by factors of 1=f� where f� � �. Hence, there is another

approximate symmetry on scales m� << � << �QCD, which is classical scale invariance.

Classical scale invariance is always present when we have a hierarchy, though it may be

accidental as we have just seen.

Indeed, another profound separation of scales occurs in nature, again in QCD, which

is the smallness of the ratio �QCD=MGUT or �QCD=MP lanck. Here we have a remarkably

di�erent phenomenon in that the scale �QCD is generated by quantum mechanics itself,

1



i.e., by dimensional transmutation of the running coupling constant �s(�) into the scale

�QCD when �s(�)!1 as �! �QCD. The running of �s(�) is a quantum phenomenon,

determined to leading order in �h by the one-loop �(�s) function. It represents an explicit

breaking of scale invariance (i.e., no dilaton associated with spontaneous breaking occurs)

because the trace anomaly T �
� / �Ga

��G
a�� is large and nonzero as � ! �QCD. The

custodial symmetry in this case is the approximate classical scale invariance associated

with the limit �(�s) � 0, for pertubative values of �s(�). Indeed, in the limit of an

exact �xed point �(�s) = 0, where we have exact classical scale invariance, we have

�QCD=MP lanck ! 0.

The separation of the compacti�cation scale and the fundamental scale in extra-

dimensional models would seem similarly to involve, at least accidentally, approximate

classical scale invariance. To arrange that N can be taken arbitrarily large implies that

the theory must have a slowly running dimensionless couplng constant (remniscent of

\walking technicolor") in D = 4 on scales well below Ms, so it does appear that quantum

scale breaking e�ects are under control. However, the trace of the stress-tensor in D = 5

is nonzero classically, and the theory has explicit scale breaking, owing to the D = 5

dimensional coupling constant. The nonzero trace, T �
� / Ga

��G
a�� in D = 5 must clearly

match onto the KK masses as seen in in D = 4, since the KK masses are seen as explicit

sources of scale breaking on all scale from Mc to Ms. It is therefore quite puzzling as to

what is the custodial symmetry of a scale hierarchy in extra dimensions.

Now, we know that we can take a strongly coupled theory and tune it's coupling close

to a critical value (provided the critical value is associated with a second order phase tran-

sition). For example, in the Nambu-Jona-Lasinio model, where a four-fermion interaction

is postulated at a scale �, by tuning the coupling constant close to a critical value we can

produce boundstate scalars with masses that are arbitrarily small. Unfortunately, how-

ever, there is nothing natural about the occurence of this hierarchy. This is usually viewed

as a �ne-tuning of the coupling constant. Hence, while technically natural, there appears

to be a �ne-tuning associated with extra-dimensional theories in arranging a KK-tower

with a large number of distinct KK modes.

Having tuned a hierarchy, by analogy with critical behavior in a second order phase

transition in condensed matter physics, there must exist a wide range, or universality

class, of theories that have identical behavior in the infra-red, but are radically di�erent

in detail at the scale Ms. In the present paper we exploit universality. We treat the

physics at Ms not as a \string theory," but rather as a \transverse lattice gauge theory"
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[2]. For us, the normal 1 + 3 dimensions of space-time are continuous, but the extra

dimensions are latticized (nothing prevents us from adopting a full lattice theory, but

it is convenient for our presnt purposes to use the transverse lattice). This theory will

have a well-de�ned �nite short-distance behavior for arbitrarily large coupling and will be

manifestly gauge invariant, reecting the full gauge invariance of the higher dimensional

theory. It will have the same infra-red behavior as the usual KK-mode description, but

will illuminate how the gauge invariance is maintained.

As a result, we will understand something implicitly puzzling about KK modes. Lon-

gitudinal KK mode scattering is essentially the scattering of Nambu-Goldstone Bosons in

a nonlinear chiral Lagrangian. As such it violates perturbative unitarity, i.e., there is a

Lee-Quigg-Thacker bound on the applicability of the conformal theory. We will see that

this hapens at the scale Ms in our e�ective Lagrangian.

The main reason for desiring such a description is that it is di�cult to treat nonabelian

gauge theories in loop expansions with momentum space cut-o�s. Normally, the momen-

tum space cut-o� is not compatible with gauge invariance, and this causes the loop expen-

sion to become non-gauge invariant. However, the usual treatment of extra-dimensional

gauge theories involves a truncation on KK modes, which is a de facto momentum space

cut-o�. With gauge �elds in the bulk, a d+1 theory with d > 3 has in�nitely more gauge

invariance than the 3+1 theory since there is more space in which to perform local gauge

transformations. Clearly the gauge invariance of 3 + 1 QCD must be maintained, but

how does the expanding local gauge invariance of the theory manifest itself as the extra

dimension begins to open up with the emergence of KK modes? How does the power-law

running of the coupling constant emerge and what is the correct renormalization group

for such a description?

2 Manifestly Gauge Invariant E�ective Lagrangian

The KK modes of the vector potential of QCD, i.e., the colorons, are heavy matter �elds

and must transform linearly under the adjoint representation of SU(3) (in contrast to

the zero-mode gluon which transforms nonlinearly by the Yang-Mills gauge transforma-

tion). References [3] have argued that vector �elds in linear adjoint representations of a

local gauge group SU(m) will always contain a \hidden" local symmetry, which is a copy

of SU(m). The gluon plus one massive octet vector multiplet corresponds to the local

symmetry SU(m)� SU(m), each factor having the same coupling constant (our present
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discussion is classical; we'll worry about running couplings below). This is broken diago-

nally by an e�ective Higgs �eld, �, which transforms as a (m;m), to a local SU(m) and

an SU(m) global symmetry. Only the chiral components of � are relevent here so we can

replace � ! v exp(�a�a=2v) (we can always arrange a potential which sends the Higgs

�eld and any U(1) components to arbitrarily large mass, but we must then worry about

perturbative unitarity). The �a are eaten to give the coloron mass. Hence, in describing

one massive octet this way it is the low energy hidden local symmetry due to the spon-

taneous breaking that reects the expanded gauge invariance of the extra-dimensional

theory as the space of the extra dimension is opening up.

As experiments go to higher energies, one starts to see more KK masstive gauge

bosons. It is obvious that one requires more \hidden" local SU(3) symmetries and more

Higgs �elds as in the previous case to construct an e�ective Lagrangian to discribe these

massive gauge bosons. Hence, we propose that the e�ective Langrangian for the �rst

n KK modes would contain N SU(3)'s with N � 1 �'s. The interconnections between

the gauge symmetries and the Higgs could become completely arbitrary, and resolve into

di�erent hydrocarbon-like chain molecules.

It would seem that we can, therefore, guess the e�ective Lagrangian for N KK modes.

When an experimentalist detects the �rst KK mode of SU(3), we can describe this by

SU(3)� SU(3), each factor having a common coupling constant, with a single � � (3; 3)

\straddling" the two gauge groups. I f a second isolated KK mode is discovered we require

an SU(3)1 � SU(3)2 � SU(3)3 with two �i representations. The �i must transform

as �1 � (31; 32) and �2 � (32; 33). Indeed, up to three modes, i.e., the gluon plus

two KK modes, there is no other possibility for arranging the �i modes, which must

interconnect all of the gauge groups (unless the two modes are degenerate, as we consider

below). However, for four or more modes we require SU(3)4 and three �i and we begin to

encounter ambiguities as to how to assign the �i representations. With N modes we must

interconnect the N gauge groups pairwise with N �1 �'s, and there are 1
2
N(N �1) pairs.

The interconnections become completely arbitrary, and resolve into di�erent hydrocarbon-

like chain molecules.

We might guess that the simplest linear interconnection for N modes having �i �
(3i; 3i+1) is somehow relevant. We'll follow the organic chemistry nomenclature and call
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this an \aliphatic" (SU(3)N+1;�N ) model. The Lagrangian for this scheme is:1

L = �
NX
i=0

1

4g2
F a
i��F

i��a +
NX
i=1

D��
y
iD

��i (2.2)

Upon substituting,

�i ! v exp(i�ai�
a=2v) (2.3)

the � kinetic terms lead to a mass matrix for the gauge �elds:

NX
i=1

1

2
g2v2(Aa

(i�1)� � Aa
i�)

2 (2.4)

This mass matrix has the structure of a nearest neighbor coupled oscillator Hamiltonian.

We can diagonalize the mass matrix to �nd the eigenvalues (which corresponds to the

dispersion relation for the coupled oscillator-system):

Mn =
p
2gv sin

�
n
2

�
n =

(n� 1)�

N
; n = 0; 1; : : : ; N: (2.5)

Thus we see that for small n this system has a KK tower of masses given by:

Mn � gv�(n� 1)p
2N

n << N (2.6)

and n = 0 corresponds to the zero-mode gluon.

To match on to the spectrum of the KK modes, we require

gvp
2N

=
1

R
: (2.7)

Hence, the aliphatic system with SU(3)N and N�1 �i provides a gauge invariant descrip-

tion of the �rst n KK modes by generating the same mass spectrum. It is thus crucial to

examine the interactions from the aliphatic model.

In a geometric picture, the aliphatic model corresponds to a \transverse lattice" de-

scription of a full 4+1 gauge theory. We construct a transverse lattice in the x5 dimension

where the lattice size is R and short-distance lattice cut-o� is a, so N�1 = R=a. This is a

1A renormalizable potential can be constructed for the Higgs �elds,

V (�j) =

NX
j=1

h
�M2Tr(�2

j ) + �1Tr(�
4

j ) + �2Tr(�
2

j )
2 +M

0

det(�j)
i
; (2.1)

We can always arrange the parameters in the potential such that the diagonal components of each �j
develop a vacuum expectation value v, and the Higgs and U(1) PNGB are heavy.
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foliation of N parallel branes, each spaced by a lattice cut-o� a (Fig.(1)). On the ith brane

we have an SU(m) gauge theory denoted by SU(m)i. The SU(m)i automatically have a

common coupling constant g. Each brane SU(m)i theory can be viewed as prede�ned in

the continuum limit of a �ne-grained Wilson plaquette action, and a hypothetical 3 + 1

lattice spacing a4. The lattice spacing in the x5 dimension can be viewed as relatively

coarse with a >> a4.

The theory thus has N � 1 links in the x5 direction that are continuous functions of

x�. These correspond to the continuum limit Wilson lines:

�n(x
�) = exp

"
ig
Z (n+1)a

na
dx5A5(x

�; x5)

#
! exp

�
igaA5(x

�; (n+
1

2
)a)
�

(2.8)

The N �n therefore transform as an (m;m) representation of SU(m)n � SU(m)n+1 as

in the aliphatic model (straddling the nearest neighbor SU(m)n and SU(m)n+1 gauge

groups). �n is a unitary matrix and may be parameterized as in eq.(1.3). The theory is

a spline approximation to the con�gurations in the continuum x5 dimension.

3 Compare the Continuum Theory

(i) De�nition of the Continuum Theory

A d+ 1 (d > 3) �eld theory becomes ill-de�ned at energy scale Ms >> 1=R. Presum-

ably it matches onto a string theory atMs, and we usually refer toMs as the \string scale."

While the exact structure of the theory on scales � � Ms is unknown, its symmetries,

e.g., local gauge invariances, must remain intact at lower scales.

A Wilson transverse lattice Lagrangian is a reasonable candidate for a well-de�ned

short distance de�nition of the nonperturbative higher dimensional theory. This mani-

festly preserves local gauge invariance and permits, in principle, a nonperturbative treat-

ment. Presumably a continuum d + 1 Yang-Mills Lagrangain is an equivalent valid de-

scription below Ms. How, then, does the aliphatic (SU(3)
N+1;�N ) model match in detail

to the perturbative 4 + 1 continuum theory at lower energies, yet still above the mass of

the lowest KK mode?

We de�ne the continuum theory in 4 + 1 and expand in modes in the compact x5.

We truncate this theory after N terms. Now, momentum space truncations in Yang-Mills

theories are notoriously awkward at best. The expansion is usually done in a particular

gauge. Then, with truncation of the theory in momentum space we lose track of the full
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gauge invariance of the theory. However, we will see, remarkably, that this truncation

can be matched identically onto the aliphatic theory which is manifestly gauge invariant.

Since the aliphatic model is manifestly gauge invariant and de�ned in 3 + 1 dimensions

this completely justi�es the treatments of running coupling constants of Dienes, et. al, [5]

and Dobrescu etal. [6], and indicates how to proceed to answer more di�cult �eld theory

questions.

First, we consider a simple well-de�ned compacti�cation scheme. We de�ne QCD in

4 + 1 dimensions between two parallel branes.2. The branes are respectively located at

I: x5 = RI = 0 and II: x5 = RII = R, with a constant interbrane separation R. The

covariant derivative DM = @M + ig0ÂM , with �eld strengths ig0F̂MN = [DM ; DN ], where

the canonical mass dimension of the vector potential ÂM in 4 + 1 dimensions is 3=2, and

the coupling constant g0 must therefore have dimension �1=2.
The �ve-dimensional theory is locally gauge invariant but non-renormalizable. In

addition to the compacti�cation radius R, it is de�ned by the fundamental short-distance

cut-o� scale Ms. It is then nature to de�ne a dimensionless g by g0 = g=
p
Ms = 1=M .

The 4 + 1 Lagrangian takes the form:

L5 = �1

4
Tr(F̂MN F̂

MN); F a
MN = @MA

a
N � @NA

a
M + g0f

abcAb
MA

c
N ; (3.9)

where a is the gauge index and fabc is the structure constant.

(ii) Momentum Space Expansion and Truncation

A necessary gauge-covariant boundary conditions on the experimentalist's physical

brane is:

F 5N = FN5 = 0 ; at x5 = RI;II (3.10)

This removes unwanted gauge invariant vector �eld strengths that transform as a 4-vector

in the 3 + 1 theory. The simplest gauge choice realizing these boundary conditions is to

impose Neumann conditions for Â� with � = 0; 1; 2; 3, i.e. @Â�=@x
5 = 0, at x5 = RI;II,

and Dirichlet conditions for the 3 + 1 \scalars" Â5, i.e. Â5 = 0 at x5 = RI;II. The lowest

energy physical Â� modes are massless, independent of x5, and form the usual 3+1 gauge

�eld. We can further choose an axial gauge �AAA = 0 where �A is a 5-vector normal to

the branes. This sets A5 = 0. We will adopt this gauge choice after the momentum space

expansion.

2The ordinary spacetime coordinates are labeled by x�, � = 0; 1; 2; 3, and the �fth dimension by x5

to avoid confusion with x4 = ict; Capital letters denote the bulk coordinates, M;N = 0; 1; 2; 3; 5.
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We thus can expand the 4-vector potential Â�(x�; x5) in a Fourier cosine series,

Â� =
1p
R

"
A0
� +

p
2
+1X
n=1

An
�(x�) cos (n�)

#
; � =

�x5
R

; (3.11)

where we have suppressed the gauge index a and A0 is the n = 1 zero-mode. The �fth

component Â5(x�; x5) is given by a Fourier sine series,

Â5 =

s
2

R

+1X
n=1

An
5 (x�) sin (n�) : (3.12)

and this has no zero-mode. The coe�cients of the expansions are:

A0
� =

1

2
p
R

Z R

0
dx5ÂM(x�; x5); (3.13)

An
� =

1p
2R

Z R

0
dx5ÂM(x�; x5) cos(n�) ; n = 1; � � � ;+1

An
5 =

1p
2R

Z R

0
dx5Â5(x�; x5) sin(n�) ; n = 1; � � � ;1:

The non-tilde vector �eld An
M has mass dimension +1.

The �eld strengths read,

F̂��(x�; x5) =
1p
R

("
@[�A

0
�] +

+1X
n=1

cos (n�)@[�A
n
�]

#
(3.14)

+
gp
MsR

f

"
A0
� +

p
2
+1X
n=1

An
� cos (n�)

# "
A0
� +

p
2

+1X
m=1

Am
� cos (m�)

#)
;

Intergrating over x5 we obtain the e�ective 3 + 1 theory.

If we now impose the axial gauge A5(x�; x5) � 0, the e�ective Lagrangian after inter-

grating over x5 and truncating at the Nth KK mode takes the form:

L4 = (@�A
0
� � @�A

0
� +

gp
MsR

fabcA0
�A

0
�)

2 +
NX
n=1

(@�A
n
� � @�A

n
�)

2 (3.15)

+
2gp
MsR

fabc
NX
n=1

h
@[�A

0
�]A

n �An � + @[�A
n
�](A

0 �An � + An �A0 �)
i

+
gp

2MsR
fabc

NX
n;m;l=1

@[�A
n
�]A

m �Al ��1(n;m; l)

+
g2

MsR
fabcfade

NX
n=1

�
A0
�A

0
�A

n�An� + all permutations
�
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+
g2

2MsR
fabcfade

NX
n;m;l;k=1

An
�A

m
� A

l �Ak ��2(n;m; l; k)

+
NX
n=1

(
n�

R
)2An

�A
n�;

where the �i are de�ned as:

�1 = �(n +m+ l) + �(n+m� l) + �(n�m + l) + �(n�m� l) (3.16)

�2 = �(n +m+ l + k) + �(n+m� l � k) + �(n +m+ l � k) + �(n+m� l + k)

+�(n�m + l + k) + �(n�m� l � k) + �(n�m + l � k) + �(n�m� l + k):

The zero mode has the canonical 3 + 1 kinetic term with �eld strength:

F 0 (a)
�� = @�A

0 (a)
� � @�A

0 (a)
� + gfabcA0 (b)

� A0 (c)
� ; (3.17)

Hence, ~g � g=
p
MsR is the dimensionless low-energy 3 + 1 coupling constant. If the

truncation N =MsR on the number of the KK modes is introduced then ~g � g=
p
N .

(iii) Comparison to Aliphatic Theory

Now, consider again the aliphatic theory with the gauge structure SU(3)0�SU(3)2�
: : :� SU(3)N , where the vector potentials are A

j a
� . In addition, there are a set of chiral

�i �elds which straddle the ith and i + 1th SU(3) gauge groups. The Lagrangian takes

the form as in eq.(1.1), and the mass spectrum as in eq.(1.3). The gauge �elds Aj
� can be

expressed as linear combinations of the mass eigenstates ~An
� as:

Aj
� =

NX
n=0

ajn ~A
n
�: (3.18)

The anj form a normalized eigenvector (~an) associated with the nth n 6= 1 eigenvalue and

has the following components:

anj =

s
2

N + 1
cos (

2j + 1

2
n) ; j = 0; 1; : : : ; N; (3.19)

The eigenvector for the zero-mode, n = 1 , is always ~a1 =
1p
N+1

(1; 1; : : : ; 1). The orthorg-

onality between the eigenvectors is due to:

NX
j=0

cos (
2j + 1

2
n) cos (

2j + 1

2
m) = �(n�m)

N + 1

2
; n;m 6= 0� N (3.20)
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with n =
n�
N+1

. We can now rewrite the Lagrangian eqn.(1.1) in the mass eigenstates of

the vector bosons ( ~An
�) and derive the interactions between them.

Let us now compare the KK reduction of the �ve-dimensional theory, eqn.(3.16), and

the aliphatic (SU(3)N+1;�N) theory at the level of interactions. The masses of the KK

modes in the truncated theory are n�=R, the mass eigenstates of the SU(3)N+1 theory

have the spectrum gvn�=
p
2(N + 1), in the limit of n � N . In the aliphatic theory, as

far as the mass spectrum is concerned, there are three free parameters, namely, the gauge

coupling constant g, the total number of SU(3) groups N and the VEV of the Higgs

�eld v. The spacing of the linear mass spectrum is completely determined by the ration

between gv and N . Hence, one can arrange the parameters of the SU(3)N+1 theory to

satisfy gv=
p
2(N + 1) = 1

R
, such that the mass spectrum of the two theories matches for

n << N . The departure from linearity as n ! N is not surprising since we are then

approaching the string scale and exiting the low energy universal theory.

To compare the Lagrangian's couplings we substitute eqn.(3.18) into the gauge part

of the Lagrangian eq.(1.2):

Lgauge = �1

4

NX
j=0

(
NX
n=0

ajn@[�A
n
�] + gLf

abc
NX
n=0

NX
m=0

ajnajmA
n
�A

m
� )

2 (3.21)

We isolate the zero-mode, ~A0a
� and, using orthonormality, the kinetic terms take the

canonical form:

Lg;kin = �1

2
(@[� ~A

0
�] +

gLp
N + 1

fabc ~A0
�
~A0
�)

2 +
NX
n=1

(@[� ~A
n
�])

2: (3.22)

The trilinear gauge coupling takes the form:

Lg;3A = �1

4

X
n;m;l 6=(0;0;0)

(
NX
j=0

ajnajmajl)gLf
abc@[� ~A

n
�]
~Am � ~Al �: (3.23)

Using pairwise summations and orthogonality:

NX
j=0

ajnajmajl =

8><
>:
q

1
N+1

[�(n)�(m� l) + �(m)�(n� l) + �(l)�(n�m)] ;q
1

2(N+1)
�1(n;m; l) ; n;m; l 6= 0;

(3.24)

where �1 is de�ned previously. Similarly, the quadrilinear couplings take the form:

Lg;4A = �1

4

X
n;m;l;k 6=(0;0;0)

(
NX
j=0

ajnajmajlajk)gLf
abcgLf

ade ~An
�
~Am
�
~Al � ~Ak �; (3.25)
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with the coe�cients,

NX
j=0

ajnajmajlajk =

8><
>:

1
N+1

; two of (n;m; l; k) are zero; remaindersare equal;

1
2(N+1)

�2(n;m; l; k) ; n;m; l; k 6= 0;

(3.26)

We see that �2(n;m; l; k) is exactly the same function de�ned in the discussion of trun-

cated momentum space expansion.

Thus, we see that, de�ning the gauge coupling constant in the aliphatic theory to

satisfy g = gL=
p
N + 1 = g=

p
MsR, the couplings and Feynman rules in the two theories

agree perfectly. This completes the demonstration of the equivalence.

4 Incorporation of Fermions

The models we presented for the gauge bosons in the bulk can easily accommondate

fermions and bosons in the bulk.

Consider N + 1 fermions 	i (i = 0 � � �N), each of which is charged under the core-

sponding SU(3)i symmetry. The Higgs �elds �i which is (3; 3) under the two neighboring

SU(3) symmetries provides the nearest neighbor couplings between the fermion �elds.

The e�ective Lagarangian takes the form

Lfermion =
NX
i=0

	i;L=RD=	i;L=R +Mf

"
	i;L(

�yi+1

v
	i+1;R � 	i;R)� 	i;R(	i;L � �i

v
	i�1;L)

#
;

(4.27)

where D= is de�ned as the four dimensional covariant derivative.

One can impose di�erent boundary conditions on the left-handed and right-handed

components of the 5D fermions 	

@

@x5
	Ljx5=0;R = 0; 	Rjx5=0;R = 0; (4.28)

such that the 4D e�ective theory has one massless left-handed fermions with a tower of

massive KK modes, while all the right-handed fermions are massive. Equivalently, in our

models, the boundary conditions translate into 	0;R = 	N;R = 0 and 	L;N �	L;N�1 = 0.

As a result, in the vacuum where �i has non-zero VEV v, the mixed mass terms for the

left-handed and right-handed fermions are

Lmass = Mf

n
	0;L	1;R +

PN�1
i=1

h
	i;L(	i+1;R �	i;R)�	i;R(	i;L � 	i�1;L)

io
= (	0;L; � � � ;	N�1;L)M(	1;R; � � � ;	N�1;R)T ;

(4.29)
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where the N � (N � 1) mass matrix M takes the form

M =Mf

0
BBBBBBBBBBBB@

1 0 � � � 0

�1 1 � � � 0

� � �
0 � � � �1 1

0 � � � 0 �1

1
CCCCCCCCCCCCA
: (4.30)

To calculate the mass eigenvalues and eigenstates for the right-handed components,

one can diagonalize the (N � 1)� (N � 1) matrix M yM ,

M yM = jMf j2

0
BBBBBBBBBBBB@

2 �1 0 � � � 0

�1 2 �1 � � � 0

0 �1 2 � � � 0

� � �
0 0 � � � �1 2

1
CCCCCCCCCCCCA
: (4.31)

Therefore, the eigenvalues of the right-handed fermions are

MR;n = 2Mf sin (
n�

2N
); n = 1; 2; � � � ; N � 1: (4.32)

In terms of the mass eigenstates ~	n;R,

	i;R =

s
N

2

N�1X
n=1

sin (i
n�

N
) ~	n;R: (4.33)

The mass eigenvalues of the left-handed fermions can be calulated from the N � N

matrix MM y, which takes the following form,

MM y = jMf j2

0
BBBBBBBBBBBB@

1 �1 0 � � � 0

�1 2 �1 � � � 0

0 �1 2 � � � 0

� � �
0 0 � � � �1 1

1
CCCCCCCCCCCCA
: (4.34)

Hence, the eigenvalues of the left-handed fermions are similar to those of the gauge bosons,

Mi;L = 2Mf sin (
i�

2N
); i = 0 � � �N � 1: (4.35)

12



Hence, the left-handed fermions have a massless zero mode. The massive modes have the

same mass as those of the right-handed fermions, thus form massive vector pairs.

The eigenvectors of the LH fermions also have the same structure as that of the gauge

bosons, namely, in terms of the mass eigenstates ~	n;L,

	i;L =

s
N

2

N�1X
n=0

cos (
2i+ 1

2

n�

N
)~	n;L: (4.36)

Note that left-handed fermions have a cos expansion, while the right-haned fermions

assume a sin expansion.

In the limit that i� N , a linear massive spectrum is recovered for both right-handed

and left-haned fermions, in which Mi =Mf
i�
N
. It is well known that the masses of the KK

modes for a 5D fermion are Mi =
i�
R
, where R is the size of the �fth dimension. Hence,

by choosing Mf =
N
R
, one reproduces the linear spectrum for the KK theory.

The coupling between the fermions and the gauge �eld takes the following form in

their mass eigenstate basis,

LffA =
P

n;m;l 6=(0;0;0) gL
~	n;L

� ~A�m
~	l;L�n;m;l + gL

~	0;L
� ~A�0

~	0;L

+
P

n;m;l 6=0;N gL
~	n;R

� ~A�m
~	l;R�n;m;l;

(4.37)

in which �n;m;l is de�ned as the sum in Eq.(3.24).

One can also write down the e�ective Lagarangian for a massless complex boson in the

bulk in our frame work. Consider N+1 4D complex scalar with the following Lagrangian,

Lboson =
NX
i=0

jD��ij2 �M2
b

NX
i=1

j�i�1 � 1

v
�i�ij2: (4.38)

In the vacuum in which h�ii = v, the scalars have the mass terms �M2
b

PN
i=1 j�i�1� �ij2.

It can diagonalized by

�j =
1

N + 1

NX
n=1

ei2�nj=(N+1) ~�n; (4.39)

with the mass spectrum

Mn;b = 2Mb sin n; n = 0; 1; � � �N: (4.40)

Each level with n 6= 1 is degenerate with the level N �n, while the zero mode is a singlet.

This doubling of energy levels corresponds to the mode expension in x5 in terms of 1,

sin(knx
5) and cos(knx

5), where the sine and cosine terms are degenerate modes.
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5 Renormalization of gauge coupling constant

The spontaneously broken gauge theory (SU(3)N+1; �N ) is a renormalizable �eld theory.

Thus, we can discuss the scale dependence of the coupling strength g(�) of the unbroken

SU(3) via the radiative corrections to the triple gluon coupling, etc. In principle, this

vertex can be calculated in any order of perturbation in the full spontaneously broken

(SU(3)N+1; �N ) theory, such calculation faces the usual problem of the resummation of

large logarithms generated by the spectrum of the massive vector bosons. It is, therefore,

necessary to systemetically discuss the decoupling procedure in the evolution from high

energy scale to the low energy scale. However, the resummation of the leading logarithms

(1-loop) can be carried out with the standard renormalization group approach.

At 1-loop, the running of the gauge coupling constant g between the scales (Mn,Mn�1)

only involves the n� 1 massive modes which are lighter then Mn, as a result the running

can be described by the 1-loop � function of a SU(3)n�1 theory,

dg

d log�
= �[(n� 1)

�

4�2
] g3; (5.41)

in which � is the 1-loop RGE coe�cient of a pure SU(3) theory. Hence, given the measured

coupling constant at low energy, the gauge coupling constant at a scale � is

��1(�) = ��1(MZ)� �

4�

"
ln(

M1

MZ
) +

nmaxX
n=2

n ln(
Mn

Mn�1
) + (nmax + 1) ln(

�

Mnmax

)

#
; (5.42)

where nmax � �=M1 < nmax+1. When the series is summed up, the running of g exhibits

power law behavior,

��1(�) = ��1(MZ)� �

4�
ln(

�

MZ

)� �

4�
((nmax ln(�)� ln(nmax!)) : (5.43)

The same results are presented in Deines et al, Cheng et al [4,5]. Our calculation is

however done is a well-de�ned gauge invariant theory compared to the momentum space

truncated KK theory in which the earlier calculations are performed. In principle, we

can systemetically go beyond 1-loop to any higher orders in the renormalization group

analysis. What we ultimaetly seek is a block-spin renormalization group, or a decimation

approach more well-suited to the lattice construction [8].
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6 Further discussion and Conclusion

Suppose we had a bulk 5+1 theory. Then we would have a di�erent structure for the low

energy e�ective theory, and we would have a correspondingly di�erent lattice theory. No

longer would the theory be an aliphatic model, and would appear then as a more complex

closed structure.

The simplest case is the limit of a single plaquette in the two compact dimensions of

5 + 1, the analogue of an Eguchi-Kawai model. The low energy theory would contain the

gluon zero-mode, a doubly degenerate pair of colorons as the �rst KK modes, and a third

heavy singlet. This requires SU(m)4 with 4 �i �elds. The zero mode gluon is just the

rotational zero-mode of such a molecule. As more KK modes are excited we see that we

need a lattice structure of SU(m)NM , corresponding to N �M sites in the plane, linked

together with the corresponding chiral-Higgs �elds.

It is interesting that ultimately the lattice structure must also reect the homotopy

of the extra dimensions. If there is a \hole" in the space of the extra dimensions, there

must be corresponding nontrivial paths through the Higgs �eld links that match the

non-contractable loops in that space.

The fact that the links in the �fth dimension are in the broken phase, i.e., a chiral

Lagrangian, suggests a unitarity problem in the 4 dimensional theory. Essentially, lon-

gitudinal KK mode scattering must violate perturbative unitarity when s >� 4�v2. This

is the Lee-Quigg-Thacker bound which applies to electroweak symmetry breaking [7]. It

occurs when we lift the Higgs mass above the cut-o� scale Ms, which then decouples

from the the low energy theory. We see, however that this corresponds to energy scales

approaching Ms at which the 5-dimensional coupling constant is large. Hence the pertur-

bative unitarity violation inherent in the large coupling constant of the parent 5-d theory

is matched by the unitarity breakdown in the e�ective 3 + 1 theory.

In conclusion, We have constructed a manifestly gauge invariant description of N

KK modes for an SU(m) gauge theory in the bulk. We showed in this letter the four-

dimensional KK theory deducted from a compacti�ed �ve-dimensional SU(3) theory can

be considered as a (SU(3)N ; �N�1) theory, in which the SU(3)N gauge symmetry is

spontaneously broken to SU(3). This theory owes its structure to a transverse lattice

theory with one extra dimension. The three dimensionful parameters of the original

KK theory, the string (cut-o�) scale Ms, the compacti�cation radius R and the �ve-

dimensional gauge coupling g0 � M�1, determine the structure of the (SU(3)N ; �N�1)
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theory: N =MsR, the coupling constant of the unbroken SU(3) g � g=
q
(N) = 1=

p
MR,

and the scale V =
p
2MsM of the spontaneous symmetry breaking SU(3)N ! SU(3).

The approach maintains manifest gauge invariance. Is it possible to construct anal-

ogous e�ective Lagrangians which maintain SUSY and general covariance for yielding

KK modes of gravity? And how are the topological aspects of extra dimensional gauge

theories [6] expressed in an e�ective Lagrangian such as this?

(Note added:) Upon completion of this work the preprint of Arkani-Hamed, Cohen

and Georgi, [9], appeared which obtains essentially the identical construction. Georgi's

moose notation, used in [9], is a useful way to extend to higher dimensions such as 5 + 1

with 2 compact dimensions. The theory may be graphically represented as a \moose

lattice," and the anomaly free incorporation of fermions is automatic.
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