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ABSTRACT

N-body + hydrodynamic simulations of galaxy clusters are used to demonstrate a correlation between
galaxy cluster mass and the strength of the Sunyaev{Zel'dovich (SZ) e�ect induced by the cluster.
The intrinsic scatter in the correlaton is larger than seen in the cluster mass | X{ray temperature
correlation, but smaller than seen in the correlation between mass (or temperature) and X{ray luminosity,
as expected. Using the convergence to self{similarity of cluster structure at larger radii, a simple area{
averaged SZ value derived from mock SZ maps also correlates well with mass; the intrinsic scatter in
this correlation is comparable to that seen in simulations for the mass | temperature correlation. Such
a relation may prove a powerful tool for estimating cluster masses at higher redshifts.

Subject headings: Galaxies-clusters, cosmology-theory

1. MOTIVATION

Correlations between galaxy cluster mass and observ-
ables such as X{ray luminosity Lx or temperature T are
used extensively to probe cosmology. For instance, the
abundance of clusters as a function of temperature has
been used to constrain the normalization of the power
spectrum of primordial 
uctuations, �8, while searches for
evolution in the cluster X{ray luminosity function have
been employed to argue for values of the cosmological den-
sity parameter 
0. Theoretical models such as the Press{
Schechter (Press & Schechter 1974) formalism character-
istically provide the abundance of clusters as a function
of the cluster mass. The use of temperature or luminos-
ity functions to constrain the parameters in the theoret-
ical model therefore depends upon a relation between T
or Lx and mass. Theoretical arguments and cluster sim-
ulations indicate that temperature and X{ray luminosity
should have a power law dependence on mass, while ob-
servations of cluster abundances and correlations between
observables are consistent with such simple power law re-
lations holding true for galaxy clusters.

A comparatively new tool for investigating clusters is
provided by observations of the Sunyaev{Zel'dovich (SZ)
e�ect (Sunyaev & Zel'dovich 1972; Birkinshaw 1998) |
the distortion in the cosmic microwave background spec-
trum produced by Compton upscattering of microwave
background photons by electrons in the hot intraclus-
ter medium (ICM). The SZ e�ect has two properties
that make it particularly interesting for examining high{
redshift systems. First, the signal strength is not attenu-
ated by redshift, in contrast with X{ray 
ux. Second, for
clusters of �xed mass, self{similar scaling relations predict
a strong positive evolution with redshift. Since observa-
tions of X{ray temperature, X{ray surface brightness, and
the SZ e�ect depend upon the density and temperature
structure of cluster gas in di�erent ways, the SZ e�ect
gives a complimentary probe of the state of the ICM.

An interesting question is whether the strength of the

SZ e�ect correlates with cluster mass, as is expected of
T or Lx. A simple argument reproduced below suggests
that such a correlation should also be present; veri�ca-
tion of this would provide a consistency check upon the
simple theoretical models used to describe clusters. Fur-
thermore, accurate X{ray temperature determinations be-
come harder with increasing redshift. As the strength of
the SZ signal is redshift{independent, and as clusters of a
�xed mass produce a stronger e�ect at higher redshift, a
correlation between SZ signal and mass yields a powerful
method for estimating cluster masses at redshifts beyond
those currently probed by X{ray temperature estimates.

In this Letter, we use simulated clusters to examine the
relation between cluster mass and the SZ e�ect. We con-
struct mock SZ images of the simulated clusters, extract
SZ observables, and examine correlations with mass as
well as scatter about the correlations. We �nd that the
central SZ signal exhibits the expected self{similar scaling
with mass in these simulations, with a scatter signi�cantly
smaller than is seen in simulated Lx{M relations or the
observed cluster Lx{T relation. We will also note that a
simple area{averaging of the SZ signal reduces the disper-
sion to a level near that expected from the cluster X{ray
temperature. Some concerns about applying this result,
as well as directions for future study, will be described at
the end.

2. MODELS

The simulated clusters were produced using the N{body
+ hydrodynamic code P3MSPH; both the simulation code
and analysis techniques are described in Evrard (1990).
Each simulation run produced an individual cluster, with
initial conditions drawn from the 
 = 1, 
b = 0:1,
h = 0:5 (assumed throughout this paper), �8 = 0:6
cold dark matter model using the constrained{realization
technique of Bertschinger (1987). The clusters simulated
ranged in mass from 8� 1013 to 1:1� 1015M�, with ICM
temperatures between 0:7 and 4:3 keV. A total of 65536
particles were used in each simulation, half in dark matter
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2 The Cluster SZ | Mass Correlation

and half in baryons. The fractional mass resolution was
comparable amongst the simulated clusters, with around
3500 gas particles typically residing in the cluster at z = 0.
A total of 73 simulated clusters were produced in this
fashion. The �nal, z = 0 con�guration of each simu-
lated cluster was then \imaged" in the SZ by producing
a pixel map of values of the Compton y{parameter, each
pixel's value constructed by a line{of{sight pressure inte-
gral through the simulated cluster. For each run, an SZ
map was produced in three orthogonal directions; this pro-
duced a total of 219 maps. In extracting a central value
for the y{parameter, y0, the cluster \center" is de�ned by
the projected location of the bottom of the cluster poten-
tial well, which traces well the projected location of the
maximum value of the y{parameter.

3. THE CLUSTER Y{M RELATION

The Compton y{parameter induced by upscattering of
microwave background photons along a line of sight `
through the cluster is given by

y =

Z
ne

�
kT

mec2

�
�Td`: (1)

This equation can be used to derive a self{similar scal-
ing relation for clusters which are near isothermality when
density{weighted. Writing the density in terms of the
background density ��, expressing length scales in terms
of the radius r� at some �xed overdensity �, and factoring
out the temperature, we have

y / �� r�T

Z �
�gas
��

�
d

�
`

r�

�
: (2)

If clusters are self{similar, then the integral produces
a number which is identical for clusters of any mass
(Navarro, Frenk & White 1995; Metzler 1995; Metzler &
Evrard 1998), and varies only with the choice of line of

sight. With M = ��� (4�=3) r3� , �� / (1 + z)3, and the

virial scaling T / M2=3 (1 + z), we have

y / M (1 + z)3 : (3)

This yields the scaling, with mass and redshift, of the y{
parameter induced along a line of sight with a 2{D radius
equal to the 3{D radius of some �xed �ducial overdensity;
the constant of proportionality depends upon the overden-
sity in question. In particular, the values of the SZ central
temperature decrement should scale in this fashion.

Do the simulated clusters obey this relation? We have
219 pairs of y0 and mass within an overdensity of 200 with
which to test the relation; the results are plotted in Figure
1. The best{�t power law relation is plotted as a solid line;
the best{�t power law slope is 0:98� 0:04, well in agree-
ment with the theoretical expectation, Eq. (3). Demand-
ing Eq. (3) be exactly correct yields a best{�t coe�cient
of proportionality which is not signi�cantly di�erent from
that found in the general power{law �t.

While the success of the expected scaling law is quite
striking, the small scatter about the mean relation is also
of note. Modelling the distribution of possible values of the

Fig. 1.| Mass within an overdensity of 200 versus central y{
distortion, for the 219 simulated cluster observations in the dataset.
Each point marks an observation. A solid line marks the least{squares

best{�t to a power law, y0 = 10�4:4�0:7
�
M=1015M�

�0:98�0:04
. A

linear relation, expected by theory, is not signi�cantly di�erent; forcing
a �t to a linear relation produces the same coe�cient, and the dashed
line on the �gure marking this relation cannot be distinguished from the
solid line.

y{parameter for a cluster of a given mass as log{normal,
the simulated data show a dispersion of � = 0:15 in logy0.
While larger than the scatter predicted by simulations
for the T{M relation (Evrard, Metzler & Navarro 1996,
hereafter EMN), this dispersion is signi�cantly smaller
than the scatter predicted by the luminosity{mass rela-
tion observed in simulations (Metzler 1995), and observed
in the luminosity{temperature correlation for X{ray clus-
ters (Arnaud & Evrard 1998).

The magnitude of the intrinsic scatter about the mean
SZ{mass relation is important. Since the predicted abun-
dance of clusters falls with increasing mass, the net e�ect
of such scatter is to arti�cially populate the \bright" end
of the abundance function. In other words, such an intrin-
sic scatter would make the real universe appear to have
more high{mass clusters than are actually present. Since
the high{mass end of the the cluster abundance function
also contains most of the cosmological constraining power,
a large intrinsic dispersion in the correlation of an observ-
able with mass makes using the cluster abundance to con-
strain cosmological parameters extremely di�cult. Most
e�orts to construct the cluster abundance include an at-
tempt to correct for this. However, an accurate correction
requires an understanding of the intrinsic dispersion in the
correlation with mass, which has not been available.

Consequently, the comparatively small scatter suggests
that the SZ central decrement is a much more robust ob-
servable to use in constructing an abundance function than
X{ray luminosity. If this result holds at higher redshift as
well, then along with the redshift{independence of the SZ
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signal, and the expected self{similar scaling of the SZ sig-
nal strength with redshift at �xed mass, we can expect a
large dataset of measurements of the SZ central temper-
ature decrement to yield a much better estimate of the
high{redshift cluster abundance.

4. THE CLUSTER hY iA{M RELATION

Cluster entropy pro�les drawn from simulations such
as used here typically exhibit self{similar behavior out-
side of the cluster core, but a dispersion in scaled en-
tropy values in the center of the cluster. Observations
suggest such a dispersion in central entropy states, as we
can demonstrate. First, note that the cluster luminosity{
temperature relation is both theoretically and empirically
well{described by a power law, Lx / T�. Second,
the fact that most emission originates from the cluster
core allows us to approximate the X{ray luminosity by
Lx / n20 T

1=2 r3c , where n0 is the central gas density and
rc is the cluster X{ray core radius. Equating, we can solve

for the quantity s0 = T=n2=30 , which is simply related to
the entropy by s = log s0; we obtain

s0 / rc T
(7�2�)=6: (4)

If the relation between central entropy and cluster mass
had little intrinsic scatter, then the tight mass|temperature
relation would imply a small dispersion in observed values
of cluster X{ray core radius at a given X{ray tempera-
ture. In other words, we should see a tight relation be-
tween X{ray core radius and X{ray temperature; this is
contradicted by observations (Mohr 1998; Mushotzky 1998
1998). At �xed temperature, thus mass, there is a wide
range of observed core radii, and thus by inference central
entropy states.

Therefore, the result that the magnitude of the scatter
in the cluster y|M relation lies between that of the T{
M and Lx{M relations is not surprising. While the T{M
relation is expected to be tight (EMN), as the gas speci�c
energy is determined by the potential the gas falls through,
the dispersion in central entropy noted above results in a
dispersion in central gas density values. The y{parameter
depends upon an integral of the gas density along the line
of sight, so such an intrinsic dispersion introduces scatter
in the correlation with mass. However, the X{ray emission
depends upon an integral of the square of the density;
the intrinsic scatter in the luminosity|mass relation is
correspondingly larger.

That the gas density (and thus gas entropy) appears in
simulations to converge to self{similar behavior at larger
radii suggests that the scatter in correlations between mass
and ICM{related properties could be reduced through the
use of a statistic which increases the weight of data from
outside the cluster core. For X{ray emission, this has been
demonstrated through the prediction and observation of
a tight correlation between cluster temperature and ra-
dius containing a �xed amount of X{ray emission (Mohr
& Evrard 1997). It should be possible to construct an
SZ observable which correlates well with mass and shows
much smaller intrinsic disperson at �xed mass than the
central y{distortion.

De�ning our new statistic as hyiA, we can write hyiA
in terms of the y{distortion induced by a line{of{sight at
angle � from the cluster center by

hyiA =

Z
y (�)W (�) d2�; (5)

where W (�) is a window function that determines the rel-
ative weighting of di�erent parts of the cluster. The sim-
plest approach is to use a top{hat window function; hyiA is
then simply an average of the SZ map within some chosen
radius.

It is important that the radius used to construct hyiA
be a self{similar radius, i.e. the radius out to some �du-
cial overdensity � in 3-D, r�. This ensures that the same
regions of di�erent clusters are being examined in con-
structing hyiA. In practice, however, we would not know
the radius r� for an observed cluster. It could be deduced
from the X{ray temperature; but if we have a good mea-
surement of the temperature, then we immediately have
access to a mass estimator which is independent of the gas
density, and thus presumably has smaller intrinsic error.
The point is to develop an SZ{based mass estimator to
be used at higher redshifts, where X{ray temperatures are
di�cult to obtain.

We solve this problem by estimating r� using the cen-
tral value of the y{parameter alone. In the previous
section, we demonstrated a correlation between the cen-
tral y{distortion and cluster mass at r200; we use this
relation to estimate r200, then use this value to set an
outer limit for averaging an SZ map to construct hyiA.
Here we will use 0:3 r200, corresponding to � � 2000
for the NFW density pro�le. With our previous result
of y0 = 3:98 � 10�5M0:98

15 , where M15 is the mass
within an overdensity of 200 in units of 1015M�, and
with M200 = 200�� � 4�r3200=3 by de�nition, we obtain

rest200 � 1:61 
�1=30

�
y0=10

�5
�1=3

Mpc. For each mock im-
age, we extract y0, use this value to �nd rest200, and then con-
struct the average hyiA within 0:3 r200; this radius would
correspond to � � 1:260 for y0 = 10�5 at z = 0:5.

The result is shown in Figure 2, with a best{�t power
law shown as a solid line, while the best �t to Eq. (3) is
shown as a dashed line. The two are barely distinguish-
able. The slope of the best �t relation is 0:97�0:01, slightly
shallower than the expected slope; the plot shows, how-
ever, that a linear scaling provides a good �t as well. More
notably, the dispersion in the relation is much reduced;
when modelled as log{normal, the scatter in loghyiA at
�xed mass is only 0:06| that is, 13�15% in hyiA |much
smaller than for the central decrement alone and compa-
rable to that found by EMN for the mass{temperature
relation at overdensities of�500.

It may seem puzzling that the scatter in the loghyiA |
M relation is less than that in the y0 | M relation, given
that we use y0 to choose a radius within which to construct
loghyiA. However, note �rst that the dispersion in r

est
200 will

be only 1=3 the dispersion in mass inferred from the cen-
tral signal. Second, the fact that the SZ signal should fall
with cluster radius suppresses the error introduced by us-
ing an incorrect inferred r200. For instance, imagine that
a cluster with a given mass has an observed y0 higher than
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Fig. 2.| Mass within an overdensity of 200, M200, ver-
sus average y{distortion over a circular area of radius 0:3 rest

200
,

hyiA. rest
200

is an estimate of the three{dimensional radius con-
taining an overdensity of 200, derived from the central SZ signal
y0. Each point marks one of the 219 simulated cluster observa-
tions. A solid line marks the least{squares best{�t to a power law,

hyiA = 10�5:1�0:3
�
M=1015M�

�
0:97�0:01

. Forcing a �t to a lin-

ear relation produces the same coe�cient; this curve is drawn in a
dashed line on the �gure.

expected from the mean relation; rest200 will then be higher
than the correct value. However, since the signal falls with
radius, constructing an average within this incorrect radius
depresses the result, counteracting the impact of the over-
large central value. This works to suppress the dispersion
in hyiA for clusters at a �xed mass that would be induced
by the dispersion in y0.

5. DISCUSSION

The simulation results discussed above evidence a cor-
relation between the strength of SZ signal and collapsed
mass, in agreement with theoretical expectation. The in-
trinsic scatter observed in the relation between the central
value of the Compton y{parameter y0 and mass is greater
than seen in the mass|temperature relation, but consider-
ably smaller than simulations show in the relation between
X{ray luminosity and mass, as expected. The scatter in
this relation can be reduced to a level near that of the mass
| temperature relation through the use of statistics which
depend less sensitively on central gas and more sensitively
on gas at larger radii.

Ssome cautionary notes are in order. First of all, the op-
timal statistic to use will in all likelihood be experiment{
dependent, since di�erent experiments sample the sky dif-
ferently. Also, such a correlation with mass should be af-
fected by limits in observational resolution; when a cluster
is not resolved, the y{parameter measured will scale with
the angular{diameter distance to the cluster as y / d�2A .

There are also issues of concern about the simulations
used here. Chief among these are numerical resolution lim-
itations, which likely serve to reduce the dispersion in the
SZ | mass correlation. Furthermore, the e�ect of miss-
ing physics which breaks self{similarity, such as cooling or
the inclusion of supernova{driven galactic winds, must be
considered. Next, the simulated clusters used in this inves-
tigation were taken at z = 0; numerical resolution issues
are of greater concern as redshift increases. It would be
worthwhile to investigate in detail, using higher{resolution
simulations, the status of the SZ | mass correlation at
redshifts of 0:5 or 1. Finally, the e�ects of the choice of
background cosmology | particularly, the values chosen
for 
0 and the baryon fraction fb = 
b=
0 | must be
examined.

One hope for verifying or calibrating the SZ | mass
correlation comes from comparing SZ{derived masses with
those from X{ray observations or from gravitational lens-
ing. Since low redshift clusters typically have better tem-
perature estimates, the planned Viper Sunyaev{Zel'dovich
Survey (Romer 1998) should provide a good opportunity
to test this correlation.

Future work is planned to study these issues, as well
as to examine the systematics of using SZ observations to
constrain the cluster baryon fraction.
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