J& Fermilab
'

FERMILAB-Conf-01/142-T June 2001

A LEX-BASED MAD PARSER AND ITSAPPLICATIONS

O. Krivosheev', E. McCrory, L. Michelotti, D. Mokhov#, N. Mokhov, J.-F. Ostiguy
FNAL, Batavia, IL 60510, USA
P Univerdity of Illinois at Urbana-Champaign, USA

Abstract

An embeddable and portable Lex-based MAD language
parser has been developed. The parser consists of a front-
end which reads a MAD file and keeps beam el ements,
beam line data and al gebraic expressionsin tree-like struc-
tures, and a back-end, which processes the front-end data
to generate an input file or data structures compatible with
user applications. Three working programs are described,
namely, a MAD to C++ converter, a dynamic C++ object
factory and a MAD-MARS beam line builder. Design and
implementation issues are discussed.

1 INTRODUCTION

The MAD[1] lattice descriptionlanguage hasbecome the
lingua franca of computational accelerator physics. In or-
der to achieve acceptance, new codes and libraries need to
recognize lattice descriptions expressed in MAD format.
Our objectivewas[2] to produce an embeddable parser able
to read, parse and store | atti ce descriptionsin memory. The
parser had to beflexible enough to support variousformats;
in particul ar, we needed to trandate MAD input format files
into C++ files compatible with the BEAMLINE class li-
brary [3] as well as a dynamic C++ factory module com-
patible with that library.

2 DESIGN ISSUES

2.1 General Constraints

Because its grammar does not conform to the LALR(1)
conventionst, the MAD language as described in [4] is not
well-suited for parsing using standard tools like Lex and
YACC. Whileit istechnically possibleto hand-code a spe-
cialized parser, the flexibility arising from using Lex and
YACC is compelling. We therefore chose to eliminate am-
biguities by putting minor restrictions on admissible MAD
input files.

Thefirst design decision wefaced wasto select animple-
mentation language. We wanted the parser to be usable not
only with C++ class libraries, but a so asamodulelinkable
with C or Fortran. C, the least common denominator, was
chosen.

The other design decision came directly from the MAD
language definition and parser requirements. Because

*Work supported by Universities Research Association, under contract
DE-AC02-76CH03000 with the U. S. Department of Energy.

T kriol@fnal.gov

LIn brief, this means that it must be possible to tell how to parse any
portion of an input string with just a single token of look-ahead.

MAD variables, and thus beam element definitions, can be
altered at any point, the only sensible way to build a parser
isto make it atwo-stage program. The first stage, or front-
end, readsthe MAD input fileand parsesitin memory. The
second stage or back-end, generates output in asuitablefor-
mat, eg. C++. Thisdesign isvery flexible since the back-
end can be modified to support other formats or to dynam-
ically instantiate data structures (C++ factory).

2.2 Front-End

The front-end uses a lexical analyzer built with Lex (in
its Flex[5] incarnation). It recognizes MAD keywords,
identifiers, numbers, strings, and comments from regular-
expression-based rules and returns corresponding tokens
and semantic values. The parser, writtenin YACC (we are
using the Bison[6] flavor of YACC), contains the gram-
mar for MAD definitions. It recognizes those definitions
and stores them into internal data structures. Because Lex
and YACC communicate with each other viatokens, sup-
port for abbreviated keywords is an issue. For example,
HKICKER isoften shortened to HKICK. We decided not to
support shortened names and directivesgenerically. Rather,
wehandleseveral common cases separately. Any shortened
form can be handled by atering the lexical analyzer and
parser in asimple, non-intrusiveway.

Because of itstwo stage design, the parser needs to store
constants, variables, beam eement definitions and beam
line definitions in memory. In order to preserve as much
information as possible for further processing, expressions
are parsed and kept as expression trees, not as calculated
values. They can either be evaluated explicitly or appear in
thetrandated output in aform equivaent to theone used in
theorigina MAD input file.

Parser internals The MAD parser uses four tablesfor
storing constants, variables, beam element definitions and
beam lines. Since accelerator descriptions often require
thousandsof symbols, thereisarequirement to perform fast
searches. Hash tables provide O(1) performance and are
therefore used as the container for tables. C does not pro-
vide standard containers and agorithms, so we used those
provided by the Glib library[7]. The generd parser schema
is shown below.

MAD parser

Beam elements table

Congtants table Variablestable Beam linestable

name | constant* name| variable* name | beam element* name beam line*

name | constant* name | variable* name | beam element* name beam line

In each hash table, the key isthe name of the object and
thevalueisapointer to an expressiontree. Thetablesbel ow
show all these structures. N-ary trees from Glib are em-

| Constant | | Variable |
name ——
string value . _
i ; I ression
agebraic expression algebraic expressio

global line number

global line number local line number

local file number

. file name
file name
| BeamElement | [Beamiline |
name p—
Kind beam e ement list
length counter

array of parameters
global line number
local line number
file name

global line number
loca line number
file name

ployed by the parser for storing algebraic expressions used
by constants, variables, and beam elements. Doubly-linked
lists (GList pointersin Glib) are used for storing informa-
tion about the beamline elements. Finaly, arrays of point-
ers(GPtrArray pointersin Glib) are used to storecomments.

What isHandled

¢ MAD constant definitionsare parsed and stored in the
relevant table. Constants can beassigned a gebrai c ex-
pressions as well as string values. Built-in constants
from MAD (, etc.) are predefined.

e All variables with arbitrary algebraic expressions as
allowed by MAD syntax are parsed.

o All beam element definitionsare parsed, including ex-
otic ones like matrix and lump elements.

e Beamline definitions are parsed and stored, including
beamline expressions: inversion, inclusion, and repli-
cation.

o All MAD comments are preserved. Because it isim-
possible to analyze a comment, we associate a com-
ment appearing on the same line as a statement with
that statement. A full-linecomment is associated with
the statement that immediately followsit.

What IsNOT Handled

e The parser was designed for handling data definitions
only. Hence, MAD commands (e.g. TWISS) are not
interpreted with the exception of the INCLUDE com-
mand which importsdefinitionsfrom another file. Al-
though the lexical analyzer recognizes all commands,
the output is limited to a message to thelog file. The
parser can handlenested INCLUDE commands; infor-
mation about file names and local line numbersis pre-
served.

e As mentioned before, only a limited number of spe-
cific shortened directives are handled. The parser pro-
duces an error if unsupported shortened forms are en-
countered; itisusually asimplematter to substitutethe
long form using atext editor.

Implementation Details Once MAD definitions are
stored into internal data structures and before any output is
generated, several actions need to be taken: checking for
variable loops, sorting, and dependence resolutions. Con-
stants, variables, beam elements, and beam lines are sorted
according to the line number on which they were defined in
theMAD inputfile. Forward dependencies are checked and
resolved by re-arranging the order of appearance of the def-
initions. To prevent and detect circular definitions, a stan-
dard Depth-First Search algorithm is used to walk the ex-
pression trees and verify that the corresponding graphs are

acyclic.

2.3 Back-End

Once the parsing step is completed, al tables are avail-
able for further processing. Using Glib support functions,
one can wal k through the tablesto either generate output in
asuitable format (e.g. C++) or aternatively, dynamically
instanti ate objects as needed.

C++output A mgjor goal for uswasto produce a tool
that would support trandation of MAD input files into a
format suitable for the BEAMLINE[3] C++ class library.
This has been accomplished. In the BEAMLINE descrip-
tion, constants, variables, beam el ements and beamlinesare
defined in that order. This makesthe resultant C++ file eas-
ier to use and better reflects the structure of the MAD input
language. All expressionsand comments are preserved and
included in the trand ation.

Conversion Difficulties Difficulties arise in the
trandation from from MAD to BEAMLINE input for-
mat(essentially C++) because of the absence of an exact
one-to-one correspondence between MAD and BEAM-
LINE elements. Elements like ELSEPARATOR and
collimators have no direct BEAMLINE equivaent for the
moment and are replaced by drifts. Other elements are cor-
rectly represented in memory but either generate comments
in the BEAMLINE input file or are treated as instances

of placeholder classes (for example, SOLENOID). For
most elements, the generated output includes informative
comments whenever the correspondence is not exact.
Values of parameters that do not have any equivalent are
listed in these comments.

C++factory TheMAD parser modulecan aso be used
in C++ factory mode. In that case, thereis no need to pre-
serve expressions; and they are therefore evaluated. Once
execution of the first stage is completed, the code walks
through the beamline e ement table and instanti ates obj ects
for every entry. Beamlines are then instantiated and pop-
ulated with cloned (i.e. deep copies) of the previously cre-
ated elements. Beamlines objects, asdefined inthe BEAM-
LINE class library, contain pointers to beamline e ements
rather than the elements themselves. Cloning the el ements
ensures that all beamline elements are distinct. Once all
beamlines have been instantiated, the tables and the parser
itself may be destroyed.

3 MAD-MARSBEAM LINE BUILDER

The parser has been adapted to serve as a basis for the
MAD-MARS Beam Line Builder (MMBLB). This module
reads a MAD lattice file and constructs the corresponding
MARS [8] geometry to alow redlistic Monte Carlo simu-
lations of beam-induced energy deposition effects in arbi-
trary accelerator and beamline configurations. TheMMBLB
is already successfully used in applications to the Fermi-
lab Booster, Proton Driver, extraction of the Main Injector
beam to the NuMI beam line, and to the joint KEK-JAERI
project to study beam loss distributions, induced radiation
effects and design beam collimation systems. An example
of the injection-collimation region description created for
the Proton Driver isshown in Fig. 1.

4 TOOLS

Several tools were used for developing and testing the
MAD parser. The parser code was tested with the GCC
v.2.95 compiler. It should be fairly portable (it passes gcc
with -Wall options without warnings) and we expect that
compilation with any ANSI-C-compatible compiler should
not pose any problem. Thelexical analyzer was created us-
ing the GNU Flex v.2.5.4 scanner generator. It should be
fairly compatiblewith AT& T Lex but minor changesto the
input filemay berequired. Similarly, the GNU Bisonv.1.27
parser generator was used to create the parser and the in-
put file should be highly compatible with AT& T YACC.
The program can be compiled and linked using the pro-
vided makefile, which iswritten for GNU Makev.3.77. As
mentioned, the C data structuresfor storing theinformation
about MAD objects were created using the Glibv.1.2.4. li-
brary. The source code for thislibrary can befreely down-
loaded from http://www.gtk.org. The GNU tools can
be obtained from the GNU project website http: //www.
gnu.org.

-550

-1.10e+03

-1.65e+03

cm

0 1.00e+03 2.00e+03 3.00e+03 4.00e+03 5.00e5@e+03

L.

Figure1: Longitudinal view of the collimation region with
shielding as built with MmmBLB and implemented into the
MARS14.

5 CONCLUSION

The MAD parser is now functional and devel opment
continues. It was successfully tested with several very large
lattice descriptions including the Tevatron, the Recycler
Ring and the NLC. For information about the code and its
availability contact kriol @fnal .gov.

6 REFERENCES

[1] RChristoph Iselin, “The MAD program(Methodical Accel-
erator Design) Version 8.13/8", Physical Methods Manual,
CERN/SL/92, 1992.

[2] D.N. Mokhov et a.: “mMAD Parsing and Conversion Code”,
Fermilab-TM-2115, 2000.

[3] LeoMichelotti et a, MXYZPLTK/Beamline classlibrary,
http://www-ap.fnal.gov/ michelot/, 1999.

[4] Hans Grotte, F.Christoph Iselin, “The MAD pro-
gram(Methodical Accelerator Design) Version 8.13/8",
User’s Reference Manual, CERN/SL/90-13(AP), 1990.

[5] Vern Paxson, Flex, version 2.5.4. A fast scanner generator,
Free Software Foundation, 1999.

[6] Charles Donnelly and Richard Stallman, Bison, version 1.28.
The YACC-compatible parser generator, Free Software Foun-
dation, 1999.

[7]1 Now part of Free Software Foundation GNOME project,
http://wuw.gtk.org, 1999.

[8] N. V. Mokhov, “The MARS Code System User's
Guide’, Fermilab-FN-628 (1995); N. V. Mokhov and
O. E. Krivosheev, “MARS Code Status’, Fermilab-Conf-
00/181 (2000). http://www-ap.fnal.gov/IMARS/.

