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Emittance growth for the LHC beams due to head-on

beam-beam interaction and ground motion.

M.P. Zorzano†, T. Sen‡

†CERN-SL Division, Geneva, Switzerland
‡FNAL, Batavia IL 60510, USA

Abstract

The influence of ground motion on the LHC beam is estimated applying the existing theories
of particle diffusion due to a weak-strong beam-beam collision with random offset at the interaction
point. Noise at odd harmonics of the betatron frequency contributes significantly to particle diffusion.
The spectrum of the random offset, as obtained from the ground motion spectrum at the LHC site,
shows a fast fall-off with frequency and the amplitude is very small even at the first harmonic. We
find that the head-on beam-beam force in the weak-strong approximation and ground motion by
themselves do not induce significant diffusion over the lifetime of the beam.
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1 Introduction

It is known that ground vibration at frequencies higher than fm = 11 Hz will cause uncorrelated
quadrupole motion in the LHC ring1 [1, 2]. Random quadrupole oscillations create distortions of the
beam orbit and random beam-beam offset at the interaction point. The beam-beam interaction is the
main nonlinearity at high energy and will be one of the dominant sources of emittance growth when the
beams collide. Random fluctuations of the beam-beam offset at odd harmonics of the betatron frequency
can strongly enhance the diffusion rate of the beam. Our aim is to estimate the effect of ground motion
and the head-on beam-beam collision on the beam emittance.

The dynamical system under consideration is introduced in section 2. In order to evaluate the diffusion
due to random beam-beam offset it is first necessary to characterize this stochastic process. In section
3 we present the expected spectral characteristics of the orbit offset which are extrapolated from the
measured ground motion spectrum at the LHC site [3] and the amplification factor for the response of
the closed orbit [4]. The spectral density of the ground motion decays very rapidly with frequency. The
random process can be simulated as a discrete Ornstein-Uhlenbeck (OU) noise, with a given amplitude
and correlation time [5], this stochastic process is also presented in this section. The analytical diffusion
coefficients for action-variables are known [6], the results for a one dimensional model are summarized in
section 4. In section 5 we compare the analytical diffusion coefficient with the results obtained by tracking.
Knowing the diffusion coefficient, we integrate numerically the associated Fokker-Planck equation and
evaluate for an initial Gaussian distribution the emittance doubling time. In section 6 these calculations
are extended to a two-dimensional model. Finally the main conclusions of this study are summarized in
section 7.

2 Dynamical system

We consider the dynamics of a test particle whose motion is followed over N turns, assuming linear
betatron motion and a weak-strong beam-beam collision at one interaction point (in the weak-strong
approximation we only consider the influence of bunch A on bunch B, and ignore the influence of bunch
B on A). At this interaction point, the particle experiences a deflection caused by the field of a counter
rotating Gaussian beam. Our system of normalized variables in two transverse degrees of freedom is
(x, y) = (X/σx, Y/σy), (vx, vy) = (βxX′/σx, βyY ′/σy), where (X, Y ) is the position of the particle,
(σx, σy) are the nominal rms sizes and (βx, βy) the nominal betatron function. The prime denotes the
derivative with respect to the longitudinal position s, so that e.g., X′ is the slope of the horizontal
trajectory.

We assume that the coupling between the transverse planes is negligible so that the linear map from
1The length of the LHC cell is about l = 90 m and the “average” velocity of the ground waves in the LEP tunnel is

about 4000 m/s. The correlation between two probes at distance l drops to zero for a frequency such that this distance is
a quarter of wavelength fm = v/(4l). In practice the frequency dependence of the velocity leads to uncorrelated motion
beyond frequencies somewhat lower than this limit.

At very low frequencies one expects the whole ring to move coherently. In fact it has been seen that these long powerful
waves loose coherence and small blocks of the ring move independently. Their motion is not completely random, since the
two dimensional covariance function is not equivalent to that of white noise, but the average squared distance between two
of these blocks will grow linearly in time as it is expected from a typical diffusion process. This creates a drift of the closed
orbit which is usually described by the “ATL-law”. For LHC the rms orbit deformation has been estimated to be about
1% of σ per second, at most. Adequate feedback systems should compensate this rate [7, 8].
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one interaction point to the next is
x(n+ 1)
vx(n + 1)
y(n + 1)
vy(n+ 1)

 =


cos (2πQx) sin (2πQx) 0 0
− sin (2πQx) cos (2πQx) 0 0

0 0 cos (2πQy) sin (2πQy)
0 0 − sin (2πQy) cos (2πQy)




x(n)
vx(n) + ∆vx(n)

y(n)
vy(n) + ∆vy(n)

 (1)

The beam-beam kick at turn n depends on the distance from the test particle with position (x, y)
to the centroid of the counter rotating beam. The beam oscillates randomly due to the ground motion.
The position (in units of σ) of the centroid of the counter rotating beam at turn n is represented by the
random variable (ηx(n), ηy(n)) whose spectral characteristics have to simulate those of the orbit offset
spectrum. The kick due to the beam-beam interaction is(

∆vx(n)
∆vy(n)

)
= 2C

(
β∗x(x− ηx(n))/σ2

x

β∗y (y − ηy(n))/σ2
y

)
[1− exp

{
−1

2 [(x− ηx(n))2 + (y − ηy(n))2]
}

]
(x− ηx(n))2 + (y − ηy(n))2

(2)

with C = Nprp/γp, Np the number of protons per bunch in the opposing beam, rp the classical radius of
the proton, γp the relativistic kinematic factor of the protons, (β∗x, β∗y) the beta functions at the interaction
point(IP) and (σx, σy) are the rms sizes of the opposing beam at the IP.

We shall use for our study the LHC beam parameters: σ = 0.0159 mm, γp = Ep/E0, E0 = 0.93827
GeV, Ep = 7000 GeV, Np = 1.05× 1011, rp = 1.5347× 10−15 mm, β∗x = β∗y = 500 mm, which correspond
to a beam-beam parameter of ξ = 0.003355.

3 Ground motion and closed orbit spectrum

In order to evaluate the diffusion due to the combined effect of the beam-beam interaction and the random
offset we need to estimate the spectral density of the offset in the vicinity of the betatron tune.

The spectral density of the ground motion measured at 10 Hz in the LEP tunnel is Sgm = 5 ×
10−15mm2/Hz while the logarithmic slope with frequency at low frequencies is about -2.5. Assuming
that this fall-off rate continues at high frequencies, we can then expect the spectral density of the ground
motion in the vicinity of the betatron tune to be about Sgm = 10−20mm2/Hz [1]. It should be pointed
out that ground motion measurements at various accelerators show that above approximately 400Hz, the
motion is indistinguishable from electronic noise, even with the most sensitive piezo-electric accelerometers
available. Any measurable noise above a few hundred Hz has its origin in other sources including power
supplies, water flow, liquid helium flow in superconducting magnets etc. Hence approximating the ground
motion noise spectrum by a f−2.5 law over the whole range probably over-estimates the contribution of
ground-motion.

The effect of plane ground waves on the closed orbit of LHC has been studied for the collision
configuration of the LHC lattice Version 4.3 [4], using MAD for computation of the closed orbit. Selected
elements suffer vertical displacements which are computed for plane ground motion waves with given
harmonic number h and phase. The vertical amplification factor R (i.e. the ratio between the closed
orbit offset and the ground motion amplitude) is evaluated at the experimental pits for 0 ≤ h ≤ 200. R
rises quickly reaching a maximum for wavelengths of the order of the betatron wavelength. The mean
square response for LHC in the vicinity of the betatron frequency is R2 = 10.

Therefore we can estimate the spectral density of the orbit offset in the vicinity of the betatron
tune to be about So(Qbeta) = R2 × Sgm(Qbeta) = 10−19mm2/Hz. One has to keep in mind that in
addition magnet support can also enhance the motion. For instance at HERA proton ring, measurements
show an amplification factor of approximately 2 and 4 for the vertical and horizontal quadrupole motion
respectively [9].
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3.1 Modelling the stochastic process

We have seen that the orbit offset spectrum decays very rapidly with frequency, having a logarithmic
slope of -2.5. We can model these fluctuations by an OU process whose spectrum has a 1/f2 dependence
[5]. It is well known that this is the only stationary Gaussian Markov process. If η(t) is a stochastic
variable of zero mean following an OU process, then its correlation function decays exponentially with
time

K(t1, t2) ≡< η(t1)η(t2) >= |η|2e−|t1−t2|/tc (3)

where tc is the correlation time and |η| the amplitude of the fluctuations in units of σ. We measure time
in units of the revolution period Trev and it is more appropriate to label time by a discrete turn number.
It can be shown that for the discrete time process, the stochastic differential equation describing an OU
process is transformed to the following difference equation for ηn defined as

ηn+1 = (1 − 1
τc

)ηn +
√

2
τc
|η|ξn+1 (4)

where n is the number of turns, τc is the correlation time measured in number of turns, and ξ is a
Gaussian white noise process of zero mean and unit variance. The spectral density of this process is (see
Appendix A)

SOU (Q) = (|η|σ)2Trev
2π

sinhθ
(1− 1/(2τc))[cosh θ − cos (2πQ)]

(5)

where θ = − ln(1 − 1/τc). The fall in noise power with increasing frequency is characterized by the
correlation time τc. For instance for a correlation time τc = 100 (in units of turns), SOU (0.28)/SOU(0) ≈
4× 10−5 which is similar to the expected ratio in the LHC offset spectrum So(Qbeta)/So(10) ≈ 2× 10−5.

A discrete OU process with oscillation amplitude of |η| = 10−4 (in units of σ) and correlation time
τc = 100 (turns) has a spectral density at Qβ = 0.28 of about 10−19mm2/Hz which is the expected
spectral density of the orbit offset in the vicinity of the betatron tune.

4 Analytical evaluation of the diffusion coefficient

In this section we will consider the theoretical predictions for the one degree of freedom case. This
has been analytically studied, in the case of tunes far from resonances, using action angle variables

(x =
√

2Jxβ∗

σ cosψx, vx = −
√

2Jxβ∗

σ sinψx ) [5, 6]. For completeness, we include the details of the deriva-
tion here.

The 1D Hamiltonian is

H = QxJx + U(x)δp(θ) (6)

where θ is the azimuthal variable. U(x) is the beam-beam potential that can be expressed as a Fourier
series

U(x) = C
∞∑
k=0

Uk(a) cos (2kψx) (7)
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Uk =
∫ a

0

1
w

[δ0k − (2− δ0k)(−1)ke−wIk]dw (8)

a =
β∗Jx
2σ2

, (9)

with Ik the modified Bessel functions. The one turn map in action angle variable to first order in the
beam-beam parameter reads

∆ψx = 2πQx +
∂U

∂Jx
(10)

∆Jx = − ∂U

∂ψx
(11)

For small closed orbit offsets η, we can expand the potential in a Taylor series

U(Jx, ψx) = U(x) + U ′(x)η + O(η2) (12)

f(Jx, ψx) ≡ U ′(x) =
∂Jx
∂x

∂Ux
∂Jx

+
∂ψx
∂x

∂Ux
∂ψx

(13)

= C
∞∑
k=0

Gk(Jx) cos ((2k + 1)ψx)

where Gk are the Fourier coefficients of the beam-beam force given by

Gk(a) =
√
a

σ
(U ′k+1 + U ′k) +

1√
aσ

((k + 1)Uk+1 − kUk) (14)

(15)

We wish to calculate the change in action due to the fluctuating offset alone, given that we know that
in the absence of fluctuation the change in action is negligible. To first order in η the change at turn m
is

∆Jx(m) = − ∂

∂ψx
f(Jx(m), ψx(m))η(m). (16)

If J(0) is the initial value of the action of a particle and J(N) the particle action at turn N , the total
change at turn N is obtained by summing over all previous turns

∆J2
x(N) = (J(N) − J(0))2 (17)

=
N−1∑
l=0

N−1∑
m=0

∂

∂ψx(l)
f(Jx(l), ψx(l))

∂

∂ψx(m)
f(Jx(m), ψx(m))η(l)η(m)

The diffusion coefficient is defined as

Doff(J) = lim
N→∞

< (J(N)− J(0))2 >

N
(18)

where the average is over many noise realizations. Extracting the dominant terms, and introducing the
correlation function of the offset K(n)

< η(l)η(n + l) >= σ2K(n) (19)

one gets

lim
N→∞

∆J2
x(N) = N

1
8
C2σ2

∞∑
n=−∞

∞∑
k=0

(2k + 1)2G2
k cos[(2k + 1)ψn]K(n) (20)
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Hence the diffusion coefficient due to collisions at a single IP is

Doff(Jx) =
πC2σ2

4Trev

∞∑
k=0

(2k + 1)2G2
k(a)Soff [(2k + 1)Qx] (21)

In the expression for the diffusion coefficient, Soff [(2k+1)Qx] is the spectral density of the fluctuating
offsets at odd harmonics of the betatron frequency.

When the noise is described by an Ornstein-Uhlenbeck process, the expression can be simplified to

DO−U
off (Jx) =

1
8

(Cσ|η|)2 sinh θ
[1− 1/(2τc)]

k=∞∑
k=0

(2k + 1)2G2
k(a)

cosh θ − cos [2π(2k+ 1)Qx]
(22)

Assuming that the fluctuating offsets at the two IPs are uncorrelated, we may infer that the diffusion
coefficients at two IPs add in quadrature. We assume that the amplitude and spectral characteristics of
the offsets are similar at the two IPs so the effective diffusion coefficient from collisions at two IPs is

√
2

times that given by Equation (22).

5 Diffusion coefficient and emittance growth

The parameters of the random process are set to τc = 100 and |η| = 0.01. Notice that the amplitude of
the random offset |η| is 102 times stronger than the one expected at the site of the LHC ring. We have
chosen this strong noise in order to get a stronger diffusion in the tracking simulation. Since the diffusion
coefficient scales with |η|2 for a realistic parameter we expect the diffusion coefficient Doff(J) to be 104

times smaller.
In Fig. 1-left we show the diffusion coefficient Doff(J) of Eq. (22), evaluated with these parameters,

as a function of x =
√

2βJ

σ and for different values of the nominal tune Q. The diffusion rate for particles
with amplitudes less than 1σ seems to be independent of the tune for the four tunes studied. For particles
with amplitudes bigger than 1 σ the diffusion rate depends strongly on the tune.

In Fig. 1-right, we compare this analytical expression with the diffusion rate obtained from tracking
for the cases Q = 0.28 and Q = 0.32. We follow the dynamics of a set of 50 initial conditions with action
J0 and random angle ψ (distributed with a random uniform distribution in [0, 2π]), subject to the one
dimensional version of the maps (1) and (2) and the OU process of Eq. (4). We evaluate the diffusion
coefficient as defined in Eq. (18) in the limit of N = 107 turns. The effects of resonances have not
been included in the analytical expression. In the simulations, effects which break the symmetry of the
beam-beam force, such as constant offsets between the beams, are not included. Hence only even order
resonances driven by the beam-beam interaction can be observed in the simulation. None of the tunes
chosen are close to an even low order resonance so we presume that the emittance growth we observe is
not driven by resonances. For the case of Q = 0.32 the tune is close to the third order resonance and this
in practice could lead to a stronger diffusion rate due to effects which drive this resonance.

Particle diffusion in amplitude causes emittance growth over the period of stored beam (typically 24
to 30 h). The emittance evolution can be followed by solving the Fokker-Planck equation. Assuming that
the diffusion in action is a Markov process and the drift coefficient is half the derivative of the diffusion
coefficient (as is usually the case for a Hamiltonian system [10]), the density distribution ρ(J) evolves
according to the Fokker-Planck equation

∂ρ(J)
∂t

=
1
2
∂

∂J

(
D(J)

∂ρ(J)
∂J

)
. (23)
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Figure 1: Diffusion coefficient due to beam-beam interaction and random offset. Horizontal axis particle
amplitude in units of σ, vertical axis diffusion coefficient in units of [(mm-mrad)2/turn]. Left: diffusion
for different nominal tunes. Right: comparison with tracking. The lines are the diffusion coefficient as
evaluated from the analytical expression (22). Crosses are the tracking results for Q = 0.28 and pluses
the tracking results for Q = 0.32. Theory and simulation are in perfect agreement.

with D(J) = Doff
√

2 being the effective diffusion coefficient due to head-on collision with random offset
at the two IPs.

We integrate this one-dimensional Fokker-Planck equation using a finite-difference implicit scheme,
with absorbing boundary at the action corresponding to Jmax = 10σ and reflecting boundary at J = 0
[11]. The initial beam distribution in phase space is

ρ0(x, vx) = A × exp
(
−(x2 + v2

x)
2

)
(24)

where vx = β∗x′ and x and x′ are in units of σ and A is a normalization constant. In terms of the action
J = (x2 + v2

x) σ
2

2β∗ the initial density is

ρ0(J) =
1

2J0
× exp

(
− J

2J0

)
(25)

with J0 = σ2

2β∗ and
∫∞

0
ρ0(J)dJ = 1.

The average action over the beam distribution is a measure of the beam emittance. It is given by the
expression

〈J〉 =
∫ Jmax

0

Jρ(J)dJ. (26)

We integrate the evolution of the density over 30 h. In Fig. 2 we show the relative emittance growth
for different tunes. The emittance doubling time for η = 0.01 and τc = 100 is about 6 hours for Q = 0.32,
16hours for Q = 0.31, 40 hours for Q = 0.28 and 60 hours for Q = 0.23.
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Figure 2: Relative growth of the average action (< J > − < J0 >)/J0 as a function of time for different
betatron tunes. The emittance doubling time for these parameters is about 6 hours for Q = 0.32, 16 for
Q = 0.31, 40 hours for Q = 0.28 and 60 hours for Q = 0.23.

Notice that the emittance growth is greater for Q = 0.32 and Q = 0.31 since the diffusion coefficient
for particles in the core of the Gaussian distribution (region 1− 3σ) is stronger.

One can conclude that the spectral density of offset fluctuations at frequencies in the range of betatron
frequencies must be below 10−16mm2/Hz in order to keep the emittance doubling time to more than 1
day.

We can extrapolate this result to the case of random offset with amplitude |η| = 10−4 (diffusion
coefficient 104 smaller). For the LHC parameters, with nominal tune Q = 0.32 and using the weak-strong
approximation for the head-on beam-beam interaction, we expect an emittance doubling time of about
6× 104 hours.

A strong-strong beam-beam collision by itself is enough to excite size fluctuations which induce a
much stronger diffusion. For instance for a particle with initial amplitude x = 1 (in units of σ) and
random OU offset caused by ground motion with amplitude |η| = 10−4 the weak-strong approximation
predicts a diffusion coefficient of D ≈ 5×10−21mm-mrad2/turn which is four orders of magnitude smaller
than the diffusion due to the variations in the size induced by the strong-strong interaction of the two
beams: D ≈ 5 × 10−17(mm-mrad)2/turn (evaluated for the SSC parameters Q = 0.285, ξ = 0.0021).
These results were found in a self consistent way, solving the linearized Vlasov equation by the method
of characteristics [12].

The transverse blow-up of the emittance due to dipole errors generated by the uncorrelated motion of
quadrupoles along the circumference is also much faster. It has been estimated that in order to keep the
growth rate associated with these errors below 40 hours the ground motion spectrum should be smaller
than 10−18mm2/Hz [1].

Finally, the long range interactions have not been included in this calculation. For the LHC, the
long range interactions dominate the head-on in determining the tune shifts at large amplitude and
dynamic aperture. Orbit fluctuations induced by ground motion will probably have a stronger effect on
the emittance growth when the long range collisions are included.
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6 Two-dimensional case

This approach can be extended to a two dimensional model of the beam with x =
√

2β∗xJx
σx

cos φx and

y =
√

2β∗yJy

σy
cosφy. Let us express the beam-beam potential as a two-dimensional Fourier series

U(x, y) = C
∞∑
k=0

∞∑
l=0

Uk,l(Jx, Jy) cos (2kφx) cos (2lφy) (27)

where the coefficients are

Uk,l(Jx, Jy) = 4
∫ ∞

0

dq

(2σ2
x + q)1/2(2σ2

y + q)1/2
(−1)(k+l+1)e−(wx+wy)Ik(wx)Il(wy) (28)

U0,l(Jx, Jy) = 2
∫ ∞

0

dq

(2σ2
x + q)1/2(2σ2

y + q)1/2
(−1)(l+1)e−(wx+wy)I0(wx)Il(wy) (29)

Uk,0(Jx, Jy) = 2
∫ ∞

0

dq

(2σ2
x + q)1/2(2σ2

y + q)1/2
(−1)(k+1)e−(wx+wy)Ik(wx)I0(wy) (30)

U0,0(Jx, Jy) =
∫ ∞

0

dq

(2σ2
x + q)1/2(2σ2

y + q)1/2

(
1− e−(wx+wy)

)
I0(wx)I0(wy) (31)

wx =
β∗xJx

2σ2
x + q

, wy =
β∗yJy

2σ2
y + q

. (32)

We assume that the offset fluctuations can be described by a stationary random process and that the
fluctuations in the horizontal and vertical planes are independent. Thus the correlation functions are

Kxx(n) ≡ 〈ηx(0)ηx(n)〉, Kyy(n) ≡ 〈ηy(0)ηy(n)〉, (33)
Kxy(n) ≡ 〈ηx(0)ηy(n)〉 = 0 = Kyx(n)

We define the two-dimensional diffusion coefficients

DJ
x, off(Jx, Jy) = lim

N→∞

< (Jx(N)− Jx(0))2 >

N
, (34)

DJ
y, off(Jx, Jy) = lim

N→∞

< (Jy(N) − Jy(0))2 >

N
(35)

A calculation similar to that in the one degree of freedom case shows that [13]

DJ
x, off =

1
4

(Cσx)2
k=∞∑
k=0

∞∑
l=0

(2k + 1)2F 2
kl

∑
n

Kxx(n) cos[2π(2k + 1)Qxn] cos[4πlQyn]

+
1
4

(Cσy)2
k=∞∑
k=0

∞∑
l=0

(2k)2G2
kl

∑
n

Kyy(n) cos[4πkQxn] cos[2π(2l+ 1)Qyn] (36)

DJ
y, off =

1
4

(Cσy)2
k=∞∑
k=0

∞∑
l=0

(2l+ 1)2G2
kl

∑
n

Kyy(n) cos[4πkQxn] cos[2π(2l+ 1)Qyn]

+
1
4

(Cσx)2
k=∞∑
k=0

∞∑
l=0

(2l)2F 2
kl

∑
n

Kxx(n) cos[2π(2k+ 1)Qxn] cos[4πlQyn] (37)
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When the noise is described by an Ornstein-Uhlenbeck process, the above expressions can be written as

DJO−U
x, off =

1
4

(Cσx|ηx|)2 sinh θx
[1− 1/(2τc,x)]

k=∞∑
k=0

∞∑
l=0

(2k + 1)2F 2
kl(A

+
kl(θx) +A−kl(θx))

+
1
4

(Cσy|ηy|)2 sinh θy
[1− 1/(2τc,y)]

k=∞∑
k=0

∞∑
l=0

(2k)2G2
kl(B

+
kl(θy) +B−kl(θy)) (38)

DJO−U
y, off =

1
4

(Cσx|ηx|)2 sinh θx
[1− 1/(2τc,x)]

k=∞∑
k=0

∞∑
l=0

(2l)2F 2
kl(A

+
kl(θx) +A−kl(θx))

+
1
4

(Cσy|ηy|)2 sinh θy
[1− 1/(2τc,y)]

k=∞∑
k=0

∞∑
l=0

(2l+ 1)2G2
kl(B

+
kl(θy) +B−kl(θy)) (39)

A±kl(θ) =
1

cosh θ − cos [2π((2k+ 1)Qx ± (2l)Qy)]
(40)

B±kl(θ) =
1

cosh θ − cos [2π((2k)Qx ± (2l+ 1)Qy)]
(41)

The F,G coefficients are expressed in terms of the Fourier harmonics Uk,l as

Fkl =
1√
2β∗

[√
Jx(Uk+1,l;Jx + Uk,l;Jx ) +

1√
Jx

((k + 1)Uk+1,l − kUk,l)
]

(42)

Gkl =
1√
2β∗

[√
Jy(Uk,l+1;Jy + Uk,l;Jy ) +

1√
Jy

((l + 1)Uk,l+1 − lUk,l)
]

(43)

F0l =
1√
2β∗

[√
Jx(U1,l;Jx + 2U0,l;Jx ) +

1√
Jx
U1,l

]
(44)

Gk0 =
1√
2β∗

[√
Jy(Uk,1;Jy + 2Uk,0;Jy) +

1√
Jy
Uk,1

]
. (45)

where Uk,l;Jx ≡ ∂Uk,l/∂Jx etc. As in the one degree of freedom case, the diffusion is enhanced near the
odd harmonics of the betatron tunes.

The corresponding Fokker-Planck equation reads

∂ρ(Jx, Jy)
∂t

=
1
2
∂

∂Jx

(
DJx(Jx, Jy)

∂ρ(Jx, Jy)
∂Jx

)
+

1
2
∂

∂Jy

(
DJy(Jx, Jy)

∂ρ(Jx, Jy)
∂Jy

)
. (46)

with DJx(Jx, Jy) =
√

2DJ
x, off and DJy(Jx, Jy) =

√
2DJ

x, off to consider collisions at two IPs.
In a pessimistic approximation we assume the horizontal ground motion spectra and response factor

to be the same as in the vertical plane. In Fig. 3 we see the new diffusion coefficients evaluated from Eqs.
(38,39) using in each plane the same parameters of the one dimensional model. The betatron tunes are set
to Qx = 0.31, Qy = 0.32 which is one of the proposed working points for LHC. We observe that diffusion
in Jx has a weak dependence on the vertical amplitude, and similarly DJy has a weak dependence on Jx.

Integrating the Fokker-Planck Eq. (46) with an initial Gaussian distribution, absorbing boundaries at
the action corresponding to 10σ and reflecting boundaries at J = 0 and assuming the same parameters
for both planes (this is a pessimistic approximation since the ground motion will have mainly an effect
on the vertical plane) we evaluate the relative increment of the mean action in each plane as a function
of time, see Fig. 4. The emittance doubling time is about 11 hours for the horizontal plane and 5 hours
for the vertical plane. For realistic offset amplitudes of |ηx| = |ηy| = 10−4 (in units of σ), we expect an
emittance doubling time of 11× 104 hours horizontally and 5× 104 hours vertically.
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Figure 3: Diffusion coefficient in the two-dimensional case. Left: DJx, off(Jx, Jy), right: DJy, off(Jx, Jy).

Vertical axis: diffusion rate in [(mm-mrad)2/turn], x and y are, respectively, the horizontal and vertical
particle amplitudes in units of the rms beam size.

7 Conclusions

We have estimated the influence of ground motion on the LHC beam applying the theory of particle dif-
fusion induced by the beam-beam head-on collision with random offset at the interaction point. We have
found that the analytical expression of the one dimensional diffusion coefficient is in perfect agreement
with the results of tracking. These calculations have been extended to a two-dimensional model. In these
calculations we have used an Ornstein-Uhlenbeck spectrum for the noise. However the theory developed
can also be applied to a measured noise spectrum by direct use of the expressions (36) and (37) which
require a knowledge of the correlation functions.

We have integrated the Fokker-Planck equation in a one- and two-dimensional case predicting for the
LHC beam an emittance doubling time of about 5×104 hours forQ = 0.32. In order to keep the emittance
doubling time larger than 1 day the spectral density of the offset fluctuations in the neighbourhood
of the betatron frequency should be below 10−16mm2/Hz which is three orders of magnitude below
the expected density. We conclude that, under the weak-strong approximation and considering only
head-on collisions, the ground motion alone has a negligible influence on the emittance of the beam.
Several factors not included in this calculation may increase the emittance growth rate beyond the above
estimates. As already mentioned, the several long-range interactions and ground motion may increase
the emittance growth. In addition, machine nonlinearities and other effects which drive the nearby third
order resonances have not been included. These can also be expected to have an impact on the observed
emittance growth.
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as a function of time. Evaluated using a two-dimensional model with Qx = 0.31 and Qy = 0.32
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Appendix A: Discrete time Ornstein-Uhlenbeck process

The difference equation describing the discrete O-U process at turn n is

Γn+1 = (1− 1
τc

)Γn +
√

2
τc
ξn+1 (A.1)

where Γ is the random variable obeying the O-U statistics, ξ is a Gaussian distributed random variable
with zero mean and unit variance and τc is a (dimensionless) correlation time measured in numbers of
turns. Writing

α = 1− 1
τc
≤ 1 , zn =

√
2
τc
ξn , 〈znzm〉 =

2
τc
δnm (A.2)

we have
Γn = αΓn−1 + zn (A.3)

By definition Γ0 = z0. Iterating backwards in time

Γn = α2Γn−2 + αzn−1 + zn

= αnΓ0 + αn−1z1 + αn−2z2 + . . .+ zn =
n∑
j=0

αjzn−j (A.4)

Using the relations in Equation (A.2), the correlation function is

〈ΓnΓn+m〉 =
n∑
j=0

n+m∑
k=0

αj+k〈zn−jzn+m−k〉

=
2
τc
αm

1− α2(n+1)

1− α2
(A.5)

Particular cases of this are
〈Γ0Γm〉 =

2
τc
αm, 〈Γ2

0〉 =
2
τc

= 〈z2
0〉 (A.6)

The stationary limit of the correlation function is obtained by taking the limit n→∞. We find

K(m) ≡ lim
n→∞

〈ΓnΓn+m〉 =
2
τc

αm

1− α2
=

(1− 1
τc

)m

1− 1
2τc

=
exp[m ln(1− 1

τc
)]

1− 1
2τc

(A.7)

where m > 0.
The spectral density is the Fourier transform of the correlation function.

S(ω) =
1

2π

∫ ∞
−∞

e−iωtK(t)dt (A.8)

When the process is sampled at discrete intervals of some sampling time Tsample, we have t = nTsample
and the spectral density is written as the discrete time Fourier transform,

S(ω) =
Tsample

2π

∞∑
n=−∞

K(nTsample) exp{−i[nωTsample]} (A.9)

When K(m) is an even function, as in our case, this can be replaced by

S(ω) =
Tsample

2π

[
1 + 2

∞∑
n=1

K(n) cos(nωTsample)

]
(A.10)
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Let r represent the ratio r = Tsample
Trev

. Substituting the first expression for the correlation function from
Eq. (A.7),

S(2πfrevQ) =
Tsample

πτc(1− α2)

[
1 + 2

∞∑
n=1

αn cos(2πrQn)

]

=
Tsample
πτc

1
[1− 2α cos(2πrQ) + α2]

(A.11)

Another expression is obtained by substituting the last expression for the correlation function from Eq.
(A.7),

θ = − ln (1− 1/τc), K(m) =
exp (−mθ)
(1− 1/2τc)

(A.12)

S(2πfrevQ) =
Tsample

2π(1− 1/2τc)
sinh θ

cosh θ − cos (2πrQn)
(A.13)

The correlation time τc is measured in units of the sampling time Tsample. If the sampling time is the
revolution period Trev, then r = 1 in the above expressions.
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