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This report summarizes the activities of the Parton Distributions Working Group of the ’QCD and Weak Boson Physics

workshop’ held in preparation for Run II at the Fermilab Tevatron. The main focus of this working group was to investigate the

different issues associated with the development of quantitative tools to estimate parton distribution functions uncertainties.

In the conclusion, we introduce a ”Manifesto” that describes an optimal method for reporting data.

INTRODUCTION

With Run II and its large increase in integrated lu-
minosity, the Tevatron will enter an era of high pre-
cision measurements. In this era, parton distribution
function (PDF) uncertainties will play a major role.

The basic questions for PDFs at the Tevatron Run
II are simple and common to all other experiment:

• What limitations will the PDFs put on physics
analysis?

• What information can we gain about the PDFs?

There are some qualitative tools that exists and can be
used to try to answer these questions. However, beside
S. Alekhin’s pioneer work [ 1], quantitative tools that
attempt to include all sources of uncertainties are not
available yet. The main focus of this working group has
therefore been to investigate the different issues asso-
ciated with the development of those tools, although
obviously other topics have also been investigated.

We have divided this summary of activities into in-
dividual contributions:

• UNCERTAINTIES OF PARTON DISTRIBU-
TION FUNCTIONS AND THEIR IMPLICA-
TION ON PHYSICAL PREDICTIONS. R. Brok
et al. describe preliminary results from an ef-
fort to quantify the uncertainties in PDFs and
the resulting uncertainties in predicted physical
quantities. The production cross section of the
W boson is given as a first example.

• PARTON DISTRIBUTION FUNCTION UN-
CERTAINTIES. Giele et al. review the status

∗Supported by the European Commission under contract num-
ber ERB4001GT975210, TMR - Marie Curie Fellowship

of their effort to extract PDFs from data with a
quantitative estimate of the uncertainties.

• EXPERIMENTAL UNCERTAINTIES AND
THEIR DISTRIBUTIONS IN THE INCLUSIVE
JET CROSS SECTION. R. Hirosky summarizes
the current CDF and D0 analysis for the inclusive
jet cross sections. So far the uncertainties have
been assumed to be Gaussian distributed. He
investigates what information can be extracted
about the shape of the uncertainties with the goal
of being able to provide a way to calculate the
Likelihood.

• PARTON DENSITY UNCERTAINTIES AND
SUSY PARTICLE PRODUCTION. T. Plehn
and M. Krämer study the current status of PDF’s
uncertainties on SUSY particle mass bounds or
mass determinations.

• SOFT-GLUON RESUMMATION AND PDF
THEORY UNCERTAINTIES. G. Sterman and
W. Vogelsang discuss the interplay of higher or-
der corrections and PDF determinations, and the
possible use of soft-gluon resummation in global
fits.

• PARTON DISTRIBUTION FUNCTIONS: EX-
PERIMENTAL DATA AND THEIR INTER-
PRETATION. L. de Barbaro review current is-
sues in the interpretation of experimental data
and the outlook for future data.

• HEAVY QUARK PRODUCTION. Olness et al.

present a status report of a variety of projects
related to heavy quark production.
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• PARTON DENSITIES FOR HEAVY QUARKS.
J. Smith compares different PDFs for heavy
quarks.

• CONSTRAINTS ON THE GLUON DEN-
SITY FROM LEPTON PAIR PRODUCTION.
E. L. Berger and M. Klasen study the sensitiv-
ity of the hadroproduction of lepton pairs to the
gluon density.

Note that the individual references are at the end of
the corresponding contribution. The references for the
introduction and the conclusion are at the end.

UNCERTAINTIES OF PARTON DISTRIBU-
TION FUNCTIONS AND THEIR IMPLICA-
TIONS ON PHYSICAL PREDICTIONS

R. Brock, D. Casey, J. Huston, J. Kalk, J. Pumplin,
D. Stump, W.K. Tung

Department of Physics and Astronomy, Michigan
State University, East Lansing, MI 48824

Abstract

We describe preliminary results from an effort to quan-
tify the uncertainties in parton distribution functions
and the resulting uncertainties in predicted physical
quantities. The production cross section of the W bo-
son is given as a first example. Constraints due to the
full data sets of the CTEQ global analysis are used
in this study. Two complementary approaches, based
on the Hessian and the Lagrange multiplier method
respectively, are outlined. We discuss issues on ob-
taining meaningful uncertainty estimates that include
the effect of correlated experimental systematic uncer-
tainties and illustrate them with detailed calculations
using one set of precision DIS data.

1. Introduction

Many measurements at the Tevatron rely on parton
distribution functions (PDFs) for significant portions
of their data analysis as well as the interpretation of
their results. For example, in cross section measure-
ments the acceptance calculation often relies on Monte
Carlo (MC) estimates of the fraction of unobserved
events. As another example, the measurement of the
mass of the W boson depends on PDFs via the mod-
eling of the production of the vector boson in MC. In
such cases, uncertainties in the PDFs contribute, by
necessity, to uncertainties on the measured quantities.
Critical comparisons between experimental data and
the underlying theory are often even more dependent
upon the uncertainties in PDFs. The uncertainties on
the production cross sections for W and Z bosons, cur-
rently limited by the uncertainty on the measured lu-
minosity, are approximately 4%. At this precision, any
comparison with the theoretical prediction inevitably
raises the question: How “certain” is the prediction
itself?

A recent example of the importance of PDF uncer-
tainty is the proper interpretation of the measurement
of the high-ET jet cross-section at the Tevatron. When
the first CDF measurement was published [ 1], there
was a great deal of controversy over whether the ob-
served excess, compared to theory, could be explained
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by deviations of the PDFs, especially the gluon, from
the conventionally assumed behavior, or could it be the
first signal for some new physics [ 2].

With the unprecedented precision and reach of many
of the Run I measurements, understanding the implica-
tions of uncertainties in the PDFs has become a burn-
ing issue. During Run II (and later at LHC) this issue
may strongly affect the uncertainty estimates in preci-
sion Standard Model studies, such as the all important
W -mass measurement, as well as the signal and back-
ground estimates in searches for new physics.

In principle, it is the uncertainties on physical quan-
tities due to parton distributions, rather than on the
PDFs themselves, that is of primary concern. The
latter are theoretical constructs which depend on the
renormalization and factorization schemes; and there
are strong correlations between PDFs of different fla-
vors and from different values of x, which can compen-
sate each other in the convolution integrals that relate
them to physical cross-sections. On the other hand,
since PDFs are universal, if we can obtain meaning-
ful estimates of their uncertainties based on analysis
of existing data, then the results can be applied to all
processes that are of interest in the future. [ 3, 4]

One can attempt to assess directly the uncertainty
on a specific physical prediction due to the full range
of PDFs allowed by available experimental constraints.
This approach will provide a more reliable estimate for
the range of possible predictions for the physical vari-
able under study, and may be the best course of action
for ultra-precise measurements such as the mass of the
W boson or the W production cross-section. However,
such results are process-specific and therefore the anal-
ysis must be carried out for each case individually.

Until recently, the attempts to quantify either the
uncertainties on the PDFs themselves (via uncertain-
ties on their functional parameters, for instance) or the
uncertainty on derived quantities due to variations in
the PDFs have been rather unsatisfactory. Two com-
monly used methods are: (1) Comparing the predic-
tions obtained with different PDF sets, e.g., various
CTEQ [ 5], MRS [ 6] and GRV [ 7] sets; (2) Within
a given global analysis effort, varying individual func-
tional parameters ad hoc, within limits considered to
be consistent with the existing data, e.g. [ 8]. Neither
method provides a systematic, quantitative measure of
the uncertainties of the PDFs or their predictions.

As a case in point, Fig. 1 shows how the calcu-
lated value of the cross section for W boson production
at the Tevatron varies with a set of historical CTEQ
PDFs as well as the most recent CTEQ [ 5] and MRST
[ 6] sets. Also shown are the most recent measurements
from DØ and CDF2. While it is comforting to see that

2It is interesting to note that much of the difference between the
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Figure 1. Predicted cross section for W boson produc-
tion for various PDFs.

the predictions have remained within a narrow range,
the variation observed cannot be characterized as a
meaningful estimate of the uncertainty: (i) the varia-
tion with time reflects mostly the changes in experi-
mental input to, or analysis procedure of, the global
analyses; and (ii) the perfect agreement between the
values of the most recent CTEQ5M1 3 and MRS99 sets
must be fortuitous, since each group has also obtained
other satisfactory sets which give rise to much larger
variations of theW cross section. The MRST group, in
particular has examined the range of this variation by
setting a variety of parameters to some extreme values
[ 8]. These studies are useful but can not be considered
quantitative or definitive. What is needed are methods
that explore thoroughly the possible variations of the
parton distribution functions.

It is important to recognize all potential sources of
uncertainty in the determination of PDFs. Focusing
on some of these, while neglecting significant others,
may not yield practically useful results. Sources of
uncertainty are listed below:

• Statistical uncertainties of the experimental data
used to determine the PDFs. These vary over a wide
range among the experiments used in a global analy-
sis, but are straightforward to treat.

• Systematic uncertainties within each data set.

DØ and CDF W cross sections is due to the different values of
the total pp̄ cross sections used
3CTEQ5M1 is an updated version of CTEQ5M differing only
in a slight improvement in the QCD evolution (cf. note added
in proof of [ 5]). The differences are completely insignificant
for our purposes. Henceforth, we shall refer to them generically
as CTEQ5M. Both sets can be obtained from the web address
http://cteq.org/.
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There are typically many sources of experimental sys-
tematic uncertainty, some of which are highly corre-
lated. These uncertainties can be treated by standard
methods of probability theory provided they are pre-
cisely known, which unfortunately is often not the
case – either because they may not be randomly dis-
tributed and/or because their estimation in practice
involves subjective judgements.

• Theoretical uncertainties arising from higher-
order PQCD corrections, resummation corrections
near the boundaries of phase space, power-law (higher
twist) and nuclear target corrections, etc.

• Uncertainties due to the parametrization of the
non-perturbative PDFs, fa(x,Q0), at some low
momentum scale Q0. The specific choice of the func-
tional form used at Q0 introduces implicit correla-
tions between the various x-ranges, which could be
as important, if not more so, than the experimental
correlations in the determination of fa(x,Q) for all
Q.

Since strict quantitative statistical methods are
based on idealized assumptions, such as random mea-
surement uncertainties, an important trade-off must be
faced in devising a strategy for the analysis of PDF
uncertainties. If emphasis is put on the “rigor” of the
statistical method, then many important experiments
cannot be included in the analysis, either because the
published errors appear to fail strict statistical tests
or because data from different experiments appear to
be mutually exclusive in the parton distribution pa-
rameter space [ 4]. If priority is placed on using the
maximal experimental constraints from available data,
then standard statistical methods may not apply, but
must be supplemented by physical considerations, tak-
ing into account experimental and theoretical limita-
tions. We choose the latter tack, pursuing the deter-
mination of the uncertainties in the context of the cur-
rent CTEQ global analysis. In particular, we include
the same body of the world’s data as constraints in our
uncertainty study as that used in the CTEQ5 analy-
sis; and adopt the “best fit” – the CTEQ5M1 set – as
the base set around which the uncertainty studies are
performed. In practice, there are unavoidable choices
(and compromises) that must be made in the analysis.
(Similar subjective judgements often are also necessary
in estimating certain systematic errors in experimental
analyses.) The most important consideration is that
quantitative results must remain robust with respect
to reasonable variations in these choices.

In this Report we describe preliminary results ob-
tained by our group using the two approaches men-
tioned earlier. In Section 3 we focus on the error ma-
trix, which characterizes the general uncertainties of

the non-perturbative PDF parameters. In Sections 4
and 5 we study specifically the production cross sec-
tion σW for W± bosons at the Tevatron, to estimate
the uncertainty of the prediction of σW due to PDF
uncertainty. We start in Section 2 with a review of
some aspects of the CTEQ global analysis on which
this study is based.

2. Elements of the Base Global Analysis

Since our strategy is based on using the existing
framework of the CTEQ global analysis, it is useful
to review some of its features pertinent to the current
study [ 5].

Data selection:

Table 1 shows the experimental data sets included in
the CTEQ5 global analysis, and in the current study.
For neutral current DIS data only the most accurate
proton and deuteron target measurements are kept,
since they are the “cleanest” and they are already ex-
tremely extensive. For charged current (neutrino) DIS
data, the significant ones all involve a heavy (Fe) tar-
get. Since these data are crucial for the determina-
tion of the normalization of the gluon distribution (in-
directly via the momentum sum rule), and for quark
flavor differentiation (in conjunction with the neutral
current data), they play an important role in any com-
prehensive global analysis. For this purpose, a heavy-
target correction is applied to the data, based on mea-
sured ratios for heavy-to-light targets from NMC and
other experiments. Direct photon production data are
not included because of serious theoretical uncertain-
ties, as well as possible inconsistencies between exist-
ing experiments. Cf. [ 5] and [ 9]. The combination of
neutral and charged DIS, lepton-pair production, lep-
ton charge asymmetry, and inclusive large-pT jet pro-
duction processes provides a fairly tightly constrained
system for the global analysis of PDFs. In total, there
are ∼1300 data points which meet the minimum mo-
mentum scale cuts which must be imposed to ensure
that PQCD applies. The fractional uncertainties on
these points are distributed roughly like dF/F over
the range F = 0.003 − 0.4.

Parametrization:

The non-perturbative parton distribution functions
fa(x,Q) at a low momentum scale Q = Q0 are
parametrized by a set of functions of x, corresponding
to the various flavors a. For this analysis,Q0 is taken to
be 1 GeV. The specific functional forms and the choice
of Q0 are not important, as long as the parametriza-
tion is general enough to accommodate the behavior of
the true (but unknown) non-perturbative PDFs. The
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Process Experiment Measurable Ndata

DIS BCDMS[ 10] Fµ
2 H , F

µ
2 D 324

NMC [ 11] Fµ
2 H , F

µ
2 D 240

H1 [ 12] F e
2 H 172

ZEUS[ 13] F e
2 H 186

CCFR [ 14] F ν
2 Fe, x F

ν
3 Fe 174

Drell-Yan E605[ 15] sdσ/d
√
τdy 119

E866 [ 16] σ(pd)/2σ(pp) 11
NA-51[ 17] ADY 1

W-prod. CDF [ 18] Lepton asym. 11

Incl. Jet CDF [ 19] dσ/dEt 33
D0[ 20] dσ/dEt 24

Table 1
List of processes and experiments used in the
CTEQ5M Global analysis. The total number of data
points is 1295.

CTEQ analysis adopts the functional form

a0x
a1(1 − x)a2(1 + a3x

a4).

for most quark flavors as well as for the gluon.4 After
momentum and quark number sum rules are enforced,
there are 18 free parameters left over, hereafter referred
to as “shape parameters” {ai}. The PDFs at Q > Q0

are determined from fa(x,Q0) by evolution equations
from the renormalization group.

Fitting:

The values of {ai} are determined by fitting the
global experimental data to the theoretical expressions
which depend on these parameters. The fitting is done
by minimizing a global “chi-square” function, χ2

global.
The quotation mark indicates that this function serves
as a figure of merit of the quality of the global fit; it
does not necessarily have the full significance associ-
ated with rigorous statistical analysis, for reasons to
be discussed extensively throughout the rest of this re-
port. In practice, this function is defined as:

χ2
global =

∑

n

∑

i

wn

[
(Nndni − tni) /σ

d
ni

]2

+
∑

n

[
(1 −Nn) /σN

n

]2
(1)

where dni, σ
d
ni, and tni denote the data, measurement

uncertainty, and theoretical value (dependent on {ai})
for the ith data point in the nth experiment. The
second term allows the absolute normalization (Nn)

4 An exception is that recent data from E866 seem to require
the ratio d̄/ū to take a more unconventional functional form.

for each experiment to vary, constrained by the pub-
lished normalization uncertainty (σN

n ). The wn factors
are weights applied to some critical experiments with
very few data points, which are known (from physics
considerations) to provide useful constraints on cer-
tain unique features of PDFs not afforded by other ex-
periments. Experience shows that without some judi-
ciously chosen weights, these experimental data points
will have no influence in the global fitting process. The
use of these weighing factors, to enable the relevant
unique constraints, amounts to imposing certain prior
probability (based on physics knowledge) to the statis-
tical analysis.

In the above form, χ2
global includes for each data

point the random statistical uncertainties and the com-
bined systematic uncertainties in uncorrelated form, as
presented by most experiments in the published pa-
pers. These two uncertainties are combined in quadra-
ture to form σd

ni in Eq. 1. Detailed point to point corre-
lated systematic uncertainties are not available in the
literature in general; however, in some cases, they can
be obtained from the experimental groups. For global
fitting, uniformity in procedure with respect to all ex-
periments favors the usual practice of merging them
into the uncorrelated uncertainties. For the study of
PDF uncertainties, we shall discuss this issue in more
detail in Section 5.

Goodness-of-fit for CTEQ5M:

Without going into details, Fig. 2 gives an overview
of how well CTEQ5m fits the total data set. The
graph is a histogram of the variable x ≡ (d − t)/σ
where d is a data value, σ the uncertainty of that mea-
surement (statistical and systematic combined), and
t the theoretical value for CTEQ5m. The curve in
Fig. 2 has no adjustable parameters; it is the Gaussian
with width 1 normalized to the total number of data
points (1295). Over the entire data set, the theory fits
the data within the assigned uncertainties σd

ni, indicat-
ing that those uncertainties are numerically consistent
with the actual measurement fluctuations. Similar his-
tograms for the individual experiments reveal various
deviations from the theory, but globally the data have
a reasonable Gaussian distribution around CTEQ5M.

3. Uncertainties on PDF parameters: The Er-
ror Matrix

We now describe results from an investigation of the
behavior of the χ2

global function at its minimum, using
the standard error matrix approach [ 21]. This allows
us to determine which combinations of parameters are
contributing the most to the uncertainty.

At the minimum of χ2
global, the first derivatives with
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Figure 2. Histogram of the (measurement − theory)
for all data points in the CTEQ5m fit.

respect to the {ai} are zero; so near the minimum,
χ2

global can be approximated by

χ2
global = χ2

0 +
1

2

∑

i,j

Fijyiyj (2)

where yi = ai − a0i is the displacement from the min-
imum, and Fij is the Hessian, the matrix of second
derivatives. It is natural to define a new set of coor-
dinates using the complete orthonormal set of eigen-
vectors of the symmetric matrix Fij as basis vectors.
These vectors can be ordered by their eigenvalues ei.
Each eigenvalue is a quantitative measure of the uncer-
tainties in the shape parameters {ai} for displacements
in parameter space in the direction of the correspond-
ing eigenvector. The quantity ℓi ≡ 1/

√
ei is the dis-

tance in the 18 dimensional parameter space, in the
direction of eigenvector i, that makes a unit increase
in χ2

global. If the only measurement uncertainty were
uncorrelated gaussian uncertainties, then ℓi would be
one standard deviation from the best fit in the direc-
tion of the eigenvector. The inverse of the Hessian is
the error matrix.

Because the real uncertainties, for the wide variety
of experiments included, are far more complicated than
assumed in the ideal situation, the quantitative mea-
sure of a given increase in χ2

global carries little true sta-
tistical meaning. However, qualitatively, the Hessian
gives an analytic picture of χ2

global near its minimum in
{ai} space, and hence allows us to identify the partic-
ular degrees of freedom that need further experimental
input in future global analyses.

From calculations of the Hessian we find that the
eigenvalues vary over a wide range. Figure 3 shows
a graph of the eigenvalues of Fij , on a logarithmic

Figure 3. Plot of the eigenvalues of the Hessian. The
vertical axis is ℓi = 1/

√
ei.

scale. The vertical axis is ℓi = 1/
√
ei, the distance

of a “standard deviation” along the ith eigenvector.
These distances range over 3 orders of magnitude.Large
eigenvalues of Fij correspond to “steep directions” of
χ2

global. The corresponding eigenvectors are combina-
tions of shape parameters that are well determined by
current data. For example, parameters that govern
the valence u and d quarks at moderate x are sharply
constrained by DIS data. Small eigenvalues of Fij cor-
respond to “flat directions” of χ2

global. In the directions

of these eigenvectors, χ2
global changes little over large

distances in {ai} space. For example, parameters that
govern the large-x behavior of the gluon distribution,
or differences between sea quarks, properties of the nu-
cleon that are not accurately determined by current
data, contribute to the flat directions. The existence
of flat directions is inevitable in global fitting, because
as the data improve it only makes sense to maintain
enough flexibility for fa(x,Q0) to fit the available ex-
perimental constraints.

Because the eigenvalues of the Hessian have a large
range of values, efficient calculation of Fij requires an
adaptive algorithm. In principle Fij is the matrix of
second derivatives at the minimum of χ2

global, which
could be calculated from very small finite differences.
In practice, small computational errors in the evalua-
tion of χ2

global preclude the use of a very small step size.
Coarse grained finite differences yield a more accurate
calculation of the second derivatives. But because the
variation of χ2

global varies markedly in different direc-
tions, it is important to use a grid in {ai} space with
small steps in steep directions and large steps in flat
directions. This grid is generated by an iterative pro-
cedure, in which Fij converges to a good estimate of
the second derivatives.

From calculations of Fij we find that the minimum
of χ2

global is fairly quadratic over large distances in the
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Figure 4. Value of χ2 along the six eigenvectors with
the largest eigenvalues.

parameter space. Figures 4 and 5 show the behavior

Figure 5. Value of χ2 along the 12 eigenvectors with
the smallest eigenvalues.

of χ2
global near the minimum along each of the 18 eigen-

vectors. χ2
global is plotted on the vertical axis, and the

variable on the horizontal axis is the distance in {ai}
space in the direction of the eigenvector, in units of
ℓi = 1/

√
ei. There is some nonlinearity, but it is small

enough that the Hessian can be used as an analytic
model of the functional dependence of χ2

global on the
shape parameters.

In a future paper we will provide details on the un-
certainties of the original shape parameters {ai}. But
it should be remembered that these parameters spec-
ify the PDFs at the low Q scale, and applications of
PDFs to Tevatron experiments use PDFs at a high Q
scale. The evolution equations determine f(x,Q) from

f(x,Q0), so the functional form at Q depends on the
{ai} in a complicated way.

4. Uncertainty on σW : the Lagrange Multiplier
Method

In this Section, we determine the variation of χ2
global

as a function of a single measurable quantity. We use
the production cross section for W bosons (σW ) as
an archetype example. The same method can be ap-
plied to any other physical observable of interest, for
instance the Higgs production cross section, or to cer-
tain measured differential distributions. The aim is to
quantify the uncertainty on that physical observable
due to uncertainties of the PDFs integrated over the
entire PDF parameter space.

Again, we use the standard CTEQ5 analysis tools
and results [ 5] as the starting point. The “best fit” is
the CTEQ5M1 set. A natural way to find the limits of
a physical quantity X , such as σW at

√
s = 1.8TeV, is

to take X as one of the search parameters in the global
fit and study the dependence of χ2

global for the 15 base
experimental data sets on X .

Conceptually, we can think of the function χ2
global

that is minimized in the fit as a function of
a1, . . . , a17, X instead of a1, . . . , a18. This idea could
be implemented directly in principle, but a more con-
venient way to do the same thing in practice is through
Lagrange’s method of undetermined multipliers. One
minimizes, with respect to the {ai}, the quantity

F (λ) = χ2
global + λX(a1, . . . , a18) (3)

for a fixed value of λ, the Lagrange multiplier. By min-
imizing F (λ) for many values of λ, we map out χ2

global

as a function ofX . The minimum of F for a given value
of λ is the best fit to the data for the corresponding
value of X , i.e., evaluated at the minimum.

Figure 6 shows χ2
global for the 15 base experimen-

tal data sets as a function of σW at the Tevatron.
The horizontal axis is σW times the branching ratio
for W → leptons, in nb. The CTEQ5m prediction is
σW · BRlep = 2.374nb. The vertical dashed lines are
±3% and ±5% deviations from the CTEQ5m predic-
tion.

The two parabolas associated with points in Fig. 6
correspond to different treatments of the normalization
factor Nn in Eq. 1. The dots (•) are variable norm fits,
in which Nn is allowed to float, taking into account the
experimental normalization uncertainties, and F (λ) is
minimized with respect to Nn. The justification for
this procedure is that overall normalization is a com-
mon systematic uncertainty. The boxes (2) are fixed
norm fits, in which all Nn are held fixed at their values
for the global minimum (CTEQ5m). These two proce-
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Figure 6. χ2 of the base experimental data sets ver-
sus σW ·BRlep, the W production cross-section at the
Tevatron times lepton branching ratio, in nb.

dures represent extremes in the treatment of normal-
ization uncertainty. The parabolas associated with •’s
and 2’s are just least-square fits to the points.

The other curve in Fig. 6 was calculated using the
Hessian method. The Hessian Fij is the matrix of sec-
ond derivatives of χ2

global with respect to the shape
parameters {ai}. The derivatives (first and second) of
σW may also be calculated by finite differences. Using
the resultant quadratic approximations for χ2

global(a)

and σW (a), one may minimize χ2
global with σW fixed.

Since this calculation keeps the normalization factors
constant, it should be compared with the fixed norm
fits from the Lagrange multiplier method. The fact
that the Hessian and Lagrange multiplier methods
yield similar results lends support to both approaches;
the small difference between them indicates that the
quadratic functional approximations for χ2

global and
σW are only approximations.

For the quantitative analysis of uncertainties, the
important question is: How large an increase in χ2

global

should be taken to define the likely range of uncertainty
in X? There is an elementary statistical theorem that
states that ∆χ2 = 1 in a constrained fit corresponds
to 1 standard deviation of the constrained quantity X .
However, the theorem relies on the assumption that the
uncertainties are gaussian, uncorrelated, and correctly
estimated in magnitude. Because these conditions do
not hold for the full data set (of ∼ 1300 points from 15
different experiments), this theorem cannot be naively
applied quantitatively.5 Indeed, it can be shown that,

5It has been shown by Giele et.al. [ 4], that, taken literally, only

if the measurement uncertainties are correlated, and
the correlation is not properly taken into account in
the definition of χ2

global, then a standard deviation may

vary over the entire range from ∆χ2 = 1 to ∆χ2 = N
(the total number of data points – ∼ 1300 in our case).

5. Statistical Analysis with Systematic Uncer-
tainties

Fig. 6 shows how the fitting function χ2
global increases

from its minimum value, at the best global fit, as the
cross-section σW for W production is forced away from
the prediction of the global fit. The next step in our
analysis of PDF uncertainty is to use that information,
or some other analysis, to estimate the uncertainty in
σW . In ideal circumstances we could say that a certain
increase of χ2

global from the minimum value, call it ∆χ2,
would correspond to a standard deviation of the global
measurement uncertainty. Then a horizontal line on
Fig. 6 at χ2

min+∆χ2 would indicate the probable range
of σW , by the intersection with the parabola of χ2

global

versus σW .
However, such a simple estimate of the uncertainty

of σW is not possible, because the fitting function
χ2

global does not include the correlations between sys-

tematic uncertainties. The uncertainty σd
ni in the defi-

nition (1) of χ2
global combines in quadrature the statis-

tical and systematic uncertainties for each data point;
that is, it treats the systematic uncertainties as uncor-
related. The standard theorems of statistics for Gaus-
sian probability distributions of random uncertainties
do not apply to χ2

global.

Instead of using χ2
global to estimate confidence levels

on σW , we believe the best approach is to carry out a
thorough statistical analysis, including the correlations
of systematic uncertainties, on individual experiments
used in the global fit for which detailed information is
available. We will describe here such an analysis for
the measurements of F2(x,Q) by the H1 experiment [
12] at HERA, as a case study. In a future paper, we
will present similar calculations for other experiments.

The H1 experiment has provided a detailed table
of measurement uncertainties – statistical and system-
atic – for their measurements of F2(x,Q). [ 12] The
CTEQ program uses 172 data points from H1 (requir-
ing the cut Q2 > 5GeV2). For each measurement dj

(where j = 1 . . . 172) there is a statistical uncertainty
σ0j , an uncorrelated systematic uncertainty σ1j , and a
set of 4 correlated systematic uncertainties ajk where
k = 1 . . . 4. (In fact there are 8 correlated uncertainties
listed in the H1 table. These correspond to 4 pairs.
Each pair consists of one standard deviation in the

one or two selected experiments satisfy the standard statistical
tests.
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Lagrange σW ·B χ2/172 probability
multiplier in nb

3000 2.294 1.0847 0.212
2000 2.321 1.0048 0.468
1000 2.356 0.9676 0.605

0 2.374 0.9805 0.558
-1000 2.407 1.0416 0.339
-2000 2.431 1.0949 0.187
-3000 2.450 1.1463 0.092

Table 2
Comparison of H1 data to the PDF fits with con-
strained values of σW .

positive sense, and one standard deviation in the neg-
ative sense, of some experimental parameter. For this
first analysis, we have approximated each pair of un-
certainties by a single, symmetric combination, equal
in magnitude to the average magnitude of the pair.)

To judge the uncertainty of σW , as constrained by
the H1 data, we will compare the H1 data to the global
fits in Fig. 6. The comparison is based on the true,
statistical χ2, including the correlated uncertainties,
which is given by

χ2 =
∑

j

(dj − tj)
2

σ2
j

−
∑

kk′

Bk

(
A−1

)
kk′

Bk′ . (4)

The index j labels the data points and runs from 1 to
172. The indices k and k′ label the source of systematic
uncertainty and run from 1 to 4. The combined uncor-

related uncertainty σj is
√
σ2

0j + σ2
1j . The second term

in (4) comes from the correlated uncertainties. Bk is
the vector

Bk =
∑

j

(dj − tj) ajk

σ2
j

, (5)

and Akk′ is the matrix

Akk′ = δkk′ +
∑

j

ajkajk′

σ2
j

. (6)

Assuming the published uncertainties σ0j , σ1j and
ajk accurately reflect the measurement fluctuations, χ2

would obey a chi-square distribution if the measure-
ments were repeated many times. Therefore the chi-
square distribution with 172 degrees of freedom pro-
vides a basis for calculating confidence levels for the
global fits in Fig. 6.

Table 2 shows χ2 for the H1 data compared to seven
of the PDF fits in Fig. 6. The center row of the Table is

the global best fit – CTEQ5m. The other rows are fits
obtained by the Lagrange multiplier method for dif-
ferent values of the Lagrange multiplier. The best fit
to the H1 data, i.e., the smallest χ2, is not CTEQ5m
(the best global fit) but rather the fit with Lagrange
multiplier 1000 for which σW is 0.8% smaller than the
prediction of CTEQ5m. Forcing the W cross section
values away from the prediction of CTEQ5m causes an
increase in χ2 for the DIS data. At

√
s = 1.8TeV, W

production is mainly from qq̄ → W+W− with moder-
ate values of x for q and q̄, i.e., values in the range
of DIS experiments. Forcing σW higher (or lower) re-
quires a higher (or lower) valence quark density in the
proton, in conflict with the DIS data, so χ2 increases.

The final column in Table 2, labeled “probability”,
is computed from the chi-square distribution with 172
degrees of freedom. This quantity is the probability
for χ2 to be greater than the value calculated from
the existing data, if the H1 measurements were to be
repeated. So, for example, the fit with Lagrange mul-
tiplier −3000, which corresponds to σW being 3.2%
larger than the CTEQ5m prediction, has probability
0.092. In other words, if the H1 measurements could
be repeated many times, in only 9.2% of trials would
χ2 be greater than or equal to the value that has been
obtained with the existing data. This probability rep-
resents a confidence level for the value of σW that was
forced on the PDF by setting the Lagrange multiplier
equal to -3000. At the 9.2% confidence level we can
say that σW ·BRlep is less than 2.450nb, based on the
H1 data. Similarly, at the 21.2% confidence level we
can say that σW · BRlep is greater than 2.294nb.

Figure 7. χ2/N of the H1 data, including error corre-
lations, compared to PDFs obtained by the Lagrange
multiplier method for constrained values of σW .

Fig. 7 is a graph of χ2/N for the H1 data compared
to the PDF fits in Table 2. This figure may be com-
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pared to Fig. 6. The CTEQ5 prediction of the W pro-
duction cross-section is shown as an arrow, and the
vertical dashed lines are ±3% away from the CTEQ5m
prediction. The horizontal dashed line is the 68% con-
fidence level on χ2/N for N = 172 degrees of freedom.
The comparison with H1 data alone indicates that the
uncertainty on σW is ∼ 3%.

There is much more to say about χ2 and confidence
levels. In a future paper we will discuss statistical cal-
culations for other experiments in the global data set.
The H1 experiment is a good case, because for H1 we
have detailed information about the correlated uncer-
tainties. But it may be somewhat fortuitous that the
χ2 per data point for CTEQ5m is so close to 1 for
the H1 data set. In cases where χ2/N is not close
to 1, which can easily happen if the estimated sys-
tematic uncertainties are not textbook-like, we must
supply further arguments about confidence levels. For
experiments with many data points, like 172 for H1,
the chi-square distribution is very narrow, so a small
inaccuracy in the estimate of σj may translate to a
large uncertainty in the calculation of confidence levels
based on the absolute value of χ2. Because the estima-
tion of experimental uncertainties introduces some un-
certainty in the value of χ2, it is not really the absolute
value of χ2 that is important, but rather the relative
value compared to the value at the global minimum.
Therefore, we might study ratios of χ2’s to interpret
the variation of χ2 with σW .

6. Conclusions

It has been widely recognized by the HEP com-
munity, and it has been emphasized at this work-
shop, that PDF phenomenology must progress from
the past practice of periodic updating of representa-
tive PDF sets to a systematic effort to map out the
uncertainties, both on the PDFs themselves and on
physical observables derived from them. For the anal-
ysis of PDF uncertainties, we have only addressed the
issues related to the treatment of experimental un-
certainties. Equally important for the ultimate goal,
one must come to grips with uncertainties associated
with theoretical approximations and phenomenological
parametrizations. Both of these sources of uncertain-
ties induce highly correlated uncertainties, and they
can be numerically more important than experimental
uncertainties in some cases. Only a balanced approach
is likely to produce truly useful results. Thus, great
deal of work lies ahead.

This report described first results from two methods
for quantifying the uncertainty of parton distribution
functions associated with experimental uncertainties.
The specific work is carried out as extensions of the

CTEQ5 global analysis. The same methods can be
applied using other parton distributions as the starting
point, or using a different parametrization of the non-
perturbative PDFs. We have indeed tried a variety of
such alternatives. The results are all similar to those
presented above. The robustness of these results lends
confidence to the general conclusions.

The Hessian, or error matrix method reveals the un-
certainties of the shape parameters used in the func-
tional parametrization. The behavior of χ2

global in the
neighborhood of the minimum is well described by the
Hessian if the minimum is quadratic.

The Lagrange multiplier method produces con-
strained fits, i.e., the best fits to the global data set
for specified values of some observable. The increase
of χ2

global, as the observable is forced away from the
predicted value, indicates how well the current data
on PDFs determines the observable.

The constrained fits generated by the Lagrange mul-
tiplier method may be compared to data from individ-
ual experiments, taking into account the uncertainties
in the data, to estimate confidence levels for the con-
strained variable. For example, we estimate that the
uncertainty of σW attributable to PDFs is ±3%.

Further work is needed to apply these methods
to other measurements, such as the W mass or the
forward-backward asymmetry of W production in pp̄
collisions. Such work will be important in the era of
high precision experiments.
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Abstract

We review the status of our effort to extract parton
distribution functions from data with a quantitative
estimate of the uncertainties.

1. Introduction

The goal of our work is to extract parton distribution
functions (PDF) from data with a quantitative estima-
tion of the uncertainties. There are some qualitative
tools that exist to estimate the uncertainties, see e.g.
Ref. [ 1]. These tools are clearly not adequate when the
PDF uncertainties become important. One crucial ex-
ample of a measurement that will need a quantitative
assessment of the PDF uncertainty is the planned high
precision measurement of the mass of the W -vector bo-
son at the Tevatron. Clearly, quantitative tools along
the line of S. Alekhin’s pionner work [ 2] are needed.

The method we have developed in Ref. [ 3] is flexi-
ble and can accommodate non-Gaussian distributions
for the uncertainties associated with the data and the
fitted parameters as well as all their correlations. New
data can be added in the fit without having to redo the
whole fit. Experimenters can therefore include their
own data into the fit during the analysis phase, as long
as correlation with older data can be neglected. Within
this method it is trivial to propagate the PDF uncer-
tainties to new observables, there is for example no
need to calculate the derivative of the observable with
respect to the different PDF parameters. The method
also provides tools to assess the goodness of the fit and
the compatibility of new data with current fit. The
computer code has to be fast as there is a large num-
ber of choices in the inputs that need to be tested.

It is clear that some of the uncertainties are difficult
to quantify and It might not be possible to quantify all
of them. All the plots presented here are for illustration
of the method only, our results are preliminary. At the
moment we are not including all the sources of uncer-
tainties and our results should therefore be considered
as lower limits on the PDF uncertainties. Note that
all the techniques we use can be found in books and
papers on statistics [ 4] and/or in Numerical Recipes [
5].
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2. Outline of the Method

We only give a brief overview of the method in this
section. More details are available in Ref.[ 3]. Our
method follows the Bayesian methodology 6. Once
a set of core experiments is selected, a large num-
ber of uniformly distributed sets of parameters λ ≡
λ1, λ2, . . . , λNpar

(each set corresponds to one PDF)
can be generated and the probability density of the set
P (λ) calculated from the likelihood (the probability)
that the predictions based on λ describe the data, see
Ref. [ 4] and next section.

Knowing P (λ), then for any observable x (or any
quantity that depends on λ) the probability density,
P (x) can be evaluated, and using a Monte Carlo inte-
gration, the average value and the standard deviation
of x can be calculated with the standard expressions:

µx =

∫ 


Npar∏

i=1

dλi


 x(λ)P (λ)

σ2
x =

∫ 


Npar∏

i=1

dλi


 (x(λ) − µx)2P (λ). (7)

If P (x) is Gaussian distributed, then the standard
deviation is a sufficient measure of the PDF uncer-
tainties. If P (x) is not Gaussian distributed, then one
should refer to the distribution itself and not try to
“summarize” it by a single number, all the information
is in the distribution itself. The uncertainties due to
the Monte Carlo can also be calculated with standard
technique.

The above is correct but computationally inefficient,
instead we use a Metropolis algorithm, see Ref. [ 5], to
generate Npdf unit-weighted PDFs distributed accord-
ing to P (λ). With this set of PDFs, the expressions in
Eq. 7 become:

µx ≈ 1

Npdf

Npdf∑

j=1

x (λj)

σ2
x ≈ 1

Npdf

Npdf∑

j=1

(x (λj) − µx)2 . (8)

This is equivalent to importance sampling in Monte
Carlo integration techniques. It is very efficient be-
cause the number of PDFs needed to reach a given
level of accuracy in the evaluation of the integrals is
much smaller than when using a set of PDFs uniformly

6we also plan to present results within the “classical frequentist”
framework [ 6]

distributed. Given the unit-weighted set of PDFs, a
new experiment can be added to the fit by assigning
a weight (a new probability) to each of the PDFs, us-
ing Bayes’ theorem. The above summations become
weighted. There is no need to redo the whole fit if

there is no correlation between the old and new data.
If we know how to calculate P (λ) properly, the only un-
certainty in the method comes from the Monte-Carlo
integrations.

3. Calculation of P (λ)

Given a set of experimental points {xe} =
xe

1, x
e
2, . . . , x

e
Nobs

the probability of a set of PDF is in
fact the conditional probability of {λ} given that {xe}
has been measured, this conditional probability can be
calculated using Bayes theorem:

P (λ) = P (λ|xe) =
P (xe|λ)
P (xe)

Pinit(λ), (9)

where, as already mentioned, the prior distribution
of the parameters, Pinit(λ), has been assumed to be
uniform. A prior sensitivity should be performed.
P (xe|λ) is the likelihood, the probability to observe
the data given that the theory is fixed by the set of
{λ} . P (xe) is the probability density of the data (in-
tegrated over the PDFs) and act as a normalization
coefficient in Eq. 9.

If all the uncertainties are Gaussian distributed, then
it is well known that:

P (xe|λ) ≈ e−
χ2(λ)

2 , (10)

where χ2 is the usual chi-square:

χ2(λ) =

Nobs∑

k,l

(
xe

k − xt
k(λ)

)
M tot

kl

(
xe

l − xt
l(λ)

)
, (11)

xt
k(λ) are the theory prediction for the experimen-

tal observables calculated with the parameters {λ} .
The matrix M tot is the inverse of the total covariance
matrix.

When the uncertainties are not Gaussian dis-
tributed, the result is not as well known. We first
present two simple examples to illustrate how the like-
lihood should be calculate and then give a generaliza-
tion.

3.1. The simplest example
We first consider the simplest example to setup the

notation, one experimental point with a statistical un-
certainty:

xt(λ) = xe + u∆, (12)
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where u is a random variable that has it own dis-
tribution, f(u) (assumed to be Gaussian in this case).
By convention, we take the average of u equal to 0 and
its standard deviation equal to 1. ∆ gives the size of
the statistical uncertainty. For each experimental mea-
surement there is a different value of u and xe. The
probability to find xe in an element of length dxe given
that the theory is fixed by {λ} is equal to the proba-
bility to find u in a corresponding element of length
du7:

P (xe|λ)dxe = f(u)du. (13)

The variable u and the Jacobian for the change of
variable from u to xe can be extracted from Eq. 12:

u =
xt(λ) − xe

∆
;

∣∣∣∣
du

dxe

∣∣∣∣ =
1

∆
(14)

such that:

P (xe|λ) =
f(xt(λ)−xe

∆ )

∆

=
1√
2π∆

e−
(xt

−xe)2

2∆2 . (15)

This is the expected result.

3.2. A simple example
We now consider the case of one experimental point

with a statistical and a systematic uncertainty:

xt(λ) = xe + u1∆1 + u2∆2 (16)

∆1 and ∆2 give the size of the uncertainties. u1 and
u2 have their own distribution f1(u1) and f2(u2) and
we use the same convention for their average and stan-
dard deviation as for u in the first example. This time
for each experimental measurement, there is an infinite
number of sets of u1, u2 that correspond to it, because
there is only one equation that relate xt, xe and u1 and
u2. The probability to find xe in an element of length
dxe given that the theory is fixed by {λ} is here equal
to the probability to find u1 and u2 in a corresponding
element of area du1 du2, with an integration over one
of the two variables:

P (xe|λ)dxe = du1

∫
du2f

1(u1)f
2(u2). (17)

7the repetition of the experiment will only be distributed ac-
cording to u around the true nature value of xt. However we are
trying to calculate the likelihood, the conditional probability of
the data given that the true nature value of xt is given by the
value of the {λ} under study

We choose to integrate over u2. u1 and the Jacobian
for the change of variable from u1 to xe are given by
Eq. 16:

u1 =
xt − xe − u2∆2

∆1
;

∣∣∣∣
du1

dxe

∣∣∣∣ =
1

∆1
(18)

such that:

P (xe|λ) =

∫
du2f

2(u2)
f1(xt

−xe
−u2∆2

∆1
)

∆1
(19)

If both f1(u1) and f2(u2) are Gaussian distribution
then we recover the expected result, as in Eq 10. Note
that this expected result is recovered if the uncertain-
ties are Gaussian distributed and the relationship be-
tween the theory, the data and the uncertainties are
given by Eq. 16. If that relationship is more complex
there is no guarantee to recover Eq. 10. In the general
case, the integral in Eq. 19 has to be done numerically.

3.3. Generalization:
We are now ready to give a generalization of the cal-

culation of the likelihood. We are considering Nobs

observables, and Nunc uncertainties (statistical and
systematic) parametrised by Nunc random variables
{u} = u1, u2, . . . , uNunc

with their own distributions,
f i(ui).

There areNobs relations between {xt}, {xe} and {u},
one for each observable:

Fi(x
e
i , {xt(λ)}, {u}) = 0. (20)

This givesNunc−Nobs independent ui that we choose
by convenience to be the u′is corresponding to the
systematic uncertainties. Without loosing generality
we assume that there is one statistical uncertainty
for each observable, and we organize the correspond-
ing ui with the same index as xe

i , such that the last
Nsys(= Nunc − Nobs) ui are the random variables for
the systematic uncertainties. For each set of measured
{xe} there is an infinite number of {u} sets that cor-
respond to it.

The probability to find {xe} in an element of volume∏Nobs

i=1 dxe
i given that the theory is fixed by {λ} is equal

to the probability to find the {u} in a corresponding

element of volume
∏Nunc

i=1 dxu , with an integration over
the independent ui

8 :

P ({xe}|λ)
Nobs∏

i=1

dxe
i = (

Nobs∏

k=1

duk)

∫
(

Nunc∏

i=Nobs+1

dui)

∗
Nunc∏

j=1

f j(uj) (21)

8if there are correlations between the ui replace
∏Nunc

j=1
fj(uj)

by f(u1, u2, ..., uNobs
) the global probability distribution of the

{u}
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The values of the {ui, i = 1, Nobs} (corresponding to
the statistical uncertainties) and the Jacobian, J(u→
xe), for the change of variable from those ui to the
xe

i can be extracted from the Nobs relations in Eq. 20.
The likelihood is then given by:

P ({xe}|λ) =

∫
(

Nunc∏

i=Nobs+1

dui)

Nunc∏

j=1

f j(uj)J(u→ xe) (22)

Often, the Fi relationship in Eq 20 have a simple
dependence on {xe} and the u′s corresponding to the
statistical uncertainties:

Fi(x
e
i , {xt(λ)}, {u}) = xe

i + ui∆i + · · · , (23)

where the ∆i are the size of the statistical uncertain-
ties. In that case, the Jacobian is simply given by:

J(u→ xe) =

Nobs∏

i=1

1

∆i
(24)

In most cases, the likelihood will not be analytically
calculable, and has to be calculated numerically again
with Monte Carlo technique.

In order to be able to calculate the likelihood we
therefore need:

• the relations between {xt}, {xe} and {u} as in
Eq. 20.

• the probability distribution of the random vari-
able associated with the uncertainties: f i(ui).

Unfortunately most of the time that information is
not reported by the experimenters, and/or is not avail-
able and certainly difficult to extract from papers. It
is only in the case that all the uncertainties are Gaus-
sian distributed 9 that it is sufficient to report the
size of the uncertainties and their correlation 10. This
is a very important issue, simply put, experiments
should always provide a way to calculate the likelihood,
P ({xe}|λ). This last fact was also the unanimous con-
clusion of a recent workshop on confidence limits held
at CERN [ 7]. This is particularly crucial when com-
bining different experiments together: the pull of each
experiment will depend on it and, as a result, so will
the central values of the deduced PDFs.

3.4. The central limit theorem
Assuming that the uncertainties are Gaussian dis-

tributed when they are not can lead to some serious

9or can be considered as Gaussian distributed, see later
10with an explicit statement that the uncertainties can be as-
sumed to be Gaussian distributed

problems. For example, minimizing the χ2 constructed
assuming Gaussian distribution will not even maximize
the likelihood. Indeed in the general case, the usually
defined χ2 will not appear in the likelihood.

It is often assumed that the central limit theorem
can be used to justify the assumption of Gaussian dis-
tribution for the uncertainties. It is therefore useful to
revisit this theorem. Y is a linear combination of n
independent Xi:

Y =
∑

i

ciXi (25)

σ2
Y =

∑

i

c2iσ
2
Xi

where the ci are constants and the σ are the standard
deviations. The theorem states that in the limit of
large n the distribution of Y will be approximately
Gaussian if σ2

Y is much larger than any component
c2iσ

2
Xi

from a non-Gaussian distributed Xi. For some
examples of how large n has to be, see Ref. [ 4].

Here is one way the theorem could be used: If the
Fi relations are given by:

xt
i(λ) = xe

i +

Nunc∑

k=1

uk∆ik

and if there is a large number of uncertainties, the
uk are independent and none of the ∆ik for a non-
Gaussian-like uk dominate then we know that the sum
will be approximately Gaussian distributed. One way
to express this fact is simply to assume that all the
uncertainties are Gaussian distributed. In this case,
we recover the usual expression for the likelihood.

A direct consequence is that if there are a few un-
certainties that dominate a measurement, then we cer-
tainly need to know their distribution. See Ref. [ 8], for
an example of a non-Gaussian dominant uncertainty in
a real life experiment.

3.5. Luminosity Uncertainty
We now turn to the calculation of the likelihood

when there is a normalization uncertainty, like the Lu-
minosity uncertainty. The F relation of Eq. 20 is given
by:

Lλ = xe + u1∆1, (26)

where we have assumed that we are measuring the pa-
rameter directly, xt = λ. The Luminosity, L, has also
an uncertainty:

L = L0 + u2∆2. (27)

We assume that both u1 and u2 are Gaussian dis-
tributed. Replacing Eq. 27 in Eq. 26, we obtain:

L0λ− xe = u1∆1 − u2∆2x
t. (28)
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This expression shows that L0λ − xe is the sum of
two Gaussian, such that the likelihood is a Gaussian
distribution with the standard deviation given by:

σ2 = ∆2
1 + (∆2x

t)2. (29)

The systematic uncertainty due to the Luminosity un-
certainty is proportional to the theory. Explicitly:

P (xe|λ) =
1√

2π
√

∆2
1 + (∆2λ)2

e
−

(L0λ−xe)2

2(∆2
1
+(∆2λ)2) (30)

This result can also be derived from the general ex-
pression of the likelihood, after doing the appropriate
integral analytically.

A few remarks are in order. In this case, eventhough
all the uncertainties are Gaussian distributed, the min-
imization of the χ2 would not maximize the likelihood
because the theory appears in the normalization of the
likelihood. Another mistake that leads to problems in
this case is to replace λ by xe/L0 in the uncertainty.
This mistake leads to a downwards bias. If xe has a
downward statistical fluctuation, a smaller systematic
uncertainty is assigned to it, such that when it is com-
bined with other measurements, it is given a larger
weight than it should.

This example shows clearly that we have to know if
the uncertainties are proportional to the theory or to
the experimental value. Assuming one when the other
is correct can lead to problems. It is clear that many
other systematic uncertainties depend on the theory
and that should also be taken into account.

4. Sources of uncertainties

There are many sources of uncertainties beside the
experimental uncertainties. They either have to be
shown to be small enough to be neglected or they need
to be included in the PDF uncertainties. For exam-
ples: variation of the renormalization and factorization
scales; non-perturbative and nuclear binding effects;
the choice of functional form of the input PDF at the
initial scale; accuracy of the evolution; Monte-Carlo
uncertainties; and dependence on theory cut-off.

5. Current fit

Draconian measures were needed to restart from
scratch and re-evaluate each issue. We fixed the renor-
malization and factorisation scales, avoided data af-
fected by nuclear binding and non-perturbative effects,
and use a MRS-style parametrization for the input
PDFs. The evolution of the PDFs is done by Mellin
transform method, see Ref. [ 9]. All the quarks are con-
sidered massless. We imposed a positivity constraint
on F2. A positivity constraint on other “observables”
could also be imposed.

Figure 9. Correlation between two of the parameters:
αs and λg, see the text for their definition. Constant
probability density levels are plotted.

At the moment we are using H1 and BCDMS (pro-
ton data) measurement of F p

2 for our core set. In order
to be able to use these data we have to assume that
all the uncertainties are Gaussian distributed 11. We
then can calculate the χ2(λ) and P (λ) (≈ exp−χ2/2)
with all the correlations taken into account 12. We
generated 50000 unit-weighted PDFs according to the
probability function. For 532 data points, we obtained
a minimum χ2 of 530 for 24 parameters. We have
plotted in Fig. 8, the probability distribution of some
of the parameters. Note that the first parameter is αs.
The value is smaller than the current world average.
However, it is known that the experiments we are us-
ing prefer a lower value of this parameter, see Ref. [
10], and as already pointed out, our current uncertain-
ties are lower limits. Note that the distribution of the
parameter is not Gaussian, indicating that the asymp-
totic region is not reached yet. In this case, the blind
use of the so-called chi-squared fitting method might
be misleading.

From this large set of PDFs, it is straightforward
to plot, for example, the correlation between different
parameters and to propagate the uncertainties to other
observables. In Fig. 9, the correlation between αs and
λg is presented. λg parametrizes the small Bjorken-
x behavior of the gluon distribution function at the

11no information being given about the distribution of the
uncertainties
12here we assumed that none of the systematic uncertainties
depend on the theory
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Figure 8. Plot of the distribution (black histograms) of four of the parameters. The first one is αs, the strong
coupling constant at the mass of the Z-boson. The line is a Gaussian distribution with same average and standard
deviation as the histogram

Figure 10. Correlation between the production cross
sections for the W and Z vector bosons at the Teva-
tron, σW and σZ (in nbarns, includes leptonic branch-
ing fraction). The solid and dashed lines show the
constraint due to the CDF measurement of the cross
section ratio.

initial scale: xg(x) ∼ x−λg . The lines are constant
probability density levels that are characterized by a
percentage, α, wich is defined such that 1 − α is the
ratio of the probability density corresponding to the
level to the maximum probability density.

In Fig. 10, we show the correlation between two
observables, the production cross sections for the W
and Z vector bosons at the Tevatron along with the
experimental result from CDF. The constant probabil-
ity density levels are shown. The agreement between
the theory and the data is qualitatively good.

Figure 11. Data-theory for the lepton charge asymme-
try in W decay at the Tevatron.

In Fig. 11, we present data-theory for the lepton
charge asymmetry in W decay at the Tevatron. The
data are the CDF result [ 11] and the theory corre-
spond to the average value over the PDF sets for each
data point, as defined in Eq. 7. The dashed line are
the theory plots corresponding to the one standard de-
viation over the PDF sets, also defined in Eq. 7. The
inner error bars are the statistical and systematic un-
certainties added in quadrature13. The outer error bar
correspond to the experiment and theory uncertainties
added in quadrature. The theory uncertainty is the un-

13The distribution of the uncertainties and the point to point
correlation of the systematic uncertainties were not published
such that we had to assume Gaussian uncertainties and no
correlation
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Figure 12. Same as in Fig. 10 for the weighted PDFs.

certainty associated with the Monte-Carlo integration,
the factorization and renormalization scale dependence
are small and can be neglected. 5000 PDFs were used
to generate this plot. It is well known that the data
we have included so far in our fit mainly constraint the
sum of the quark parton distribution weighted by the
square of the charges. The lepton charge asymmetry
is sensitive to the ratio of up-type to down-type quark
and is therefore not well constraint. We can add this
data set by simply weighting each PDF from our set
with the likelihood of the new data. The resulting new
range of the theory (calculated with weighted sums) is
given by the band of solid curves in Fig 11.

The effect of the inclusion of the lepton charge asym-
metry can be seen in Fig. 12, where the correlation be-
tween the W and the Z cross section is shown again
but for the weighted PDFs. The agreement with the
data is better than before, but the probability density
has now two maxima.

It has been argued that for Run II at the Tevatron,
the measurement of the number of W and Z produced
could be used as a measurement of the Luminosity.
That of course requires the knowledge of the cross sec-
tion with a small enough uncertainties. In Fig. 13, the
luminosity probability distribution is presented for the
unit-weighted and weighted PDF sets along with the
the luminosity used by CDF. The plot for the weighted
set has also two maxima, has in Fig. 12.

5.1. Conclusions
In conclusion, we remind the reader again that

all the results should be taken as illustration of the

Figure 13. Probability distribution of the luminosity
(run1a in pb−1) for the unit-weighted (right plot) and
weighted (middle plot) PDFs, compared to the value
used by CDF (left plot).

method and that not all the uncertainties have been
included in the fitting.
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EXPERIMENTAL UNCERTAINTIES AND
THEIR DISTRIBUTIONS IN THE

INCLUSIVE JET CROSS SECTION.

R. Hirosky
University of Illinois, Chicago, IL 60607

1. Introduction

This workshop has been an important channel of
communication between those performing global par-
ton distribution function (pdf) fits and the experimen-
tal groups who provide the data at the Tevatron. In
the particular case of jets analyses we have initiated a
detailed dialog on the sources and distributions of ex-
perimental uncertainties. As part of my participation
in the workshop, I have used the DØ inclusive jet cross
section as an example of a jet measurement with a com-
plex ensemble of uncertainties and have provided de-
scriptions of each component uncertainty. Such dialogs
will prove crucial in obtaining the best constraints on
allowable pdf models from the data.

2. Uncertainties on the CDF and DØ inclusive
jet cross sections

In the first meeting we summarized the jet inclusive
cross section measurements from the DØ [ 1] and CDF [
2] experiments. In particular, we illustrated the major
corrections applied to the data, namely jet ET scale
and ET resolution corrections, as well as the deriva-
tion methods for these corrections employed by each
experiment. To review these methods see [ 3]-[ 4] and
references therein.

The uncertainties by component in the CDF and
DØ inclusive jet cross sections are shown in Figs.14-
15. Each component of the uncertainty reported for
the CDF cross section is taken to be completely cor-
related across jet ET , while individual components are
independent of one another. The DØ uncertainties
(shown here symmetrized) are also independent of one
another, however each component may be either fully
or partially correlated across jet ET . In the case of the
energy scale uncertainty the band shown is constructed
from eight subcomponents.

2.1. Comparisons with theory
The two experiments have used various means to

compare their measurements to theoretical predictions.
CDF has published a comparison of their cross sec-
tion to a next-to-leading order (NLO) QCD calcula-
tion using a variety of pdf models by means of var-
ious normalization-insensitive, shape-dependent sta-
tistical measures [ 2] (Kolmogorov-Smirnov, Cramèr-
VonMises, Anderson-Darling). DØ has formulated a
covariance matrix using each uncertainty component
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Figure 14. Uncertainties by component in the CDF
inclusive jet cross section,
1/(∆η∆ET )

∫ ∫
d2σ/(dET dη)dET dη, 0.1 < |η| < 0.7

in the cross section and its ET correlation information
and employed a χ2 test to compare to NLO QCD [
1]. It is difficult to generalize the various shape statis-
tics to include non-trivial correlations in the systematic
uncertainties and although correlations may be easily
added to a covariant error matrix χ2 tests can show
biases when faced with correlated scale errors. Ref-
erence [ 6] illustrates how correlated scale errors may
lead to biases in parameter estimation by noting that
systematic errors reported as a fraction of the observed
data can be evaluated as artificially small when applied
to a point that fluctuates low. This bias may be mit-
igated by parameterizing the systematic scale errors
as percentages of a smooth model of the data or by
placing them on the smooth theory directly (see con-
tributions to these proceedings by W. Giele, S. Keller,
and D. Kosower).

Other difficulties arise in interpretation of χ2 proba-
bilities when uncertainties show large correlations. The
probability that a prediction agrees with the data for
a given χ2 is calculated assuming that the χ2 follows
the distribution:

f(x;n) =
(x)(n/2−1)exp(x/2)

2(n/2)Γ(n/2)
(31)

where n is the number of degrees of freedom of the
data set. The probability of getting a worse value of
χ2 than the one obtained for the comparison is given
by:
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Figure 15. Uncertainties by component in the DØ
inclusive jet cross section,
1/(∆η∆ET )

∫ ∫
d2σ/(dET dη)dET dη, |η| < 0.5

P (χ2;n) =

∫ ∞

χ2

f(x;n)dx (32)

Hence, to verify the accuracy of the probabilities
quoted in the recent DØ cross section papers (inclu-
sive jet cross section [ 1] and dijet mass spectrum [ 7]),
the χ2 distribution may be compared to Equation 31
with the appropriate number of degrees of freedom.
The χ2 distribution for the DØ dijet mass spectrum
was tested by developing a Monte Carlo program [ 8]
that generates many trial experiments based an ansatz
cross section determined from the best smooth fit to
the data (with a total of 15 bins, or 15 degrees of free-
dom). The first step generated trials based on sta-
tistical fluctuations taking the true number of events
per bin as given by the ansatz cross section. The trial
spectra were then generated for each bin according to
Poisson statistics. The χ2 for each of these trials was
calculated using the difference between the true and
the generated values. Figure 16 (solid curve) shows
the χ2 distribution for all of the generated trials. The
distribution agrees well with Equation 31 for 15 degrees
of freedom. The next step assumes that the uncertain-
ties correlated as in the measurement of the dijet mass
cross section. Trial spectra are generated using these
uncertainties to generate a χ2 distribution (see the dot-
ted curve in Fig. 16). It is clear that χ2 distribution
very similar to the curve predicted by Equation 31.
Hence, any probability generated using Equation 32
will be approximately correct. The resulting χ2 dis-
tribution was fitted by Equation 31 and the resulting
fit is consistent with the distribution if 14.6 degrees of
freedom are assumed.

A similar test using the DØ inclusive jet cross section
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Figure 16. χ2 distribution for random fluctuations
around the nominal DØ Dijet Mass cross section.
(Solid) Errors are fluctuated as uncorrelated. (Dashed)
ET correlations are included.

finds the distributions shown in Fig. 17. The two distri-
butions agree well for χ2 values below approximately
15 and then begin to diverge slowly. The distribu-
tion based on the cross section uncertainties includes
a larger tail than the χ2 distribution generated with
the wholly uncorrelated uncertainties, implying that
probabilities based on a χ2 analysis will be slightly un-
derestimated. See also the talks by B. Flaugher in this
workshop for additional observations and comments on
χ2 analyses.

3. Beyond the Normal assumption

Independent of any difficulties due to correlated un-
certainties, a χ2 test necessarily relies on the assump-
tion that the uncertainties follow a normal distribution.
This may be a reasonable approximation in some cases.
Upon close inspection we expect this assumption to
be generally false for most rapidly varying observables
(i.e. steeply falling cross section measurements). Per-
haps, as in the most obvious case, some experimental
uncertainties will simply be non-Gaussian in their dis-
tribution and furthermore symmetric uncertainties in
the abscissa variable will develop into asymmetric un-
certainties when propagated through to the measured
distribution. The latter case is illustrated as follows.
Consider an ET -independent jet ET scale error of 2%.
What is it’s effect on an inclusive jet cross section ver-
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Figure 17. χ2 distribution for random fluctuations
around the nominal DØ inclusive jet cross section.
(Solid) errors are fluctuated as uncorrelated. (Dashed)
ET correlations are included.

sus ET ? Jets are shifted bin-to-bin by fluctuating their
ET values within the 2% range and as a result of the
steeply falling cross section, more jets from low ET

values are shifted into higher ET bins by one extreme
of this scale uncertainty than the in reverse shift for
higher ET jets. Figure. 18 shows how a flat 2% ET

scale uncertainty alters the measured cross section us-
ing a smooth fit to the DØ data as the nominal cross
section model. In general the degree of this asymmetry
will depend on the steepness of the measured distribu-
tion. In order to define a covariance matrix, such errors
are typically symmetrized.

The use of an approximate covariance matrix will
also result in a loss of sensitivity when errors are shown
to follow distributions with tails smaller than in a nor-
mal distribution. As an example we show a correction
factor with uncertainties of this type from the DØ jet
cross section analysis in Fig. 19. This figure shows the
hadronic response correction for jets as a function of
jet energy. The correction is derived from an analysis
of γ + jet data [ 4]. The bands delimit regions that
contain ensembles of deviations from the nominal re-
sponse within certain confidence limits. It is evident
that in this case assuming the uncertainty follows a
normal distribution with variance equal to the 68%
limits shown will tend of underestimate the sensitiv-
ity of the data for excluding certain classes of theories.
Figure 20 shows the range of cross section uncertainty
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Figure 18. Example of a 2% ET scale error propagated
through an inclusive jet cross section measurement.

due to the response component only as a function of
confidence level for several ET values of the DØ cross
section.

4. Application to pdf constraints

In this workshop W. Giele, S. Keller, and D. Kosower
have reported on a method for extracting pdf distribu-
tions with quantitative estimates of pdf uncertainties.
In effect their method [ 5] uses a Bayesian approach
that integrates sets of pdf parameterizations over prop-
erly weighted samples of experimental uncertainties to
produce a set of pdf models consistent with the data
within a given confidence level. The basic method may
be extended to use data with arbitrary error distribu-
tions and correlations. For such methods to function
reliably the experiments must be able to provide de-
tailed descriptions of their error distributions. Giele
et al. make a distinction between ‘errors on the data’
and ‘errors on the theory’ for estimation of the most
likely pdf models. In this context we take only uncer-
tainties depending directly on the number of events in
a bin as ‘errors on the data’. Other typical sources of
uncertainty, luminosity, energy scale, resolution, etc.,
may be treated as ‘errors on the theory’ in that they
are in some sense independent of the statistical pre-
cision of the data and represent how an underlying,
true, distribution may be distorted by observation in
the experiment.

As a result of these dialogs, we have revisited the DØ
response uncertainty (our largest uncertainty in the in-
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The outer bands show the extreme deviation in re-
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energy.

clusive jet cross section measurement) from Fig. 19 and
generated a sampling of the probability density func-
tion for distributions in it parameters. This probability
density function contains all the relevant information
on both the shape of the uncertainty distribution and
point-to-point correlations. It is clear that providing
such information is a significant enhancement from tra-
ditional methods of summarizing experimental uncer-
tainties. Optimum utilization of the data demands a
detailed understanding and reporting of its associated
uncertainties. Through our fruitful discussions in this
workshop, we look forward to setting an example for
the reporting of experimental uncertainties and to fully
exploiting our cross section data in pdf analyses in the
near future.
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Abstract

Parton densities are important input parameters for
SUSY particle cross section predictions at the Teva-
tron. Accurate theoretical estimates are needed to
translate experimental limits, or measured cross sec-
tions, into SUSY particle mass bounds or mass deter-
minations. We study the PDF dependence of next-to-
leading order cross section predictions, with emphasis
on a new set of parton densities [ 1]. We compare
the resulting error to the remaining theoretical uncer-
tainty due to renormalization and factorization scale
variation in next-to-leading order SUSY-QCD.

1. Introduction

The search for supersymmetric particles is among
the most important endeavors of present and future
high energy physics. At the upgraded pp̄ collider Teva-
tron, the searches for squarks and gluinos (and espe-
cially the lighter stops and sbottoms), as well as for
the weakly interacting charginos and neutralinos, will
cover a wide range of the MSSM parameter space [
2, 3].

The hadronic cross sections for the production of
SUSY particles generally suffer from unknown theo-
retical errors at the Born level [ 4]. For strongly in-
teracting particles the dependence on the renormaliza-
tion and factorization scale has been used as a measure
for this uncertainty, leading to numerical ambiguities
of the order of 100%. For Drell-Yan type weak pro-
duction processes the dependence on the factorization
scale is mild. However, a comparison of leading and
next-to-leading order predictions [ 5] reveals that the
impact of higher-order corrections is much larger than
the estimate through scale variation would have sug-
gested. The use of next-to-leading order calculations [
5, 6, 7] is thus mandatory to reduce theoretical un-

14Supported in part by DOE grant DE-FG02-95ER-40896 and
in part by the University of Wisconsin Research Committee with
funds granted by the Wisconsin Alumni Research Foundation
15Supported in part by the EU Fourth Framework Programme
‘Training and Mobility of Researchers’, Network ‘Quantum
Chromodynamics and the Deep Structure of Elementary Par-
ticles’, contract FMRX-CT98-0194 (DG 12 - MIHT)

certainties to a level at which one can reliably extract
mass limits from the experimental data.

In addition to the scale ambiguity and the impact of
perturbative corrections beyond next-to-leading order,
hadron collider cross section are subject to uncertain-
ties coming from the parton densities and the asso-
ciated value of the strong coupling. Previously, the
only way to estimate the PDF errors was to compare
the best-fit results from various global PDF analyses.
Clearly, this is not a reliable measure of the true un-
certainty. As a first step towards a more accurate error
estimate, the widely used sets CTEQ [ 8] and MRST [
9] now offer different variants of PDF sets, e.g. using
different values of the strong coupling constant. In this
letter we compare their predictions to the preliminary
GKK parton densities [ 1], which provide a system-
atic way of propagating the uncertainties in the PDF
determination to new observables.

2. Stop Pair Production

For third generation squarks the off-diagonal left-
right mass matrix elements do not vanish, but lead to
mixing stop (and sbottom) states. The lighter mass
eigenstate, denoted as t̃1, is expected to be the lightest
strongly interacting supersymmetric particle. More-
over, its pair production cross section, to a very good
approximation, only depends on the stop mass, in con-
trast to the light flavor squark production. Neverthe-
less, considering the different decay channels compli-
cates the analyses [ 3, 10]. At the Tevatron the frac-
tion of stops produced in quark-antiquark annihilation
and in gluon fusion varies strongly with the stop mass.
Close to threshold the valence quark luminosity is dom-
inant, but for lower masses a third of the hadronic cross
section can be due to incoming gluons [ 7].

In Figure 21 we compare the total t̃1-pair production
cross sections for three sets of parton densities: only for
incoming quarks do the CTEQ4 and MRST99 results
lie on top of each other. For gluon fusion the corre-
sponding cross sections differ by ∼ 10%. The GKK set
centers around a significantly smaller value. This is in
part due to the low average value 〈αs(GKK)〉 = 0.108,
which is expected to increase after including more ex-
perimental information in the GKK analysis. But even
the normalized cross section σ/α2

s is still smaller by
35% compared to CTEQ4 and MRST99 because of
the entangled fit of the strong coupling constant and
the parton densities. However, the width of the Gaus-
sian fit to the GKK results gives an uncertainty of
2% and 8% for the quark-antiquark and gluon fusion
channel, similar to the difference between CTEQ4 and
MRST99.

For heavier stop particles, Figure 22, the gluon lu-
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minosity is strongly suppressed due to the large final
state mass, and mainly valence quarks induced pro-
cesses contribute to the cross section. The Gaussian
distribution of the GKK results has a width of ∼ 2%.
The comparably large difference between CTEQ4 and
MRST99 is caused by the small fraction of gluon in-
duced processes, since the gluon flux at large values of
x differs for CTEQ4 and MRST99 by approximately
40%.

3. Chargino/Neutralino Production

The production of charginos and neutralinos at the
Tevatron is particularly interesting in the trilepton
χ̃0

2χ̃
±

1 and the light chargino χ̃+
1 χ̃

−

1 channels [ 11]. The
next-to-leading order corrections to the cross sections [
5] reduce the factorization scale dependence, but at the
same time introduce a small renormalization scale de-
pendence. A reliable estimate of the theoretical error
from the scale ambiguity will thus only be possible be-
yond next-to-leading order.

The Gaussian distribution of the GKK parton
densities for light chargino pairs is shown in Fig-
ure 23. For the chosen mSUGRA parameters (m0 =
100 GeV, A0 = 300 GeV,m1/2 = 150 GeV) the width is
∼ 2%, as one would expect from the quark-antiquark
channel of the stop production. But in contrast to
the stop production, where all quark luminosities add
up, the chargino/neutralino channels can be extremely
sensitive to systematic errors in different parton den-
sities due to destructive interference between s and t
channel diagrams. The total trilepton cross section for
example will therefore be a particular challenge for a
reliable error estimate.

4. Outlook

We have briefly reviewed the status of the theoretical
error analysis of SUSY cross sections at the Tevatron.
For strongly interacting final state particles, the inclu-
sion of next-to-leading order corrections reduces the
renormalization and factorization scale ambiguity to a
level ∼< 10% where the size of the PDF errors becomes
phenomenologically relevant. We have compared dif-
ferent recent PDF sets provided by the CTEQ [ 8] and
MRST [ 9] collaborations to the preliminary GKK par-
ton densities [ 1]. The large spread in the cross section
predictions can mainly be attributed to the low aver-
age value of the strong coupling associated with the
GKK sets. We expect this spread to be reduced once
more data have been included in the GKK analysis
and the corresponding average value of the strong cou-
pling becomes closer to the world average. For weak
supersymmetric Drell-Yan type processes [ 5] the scale

dependence at NLO cannot serve as a measure for the
theoretical error since the renormalization scale depen-
dence is only introduced at NLO. The PDF induced
errors for e.g. the case of χ̃+

1 χ̃
−

1 production are small;
however, interference effects between the different par-
tonic contributions must be taken into account.

The recently available variants of PDF sets provided
by CTEQ and MRST and, in particular, the GKK par-
ton densities allow for the first time a systematic explo-
ration of PDF uncertainties for the prediction of SUSY
particle cross sections. The preliminary GKK results
do not yet allow a conclusive answer, but they point
the way towards a complete and reliable error analysis
in the near future.
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Figure 21. NLO production cross section for a light
stop. The Gaussian fits the preliminary GKK parton
densities. The renormalization/factorization scale is
varied around the average final state mass.
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Figure 22. NLO production cross section for a heav-
ier stop, dominated by incoming valence quarks. The
Gaussian fits the preliminary GKK parton densi-
ties. The renormalization/factorization scale is varied
around the average final state mass.
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THEORY UNCERTAINTIES

George Sterman and Werner Vogelsang16

C.N. Yang Institute for Theoretical Physics SUNY
at Stony Brook, Stony Brook, NY 11794-3840, USA.

Abstract

Parton distribution functions are determined by the
comparison of finite-order calculations with data. We
briefly discuss the interplay of higher order corrections
and PDF determinations, and the use of soft-gluon re-
summation in global fits.

1. Factorization & the nlo model

A generic inclusive cross section for the process A+
B → F + X with observed final-state system F , of
total mass Q, can be expressed as

Q4 dσAB→FX

dQ2
= φa/A(xa, µ

2) ⊗ φb/B(xb, µ
2)

⊗ σ̂ab→FX (z,Q, µ) , (33)

with z = Q2/xaxbS. The σ̂ab are partonic hard-
scattering functions, σ̂ = σBorn +(αs(µ

2)/π)σ̂(1) + . . . .
They are known to NLO for most processes in the stan-
dard model and its popular extensions. Corrections be-
gin with higher, uncalculated orders in the hard scat-
tering, which respect the form of Eq. (33). The discus-
sion is simplified in terms of moments with respect to
τ = Q2/S,

σ̃AB→FX =

∫ 1

0

dτ τN−1 Q4 dσAB→FX/dQ
2

=
∑

a,b

φ̃a/A(N,µ2) σ̃ab→FX(N,Q, µ) φ̃b/B(N,µ2) ,(34)

16This work was supported in part by the National Science Foun-
dation, grant PHY9722101.
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where the moments of the φ’s and σ̂ab→FX are defined
similarly.

Eqs. (33) and (34) are starting-points for both the
determination and the application of parton distribu-
tion functions (PDFs), φi/H , using 1-loop σ̂’s [ 1, 2, 3]
We may think of this collective enterprise as an “NLO
model” for the PDFs, and for hadronic hard scattering
in general. For precision applications we ask how well
we really know the PDFs [ 4, 5, 6]. Partly this is a
question of how well data constrain them, and partly
it is a question of how well we could know them, given
finite-order calculations in Eqs. (33) and (34). We will
not attempt here to assign error estimates to theory.
We hope, however, to give a sense of how to distin-
guish ambiguity from uncertainty, and how our partial
knowledge of higher orders can reduce the latter.

2. Uncertainties, schemes & scales

It is not obvious how to quantify a “theoretical un-
certainty”, since the idea seems to require us to esti-
mate corrections that we haven’t yet calculated. We
do not think an unequivocal definition is possible, but
we can try at least to clarify the concept, by consid-
ering a hypothetical set of nucleon PDFs determined
from DIS data alone [ 4]. To make such a determina-
tion, we would invoke isospin symmetry to reduce the
set of PDF’s to those of the proton, φa/P , and then
measure a set of singlet and nonsinglet structure func-
tions, which we denote F (i). Each factorized structure
function may be written in moment space as

F̃ (i)(N,Q) =
∑

a

C̃(i)
a (N,Q, µ) φ̃a/P (N,µ2) , (35)

in terms of which we may solve for the parton distri-
butions by inverting the matrix C̃,

φ̃a/P (N,µ2) =
∑

i

C̃−1(i)
a (N,Q, µ) F̃ (i)(N,Q) . (36)

With “perfect” F̃ ’s at fixed Q, and with a specific
approximation for the coefficient functions, we could
solve for the moment-space distributions numerically,
without the need of a parameterization. In a world
of perfect data, but of incompletely known coeffi-
cient functions, uncertainties in the parton distribu-
tions would be entirely due to the “theoretical” uncer-
tainties of the C’s:

δφ̃a/P (N,µ) =
∑

i

δC̃−1(i)
a (N,Q, µ) F̃ (i)(N,Q) . (37)

Our question now becomes, how well do we know the
C’s? In fact this is a subtle question, because the coef-
ficient functions depend on choices of scheme and scale.

Factorization schemes are procedures for defining co-
efficient functions perturbatively. For example, choos-
ing for F2 the LO (quark) coefficient function in Eq.
(36) defines a DIS scheme (with C̃ independent of µ,
which is then to be taken as Q in φ̃). Computing the
C’s from partonic cross sections by minimal subtrac-
tion to NLO defines an NLO MS scheme, and so on.
Once the choices of C’s and µ are made, the PDF’s are
defined uniquely.

Evolution in an MS or related scheme, enters
through

µ
d

dµ
φ̃a/H(N,µ2) = −Γab(N,αs(µ

2)) φ̃b/H(N,µ2)

µ
d

dµ
C̃(i)

c (N,Q, µ) = C̃
(i)
d (N,Q, µ) Γdc(N,αs(µ

2)) .(38)

In principle, by Eq. (38), the scale-dependence of the

C
(i)
a exactly cancels that of the PDFs in Eq. (35) and,

by extension, in Eq. (33). This cancelation, however,
requires that each C and the anomalous dimensions Γ
be known to all orders in perturbation theory.

To eliminate µ-dependence up to order αn+1
s , we

need σ̂ to order αn
s and the Γab to αn+1

s . One-loop
(NLO) QCD corrections to hard scattering require two-
loop splitting functions, which are known. The com-
plete form of the NNLO splitting functions, is still
somewhere over the horizon [ 7]. Even when these
are known, it will take some time before more than a
few hadronic hard scattering functions are known at
NNLO.

We can clarify the role of higher orders by relating
structure functions at two scales,Q0 and Q. Once we
have measured F (N,Q0), we may predict F (N,Q) in
terms of the relevant anomalous dimensions and coef-
ficient functions by

F (N,Q) = F (N,Q0) e

∫
Q

Q0

dµ′

µ′
Γ(N,αs(µ

′2))

×
[
C̃(N,Q,Q)

C̃(N,Q0, Q0)

]
. (39)

This prediction, formally independent of PDFs and in-
dependent of the factorization scale, has corrections
from the next, still uncalculated order in the anoma-
lous dimension and in the ratio of coefficient functions.
The asymptotic freedom of QCD gives a special role to
LO: only the one-loop contribution to Γ diverges with
Q in the exponent, and contributes to the leading, log-
arithmic scale breaking. NLO corrections already de-
crease as the inverse of the logarithm of Q, NNLO
as two powers of the log. Thus, the theory is self-
regulating towards high energy, where dependence on
uncalculated pieces in the coefficients and anomalous
dimensions becomes less and less important.
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The general successes of the NLO model strongly
suggest that relations like (39) are well-satisfied for a
wide range of observables and values ofN (or x) in DIS
and other processes. This does not mean, however,
that we have no knowledge of, or use for, information
from higher orders. In particular, near x = 1 PDFs are
rather poorly known [ 8]. At the same time, the ratio
of C’s depends on N , and if αs lnN is large, it becomes
important to control higher-order dependence on lnN .
This is a task usually referred to as resummation, to
which we now turn.

3. Resummation

Let us continue our discussion of DIS, describing
what is known about the N -dependence of the coeffi-
cient functions C, as a step toward understanding the
role of higher orders. Specializing again for simplic-
ity to nonsinglet or valence, the resummed coefficient
function may be written as [ 9, 10]

C̃res(N,Q, µ) = C̃NLO
sub (N,Q, µ)+CDIS

δ eEDIS(N,Q,µ), (40)

where “sub” implies a subtraction on C̃NLO to keep
C̃res exact at order αs, and where CDIS

δ corresponds to
the NLO N -independent (“hard virtual”) terms. The
exponent resums logarithms of N :

EDIS(N,Q, µ) = (41)
∫ µ2

Q2/N̄

dµ′2

µ′2

[
A(αs(µ

′2)) ln(N̄µ′2/Q2) +B(αs(µ
′2))

]
,

with N̄ ≡ NeγE , and with

A(αs) =

αs

π
CF

[
1 +

αs

2π

(
CA

(
67

18
− π2

6

)
− 10

9
TF

)]

B(αs) =
3

2
CF

αs

2π
. (42)

Eq. (42) is accurate to leading (LL) and next-to-leading
logarithms (NLL) in N in the exponent: αm

s lnm+1N
and αm

s lnmN , respectively. The N dependence of the
ratio C̃res

2 (N,Q,Q)/C̃NLO
2 (N,Q,Q) is shown in Fig.

24, with Q2 = 1, 5, 10, 100 GeV2. At N = 1 the
ratio is unity. It is less than unity for moderate N , but
then begins to rise, with a slope that increases strongly
for small Q. At low Q2 and large N , higher orders can
be quite important. What does this mean for PDFs?
We can certainly refit PDFs with resummed coefficient
functions, and we see that the high moments of such
PDFs are likely to be quite different from those from
NLO fits.

To get a sense of how such an NLL/NLO-MS scheme
might differ from a classic NLO-MS scheme, we resort
to a model set of resummed distributions, determined

Figure 24. Ratio of Mellin-N moments of resummed
and NLO MS-scheme quark coefficient functions for
F2. The numbers denote the value of Q2 in GeV2. We
have chosen µ = Q.

as follows. We define valence PDFs in the resummed
scheme by demanding that their contributions to F2

match those of the corresponding NLO valence PDFs
at a fixed Q = Q0, which is ensured by

φ̃res(N,Q2
0) = φ̃NLO(N,Q2

0)
C̃NLO

2 (N,Q0, Q0)

C̃res
2 (N,Q0, Q0)

. (43)

Using the resummed parton densities from Eq. (43),
we can generate the ratios F res

2 (x,Q)/FNLO
2 (x,Q).

The result of this test, picking Q2
0 = 100 GeV2 is

shown in Fig. 25, for the valence F2(x,Q) of the pro-
ton, with x = 0.55, 0.65, 0.75 and 0.85. The NLO
distributions were those of [ 2], and the inversion of
moments was performed as in [ 11]. The effect of re-
summation is moderate for most Q. At small values
of Q, and large x, the resummed structure function
shows a rather sharp upturn. One also finds a gentle
decrease toward very large Q [ 12]. We could interpret
this difference as the uncertainty in the purely NLO
valence PDFs implied by resummation.

From this simplified example, we can already see
that the use of resummed coefficient functions is not
likely to make drastic differences in global fits to PDFs
based on DIS data, at least so long as the region of
small Q2, of 10 GeV2 or below, is avoided at very large
x. At the same time, it is clear that a resummed fit
will make some difference at larger x, where PDFs are
not so well known. We stress that a full global fit will
be necessary for complete confidence.
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Figure 25. Ratio of the valence parts of the resummed
and NLO proton structure function F2(x,Q

2), as a
function of Q2 for various values of Bjorken-x. For
F res

2 , the ‘resummed’ parton densities have been de-
termined through Eq. (43).

4. Resummed hadronic scattering

Processes other than DIS play an important role
in global fits, and in any case are of paramount phe-
nomenological interest. Potential sources of large cor-
rections can be identified quite readily in Eq. (34).
At higher orders, factors such as αs ln2N , can be as
large as unity over the physically relevant range of z in
some processes. In this case, they, and their scale de-
pendence can be competitive with NLO contributions.
Since they make up well-defined parts of the correction
at each higher order, however, it is possible to resum
them. To better determine PDFs in regions of phase
space where such corrections are important, we may
incorporate resummation in the hard-scattering func-
tions that determine PDFs.

The Drell-Yan cross section is the benchmark for the
resummation of logs of 1−z, or equivalently, logarithms
of the moment variable N [ 9],

σ̂DY
qq̄ (N,Q, µ) = σBorn(Q) CDY

δ eEDY(N,Q,µ)

+O(1/N) . (44)

The exponent is given in the MS scheme by

EDY(N,Q, µ) = 2

∫ µ2

Q2/N̄2

dµ′2

µ′2
A(αs(µ

′2)) ln N̄

+2

∫ Q2

Q2/N̄2

dµ′2

µ′2
A(αs(µ

′2)) ln

(
µ′

Q

)
, (45)

with A as in Eq. (42), and where we have exhibited
the dependence on the factorization scale, setting the
renormalization scale to Q. Just as in Eq. (42) for
DIS, Eq. (45) resums all leading and next-to-leading
logarithms of N .

It has been noted in several phenomenological appli-
cations that threshold resummation, and even fixed-
order expansions based upon it, significantly reduce
sensitivity to the factorization scale [ 13]. To see why,
we rewrite the moments of the Drell-Yan cross section
in resummed form as

σDY
AB(N,Q)

=
∑

q

φq/A(N,µ) σ̂DY
qq̄ (N,Q, µ) φq̄/B(N,µ)

=
∑

q

φq/A(N,µ) eEDY(N,Q,µ)/2σBorn(Q) CDY
δ

× φq̄/B(N,µ) eEDY(N,Q,µ)/2 + O(1/N) . (46)

The exponentials compensate for the lnN part of
the evolution of the parton distributions, and the µ-
dependence of the resummed expression is suppressed
by a power of the moment variable,

µ
d

dµ

[
φq/A(N,µ) eEDY(N,Q,µ)/2

]
= O(1/N) . (47)

This surprising relation holds because the function
A(αs) in Eq. (42) equals the residue of the 1/(1 − x)
term in the splitting function Pqq. Thus, the remaining
N -dependence in a resummed cross section still begins
at order α2

s, but the part associated with the 1/(1−x)
term in the splitting functions has been canceled to
all orders. Of course, the importance of the remain-
ing sensitivity to µ depends on the kinematics and the
process. In addition, although resummed cross sec-
tions can be made independent of µ for all lnN , they
are still uncertain at next-to-next-to leading logarithm
in N , simply because we do not know the function A at
three loops. Notice that none of these results depends
on using PDFs from a resummed scheme, because MS
PDFs, whether resummed or NLO, evolve the same
way. The remaining, uncanceled dependence on the
scales leaves room for an educated use of scale-setting
arguments [ 14]. The connection between resummation
and the elimination of scale dependence has also been
emphasized in [ 15].

Scale dependence aside, can we in good conscience
combine resummed hard scattering functions in Eq.
(33) with PDFs from an NLO scheme? This wouldn’t
make much sense if resummation significantly changed
the coefficient functions with which the PDFs were
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originally fit. As Fig. 25 shows, however, this is un-
likely to be the case for DIS at moderate x. Thus,
it makes sense to apply threshold resummation with
NLO PDFs to processes and regions of phase space
where there is reason to believe that logs are more im-
portant at higher orders than for the input data to the
NLO fits.

At the same time, a set of fits that includes thresh-
old resummation in their hard-scattering functions can
be made [ 10], and their comparison to strict NLO fits
would be quite interesting. Indeed, such a compari-
son would be a new measure of the influence of higher
orders. A particularly interesting example might be
to compare resummed and NLO fits using high-pT jet
data [ 3].

5. Power-suppressed corrections

In addition to higher orders in αs(µ
2), Eq. (33) has

corrections that fall off as powers of the hard-scattering
scale Q. In contrast to higher orders, these corrections
require a generalization of the form of the factorized
cross section. Often power corrections are parameter-
ized as h(x)/[(1 − x)Q2] in inclusive DIS, where they
begin at twist four. In DIS, this higher twist term influ-
ences PDFs when included in joint fits with the NLO
and NNLO models, and vice-versa [ 16, 17, 18]. As
in the case with higher orders, such “power-improved”
fits should be treated as new schemes.

6. Conclusions

The success of NLO fits to DIS and the studies of
resummation above suggest that over most of the range
of x, theoretical uncertainties of the NLO model are
not severe. At the same time, to fit large x with more
confidence than is now possible may require including
the resummed coefficient functions.

Resummation is especially desirable for global fits
that employ a variety of processes, such as DIS and
high-pT jet production, which differ in available phase
space near partonic threshold. In a strictly NLO ap-
proach, uncalculated large corrections are automati-
cally incorporated in the PDFs themselves. As a re-
sult, the NLO model cannot be expected to fit simulta-
neously the large-x regions of processes with differing
logs of 1 − x in their hard-scattering functions, unless
these higher-order corrections are taken into account.

The results illustrated in the figures suggest that
these considerations may be important in DIS with
Q2 below a few GeV2 and at large x, where they may
have substantial effects on estimates of higher twist in
DIS. In hadronic scattering, large-N (x → 1) resum-
mation, which automatically reduces scale dependence,
may play an even more important role than in DIS.
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PARTON DISTRIBUTION FUNCTIONS:
EXPERIMENTAL DATA AND THEIR

INTERPRETATION

L. de Barbaro

Northwestern University, Evanston, IL, USA.

1. Introduction

The last few years have seen both new and improved
measurements of deep inelastic and related hard scat-
tering processes and invigorated efforts to test the lim-
its of our knowledge of parton distributions (PDF) and
assess their uncertainty. Recent global analysis fits
to the wealth of structure functions and related data
provide PDFs of substantial sophistication compared
to the previous parametrizations [ 1][ 2]. The new
PDF sets account for correlated uncertainty in strong
coupling constant, variation from normalization uncer-
tainty of data sets, theoretical assumptions regarding
higher twists effects, initial parametrization form and
starting Qo value, etc. Range of potential variation
in gluon density, strange and charm quark densities
or, recently, also in d quark distribution [ 3] are also
provided. Participants of this Workshop in the PDF
group primarily concentrated on finding new ways of
inclusion of systematic uncertainties associated with
experimental data into the framework of global anal-
yses. Development in likelihood calculation by Giele,
Keller, and Kossover, studies by CDF and D0 collabo-
rators, and a parallel work of CTEQ collaboration are
presented in these proceedings.

New or improved results from several experiments
have contributed to better knowledge of PDFs, how-
ever, there are still areas where the interpretation of ex-
perimental data is not clear. Few of these contentious
issues will be discussed in this note.

2. Issues in the Interpretation of Experimental
Data

2.1. Gluon distribution at moderate to high x
In principle, many processes are sensitive to the

gluon distribution, but its measurement is difficult be-
yond x > 0.2 where it becomes very small. Fermilab
second generation– direct photon experiment E706, al-
though quite challenging experimentally, was designed
to constrain gluon distribution at high x. For proton-
nucleon interactions in LO, direct photons are pro-
duced through Compton scattering off gluon (gq → γq)
90% of the time in the E706 kinematic range.

The first direct photon measurements, as well as
WA70 [ 4] were in agreement with the NLO theory
and were used in several generations of global analy-
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sis fits. However, series of revisits of theoretical issues
in 1990-ties (see, e.g., discussion in [ 5]) pointed to
a large dependence of the NLO calculation on renor-
malization and factorization scales and necessity to in-
clude yet-unknown photon fragmentation function in
the calculations. Since the available

√
(s) energy is low

(20-40 GeV) for the fixed target experiments missing
perturbation orders in the calculation are important.
Moreover, as shown by the E706 analysis, the trans-
verse momentum of initial state partons (kT ) dramat-
ically affects the differential cross sections measured
versus transverse momentum of the outgoing photon
(pT ). E706 measured the so-called kT smearing by ob-
serving kinematic imbalance in production of πo pairs,
πoγ, and double-direct photons and found kT values ≈
1 GeV and increasing with

√
(s) [ 6]. Similar results

are obtained in dijets and Drell-Yan data. KT is be-
lieved to arise from both soft gluon emissions and non-
perturbative phenomena. NLO calculations smeared
with kT estimated from these measurements are in-
creased by a factor of 2 to 4 (see Figure 26) and agree
with the E706 direct photon and π0 data on proton and
Be targets, at

√
(s) of 31 and 38 GeV. A strong indi-

cation of kT effects and the need for soft gluon resum-
mation comes also from the analysis of double direct
photon production. Both the NLO resummed theory
and kT smeared NLO theory describe the double direct
photon kinematics and cross section very well, in stark
contrast to the “plain” NLO prediction [ 7].

A com-
parison of current gluon distribution parametrizations
indicates our lack of knowledge of gluon in the mod-
erate to high x range, (see Figure 27). The hardest
gluon is the CTEQ4HJ distribution. Here the gluon
distribution is forced to follow the high ET inclusive
differential jet cross section measured at CDF. Latest
PDF sets by CTEQ match the WA70 direct photon
data at

√
(s)=23 GeV with no kT , and require kT =1.1

(1.3) GeV/c for the E706 data at
√

(s)=31 (38) GeV.
Due to the difficulty in reconciling this approach no di-
rect photon data is used in the CTEQ5 global analysis.
The MRST group chose a different treatment: gluon
distributions are reduced at high x to accommodate
some kT smearing for both WA70 and E706 resulting
in a moderately good description of the data and three
PDF sets spanning the extremes (shown in Figure 27).
The variety of predictions agree at low x, but differ
widely at high x. The uncertainty in the kT model-
ing, its unknown shape versus pT , and potential dis-
crepancy between WA70 and E706 measurements (see
discussions in [ 6] and [ 8]) require theoretical work to
help resolve this outstanding controversy. Luckily, the
interest in direct photon physics and its importance
for gluon determination has caught on, and 98 and
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Figure 26. Data and Theory agree after kT smear-
ing for π0 and γ production in pBe interactions at 800
GeV. Data-Theory/Theory comparison for various val-
ues of kT is shown in lower insert.

99 have seen a flurry of publications, notably: “Soft-
gluon resummation and NNLO corrections for direct
photon production” by N. Kidonakis, J. Owens (hep-
ph/9912388), “Results in next-to-leading-log prompt-
photon hadroproduction” by S.Catani, M.Mangano,
C.Oleari (hep-ph/9912206), “Unintegrated parton dis-
tributions and prompt photon hadroproduction” by
M.Kimber, A.Martin, M.Ryskin (DTP/99/100), “Ori-
gin of kT smearing in direct photon production” by
H.Lai, H.Li (hep-ph/9802414), “Sudakov resummation
for prompt photon production in hadron collisions”
by S.Catani, M.Mangano, P.Nason (hep-ph/9806484),
etc. New resummation results are also expected from
a group of G.Sterman and Vogelsang.

In addition to direct photons, the Tevatron jet and
dijet measurements are also sensitive to the gluon dis-
tribution (in the moderate x region). These measure-
ments and comparisons to theory have their own set of
concerns, e.g. jet definition, which is never exactly the
same in the data and in the NLO calculation or higher
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Figure 27. Recent PDF sets indicate substantial dis-
agreement about the shape and size of gluon distri-
bution at moderate to high x. CTEQ5 results closely
follow CTEQ4M curve shown here.

order correlations in the underlying event (see discus-
sion in, e.g., [ 9]). The jet cross sections, strongly dom-
inated by qq̄ scattering, are also sensitive to changes in
high x valence distributions. An unresolved issue in the
jet cross section analysis is also a lack of full scaling be-
tween 630 and 1800 GeV data, predicted by QCD, and
a discrepancy between the D0 and CDF measurements
of this scaling ratio at lowest xT = ET /

√
(s).

2.2. Valence distributions at high x
Apart from modifications to gluon and charm quark

distributions, the valence d quark has received the
biggest boost in high x region compared to previous
PDF sets. The change is on the order of 30% at x=0.6
and Q2 = 20GeV2 and comes from inclusion of a new
observable in the global analysis fits, namely W-lepton
asymmetry measured at CDF. Precise measurement of
W-lepton asymmetry serves as an independent check
on the u and d quark distributions obtained from fits

to deep inelastic data. The observable is directly cor-
related with the slope of the d/u ratio in the x range
of 0.1-0.3. The consequence of this new constraint is
that the predicted Fn

2 /F
p
2 ratio is increased and the

description of the NMC measurement of F d
2 /F

p
2 is im-

proved relative to earlier PDF sets. There remain,
however, two areas of uncertainty regarding valence
distributions at high x: the value of d/u ratio at x=1
and a question regarding a need for nuclear corrections
to F d

2 /F
p
2 NMC measurement. Deuterium is a loosely

bound nucleus, of low A, and traditionally no correc-
tions for nuclear effects have been applied. However,
an analysis of SLAC F2 data on different targets un-
der the assumption that nuclear effects scale with the
nuclear binding for all nuclei predicts nuclear correc-
tion for deuterium of 4±1% at x=0.7 [ 10]. There is
also a lack of clarity regarding d/u value at 1. A non-
perturbative QCD-motivated models of the 1970’s ar-
gue that the d/u ratio should approach 0.2 at highest
x, whereas any standard form of the parametrization
used in global fits drive this ratio to zero. The CTEQ
collaboration has performed studies of change in d/u
ratio, depending on assumptions regarding nuclear ef-
fects in deuterium and the value of d/u ratio at x=1 [
3]. CTEQ5UD PDF set includes nuclear corrections
for deuterium in F d

2 /F
p
2 ; its change relative to CTEQ5

is a plausible range for d distribution uncertainty in
light of this unresolved question, see Figure 28.

2.3. Resolved discrepancies between PDF fits
and the data

During the duration of this Workshop (March - Nov
1999), two of the outstanding discrepancies between
PDF fits or two sets of the experimental data have
been resolved.

One of these was the near 20% discrepancy at small
x (0.007-0.1) between structure function F2 measured
in muon (NMC) and neutrino (CCFR) deep inelastic
scattering [ 11]. For the purpose of comparison of these
structure functions, NMC Fµp

2 was “corrected” for nu-
clear shadowing, measured in muon scattering, to cor-
respond to FµFe

2 , and rescaled by the 5/18 charge rule
to convert from muon to neutrino F2. On the other
hand, CCFR result was obtained in the framework of
massless charm quark to avoid kinematic differences
between muon and neutrino scattering off the strange
quark (νs → µc versus µs → µs) resulting from mass
of the charm. Any one of the above procedures could
have had an unquantified systematic uncertainty re-
sulting in the observed disagreement.

New analysis from CCFR, presented at this Work-
shop [ 12], indicates that the SF measured in CCFR is
in agreement with the F2 of NMC, within experimental
uncertainties. The analysis used a new measurement
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Figure 28. The d/u ratio for CTEQ5 and CTEQ5UD
PDF sets, illustrating difference from nuclear correc-
tion for NMC F2 on deuterium. The dotted and dashed
lines correspond to two different assumptions regard-
ing value of d/u at x=1.

of the difference between neutrino and antineutrino
structure functions xF3, rather than the ∆xF3=4(s-
c) parametrization used earlier. Comparison between
calculations [ 13] indicated that there were large theo-
retical uncertainties in the charm production modeling
for both ∆xF3 and the “slow rescaling” correction that
converts from massive to massless charm quark frame-
work. Therefore, in the new analysis “slow rescaling”
correction was not applied and ∆xF3 and F2 were
extracted from two parameter fits to the data. The
new measurement agrees well with the Mixed Flavor
Scheme (MFS) for heavy quark production as imple-
mented by MRST group. To compare with charged
lepton scattering data each of the experimental results
were divided by the theoretical predictions for F2, us-
ing either light or heavy quark schemes implemented
by MRST. The ratios of Data/Theory for F ν

2 (CCFR),
Fµ

2 (NMC), and F e
2 (SLAC) are shown in Figure 29.

Systematic errors, except for the overall normalization
uncertainties, are included. The MFS MRST predic-

tions have higher twist and target mass correction ap-
plied. Apart from resolving the NMC-CCFR discrep-
ancy, the new measurement had also implication of rul-
ing out one of the Variable Flavor Scheme calculations
available on the market [ 14].

Figure 29. The ratio of the massive F ν
2 measured at

CCFR to the prediction of MFS MRST prediction with
target mass and higher twist corrections applied. Also
shown are the ratios of F2µ (NMC) and F e

2 (SLAC) to
the MFS MRST predictions.

Another example is that of Drell-Yan production
(pd → µ+µ−) as measured by Fermilab experiment
E772, shown in Figure 30. The MRST fits are com-
pared to the differential cross section in xF = x1 − x2

and in
√

(τ) =
√

(M2/s), where x1 and x2 are the tar-
get and projectile fractional momenta, andM - dimuon
pair mass. The discrepancy, visible at high xF and low√

(τ) was hard to reconcile, since in this kinematic
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region the dominant contribution to the cross section
comes from u(x1)×[ū(x2)+d̄(x2)] evaluated at x1 ≈ xF

and x2 ≈ 0.03, well constrained by the deep inelastic
scattering data. Since then, the E772 experiment has
reexamined their acceptance corrections and released
an erratum to their earlier measurement [ 15]. The
new values differ from the old ones only for large xF

and small values of mass M , and the new cross section
is decreased in this region by a factor up to two.

Figure 30. Drell-Yan production from E772 compared
to the MRST prediction. The theory curves include K
factor of 0.96 and the cross sections for different values
of xF are offset by a factor of 10. Corrected E772 data
reduce the discrepancy at high xF and low τ .

3. Outlook for New Structure Function Mea-
surements

Measurements of neutral and charged current cross
sections in positron - proton collisions at large Q2 from
the 1994-97 data have just been published by HERA
experiments [ 16][ 17]. The data sample corresponds
to an integrated luminosity of 35 pb−1. The Q2 evo-
lution of the parton densities of the proton is tested
over 150-30000 GeV2, Bjorken x between 0.0032-0.65,
and yields no significant deviation from the prediction
of perturbative QCD. These data samples are not yet
sensitive eunough to pin down the d quark distribution
at high x, however, an expected 1000 pb−1 in positron

and electron running in years 2001-2005, achievable af-
ter HERA luminosity upgrade, will have a lot to say
about 20% -like effects at high x in the ratio of valence
distributions17.

HERA’s 1995-1999 data sets, not yet included in the
global analysis fits, were ploted against standard PDFs
and showed a good agreement over the new kinematic
range that these data span (extention to lower yet x
and higher Q2 compared to 1994 data) [ 2]. HERA’s
very large statistics and improved precision will allow
further reduction of normalization uncertainty of PDF
fits. This is important for QCD prediction like W and
Z total cross sections at Tevatron - current 3% nor-
malization uncertainty in PDFs directly translates to
3% uncertainty for these cross sections. Improvements
in the measurements may need to go in hand with
progress in the perturbative calculations; it is likely
that NNLO analysis of deep inelastic scattering data
will change the level and/or x dependence of PDFs at
the percentish-type level.

One can expect continued progress in heavy quark
treatment and in the theoretical understanding of soft
gluon and non-perturbative effects in the direct photon
production. In that case, the E706 data are sufficiently
precise to severely constrain the gluon distribution.

One of the few currently active structure function
– related experiments is also NuTeV (Fermilab E815).
Better understanding of charm quark issues (see dis-
cussion in preceeding section) and much improved cal-
ibration of NuTeV detector relative to CCFR’s (with
a similar statistical power of the data set) is expected
to yield a more precise measurement of structure func-
tions and differential cross section for ν and ν̄ inter-
action in Fe. Sign-selected beam and several advance-
ments in the NLO theory of heavy quark production
will allow NuTeV to improve systematic uncertainty in
the new measurement of the strange seas s and s̄.

Last but not least, Run II physics promises to be a
good source of new constraints on parton distributions.
W-lepton asymmetry will be measured with much im-
proved precision and in an expanded rapidity range.
New observables are proposed for further exploring col-
lider constrains on PDFs, e.g., W and Z rapidity dis-
tributions [ 18]. And hopefully, many of the issues in
jet measurements will be addressed and understood –
they are high on J.Wormesley Christmas wish-list! [
19]
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Abstract

We present a status report of a variety of projects
related to heavy quark production and parton distri-
butions for the Tevatron Run II.

1. Introduction

The production of heavy quarks, both hadropro-
duction and leptoproduction, has become an impor-
tant theoretical and phenomenological issue. While
the hadroproduction mode is of direct interest to this
workshop,[ 1] we shall find that the simpler leptopro-
duction process can provide important insights into the
fundamental production mechanisms.[ 2, 3, 4, 5] There-
fore, in preparation for the Tevatron Run II, we must
consider information from a variety of sources includ-
ing charm and bottom production at fixed-target and
collider lepton and hadron facilities.

For example, the charm contribution to the total
structure function F2 at HERA, is sizeable, up to
∼ 25% in the small x region.[ 4] Therefore a proper
description of charm-quark production is required for
a global analysis of structure function data, and hence
a precise extraction of the parton densities in the pro-
ton. These elements are important for addressing a
variety of issues at the Tevatron.

In addition to the studies investigated at the Run II
workshop series,16 we want to call attention to the

16In particular, in the Run II B-Physics workshop, the stud-
ies of Working Group 4: Production, Fragmentation, Spec-

troscopy, organized by Eric Braaten, Keith Ellis, Eric Lae-
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extensive work done in the Standard Model Physics
(and more) at the LHC Workshop organized by
Guido Altarelli, Daniel Denegri, Daniel Froidevaux,
Michelangelo Mangano, Tatsuya Nakada which was
held at CERN during the same period.17 In partic-
ular, the investigations of the LHC b-production group
(convenors: Paolo Nason, Giovanni Ridolfi, Olivier
Schneider, Giuseppe Tartarelli, Vikas Pratibha) and
the QCD group (convenors: Stefano Catani, Davison
Soper, W. James Stirling, Stefan Tapprogge, Michael
Dittmar) are directly relevant to the material discussed
here. Furthermore, our report limits its scope to the is-
sues discussed within the Run II workshop; for a recent
comprehensive review, see Ref. [ 6].

2. Schemes for Heavy Quark Production

Heavy quark production also provides an important
theoretical challenge as the presence of the heavy quark
mass, M , introduces a new scale into the problem. The
heavy quark mass scale, M , in addition to the charac-
teristic energy scale of the process (which we will label
here generically as E), will require a different orga-
nization of the perturbation series depending on the
relative magnitudes of M and E. We find there are
essentially two cases to consider.18

1. For the case of E ∼ M , heavy-quark production
is calculated in the so-called fixed flavor number
(FFN) scheme from hard processes initiated by
light quarks (u, d, s) and gluons, where all effects
of the charm quark are contained in the pertur-
bative coefficient functions. The FFN scheme in-
corporates the correct threshold behavior, but for
large scales, E ≫M , the coefficient functions in
the FFN scheme at higher orders in αs contain
potentially large logarithms lnn(E2/M2), which
may need to be resummed.[ 7, 8, 9, 10]

2. For the case of E ≫M , it is necessary to include
the heavy quark as an active parton in the pro-
ton. This serves to resum the potentially large
logarithms lnn(E2/M2) discussed above. The
simplest approach incorporating this idea is the
so-called zero mass variable flavor number (ZM-
VFN) scheme, where heavy quarks are treated as

nen, William Trischuk, Rick Van Kooten, and Scott Menary,
addressed many issues of direct interest to this subgroup.
The report is in progress, and the web page is located at:
http://www-theory.fnal.gov/people/ligeti/Brun2/
17The main web page is located at:
http://home.cern.ch/∼mlm/lhc99/lhcworkshop.html
18We emphasize that the choice of a prescription for dealing with
quark masses in the hard scattering coefficients for deeply inelas-
tic scattering is a separate issue from the choice of definition of
the parton distribution functions. For all of the prescriptions
discussed here, one uses the standard MS definition of parton
distributions.

infinitely massive below some scale E ∼ M and
massless above this threshold. This prescription
has been used in global fits for many years, but
it has an error of O(M2/E2) and is not suited
for quantitative analyses unless E ≫M .

While the extreme limits E ≫ M and E ∼ M
are straightforward, much of the experimental data
lie in the intermediate region As such, the correct
PQCD formulation of heavy quark production, capa-
ble of spanning the full energy range, must incorporate
the physics of both the FFN scheme and the ZM-VFN
scheme. Considerable effort has been made to devise a
prescription for heavy-flavor production that interpo-
lates between the FFN scheme close to threshold and
the ZM-VFN scheme at large E.

The generalized VFN scheme includes the heavy
quark as an active parton flavor and involves matching
between the FFN scheme with three active flavors and
a four-flavor prescription with non-zero heavy-quark
mass. It employs the fact that the mass singulari-
ties associated with the heavy-quark mass can be re-
summed into the parton distributions without taking
the limit M → 0 in the short-distance coefficient func-
tions, as done in the ZM-VFN scheme. This is precisely
the underlying idea of the Aivazis–Collins–Olness–
Tung (ACOT) ACOT scheme[ 11] which is based on
the renormalization method of Collins–Wilczek–Zee
(CWZ).[ 12] The order-by-order procedure to imple-
ment this approach has now been systematically es-
tablished to all orders in PQCD by Collins.[ 13]

Recently, additional implementations of VFN
schemes have been defined in the literature. While
these schemes all agree in principle on the result
summed to all orders of perturbation theory, the way
of ordering the perturbative expansion is not unique
and the results differ at finite order in perturbation
theory. The Thorne–Roberts (TR) [ 14] prescription
has been used in the MRST recent global analyses of
parton distributions.[ 15] The BMSN and CNS pre-
scriptions have made use of the O(α2

s) calculations by
Smith, van Neerven, and collaborators[ 8, 9] to carry
these ideas to higher order. The boundary conditions
on the PDF’s at the flavor threshold become more com-
plicated at this order; in particular, the PDF’s are no
longer continuous across the N to N+1 flavor threshold.
Buza et al.,[ 8] have computed the matching conditions,
and this has been implemented in an evolution pro-
gram by CSN.[ 9] More recently, a Simplified-ACOT
(SACOT) scheme inspired by the prescription advo-
cated by Collins [ 13] was introduced;[ 16] we describe
this new scheme in Sec. 4.
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3. From Low To High Energy Scale
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Figure 31. F c
2 for x = 0.01 as a function of Q2 in GeV

for two choices of µ as obtained within the O(α1
s) FFN

and (ACOT) VFN schemes. For details, see Ref. [ 17].

To compare the features of the FFN scheme with
the ACOT VFN scheme19 concretely, we will take the
example of heavy quark production in DIS; the fea-
tures we extract from this example are directly ap-
plicable to the hadroproduction case relevant for the
Tevatron Run II. One measure we have of estimating
the uncertainty of a calculated quantity is to examine
the variation of the renormalization and factorization
scale dependence. While this method can only provide
a lower bound on the uncertainty, it is a useful tool.

In Fig. 31, we display the component of F c
2 for the

s + W → c sub-process at x = 0.01 plotted vs. Q2.
We gauge the scale uncertainty by varying µ from
1/2µ0to 2.0µ0 with µ0 =

√
Q2 +m2

c . In this figure,
both schemes are applied to O(α1

s). We observe that
the FFN scheme is narrower at low Q, and increases
slightly at larger Q. This behavior is reasonable given
that we expect this scheme to work best in the thresh-
old region, but to decrease in accuracy as the unre-
summed logs of lnn(Q2/m2

c) increase.
Conversely, the ACOT VFN scheme has quite the

opposite behavior. At low Q, this calculation displays
mild scale uncertainty, but at large Q this uncertainty
is significantly reduced. This is an indication that the
resummation of the lnn(Q2/m2

c) terms via the heavy
quark PDF serves to decrease the scale uncertainty at a
given order of perturbation theory. While these general
results were to be expected, what is surprising is the
magnitude of the scale variation. Even in the threshold
region where Q ∼ mc we find that the VFN scheme is
comparable or better than the FFN scheme.

19In this section we shall use the ACOT VFN scheme for this il-
lustration. The conclusions extracted in comparison to the FFN
scheme are largely independent of which VFN scheme are used.

At present, the FFN scheme has been calculated to
one further order in perturbation theory, O(α2

s). While
the higher order terms do serve to reduce the scale
uncertainty, it is only at the lowest values of Q that the
O(α2

s) FFN band is smaller than the O(α1
s) VFN band.

Recently, O(α2
s) calculations in the VFN scheme have

been performed;[ 9] it would be interesting to extend
such comparisons to these new calculations.

Let us also take this opportunity to clarify a mis-
conception that has occasionally appeared in the liter-
ature. The VFN scheme is not required to reduce to
the FFN scheme at Q = mc. While it is true that the
VFN scheme does have the FFN scheme as a limit, this
matching depends on the definitions of the PDF’s, and
the choice of the µ scale.20 In this particular example,
even at Q = mc, the resummed logs in the heavy quark
PDF can yield a non-zero contribution which help to
stabilize the scale dependence of the VFN scheme re-
sult.21

The upshot is that even in the threshold region, the
resummation of the logarithms via the heavy quark
PDF’s can help the stability of the theory.

4. Simplified ACOT (SACOT) prescription

We investigate a modification of the ACOT scheme
inspired by the prescription advocated by Collins.[ 13]
This prescription has the advantage of being easy to
state, and allowing relatively simple calculations. Such
simplicity could be crucial for going beyond one loop
order in calculations.22

Simplified ACOT (SACOT) prescription.
Set MH to zero in the calculation of the
hard scattering partonic functions σ̂ for in-
coming heavy quarks.

For example, this scheme tremendously simplifies
the calculation of the neutral current structure func-
tion F charm

2 even at O(α1
s). In other prescriptions, the

tree process γ + c → c + g and the one loop process
γ+c→ cmust be computed with non-zero charm mass,
and this results in a complicated expression.[ 20] In the
SACOT scheme, the charm mass can be set to zero so
that the final result for these sub-processes reduces to
the very simple massless result.

While the SACOT scheme allows us to simplify the
calculation, the obvious question is: does this simpli-
fied version contain the full dynamics of the process.

20The general renormalization scheme is laid out in the CWZ
paper[ 12]. The matching of the PDF’s at O(α1

s) was computed
in Ref. [ 18] and Ref. [ 19]. The O(α2

s) boundary conditions were
computed in Ref. [ 8].
21Cf., Ref. [ 17] for a detailed discussion.
22See Ref. [ 16] for a detailed definition, discussion, and
comparisons.
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Figure 32. F c
2 as a function of Q2 in GeV computed

to O(α1
s) in the ZM-VFN, FFN, ACOT, and SACOT

schemes using CTEQ4M PDF’s. Fig. a) x = 0.1 , and
Fig. b) x = 0.001. Figures taken from Ref. [ 16].

To answer this quantitatively, we compare prediction
for F charm

2 obtained with 1) the SACOT scheme at or-
der α1

s with 2) the predictions obtained with the origi-
nal ACOT scheme, 3) the ZM-VFN procedure in which
the charm quark can appear as a parton but has zero
mass, and 4) the FFN procedure in which the charm
quark has its proper mass but does not appear as a
parton. For simplicity, we take µ = Q.

In Fig. 32 we show F c
2 (x,Q) as a function of Q

for x = 0.1 and x = 0.001 using the CTEQ4M par-
ton distributions.[ 21, 22] We observe that the ACOT
and SACOT schemes are effectively identical through-
out the kinematic range. There is a slight difference
observed in the threshold region, but this is small
in comparison to the renormalization/factorization µ-
variation (not shown). Hence the difference between
the ACOT and SACOT results is of no physical con-
sequence. The fact that the ACOT and SACOT
match extremely well throughout the full kinematic
range provides explicit numerical verification that the
SACOT scheme fully contains the physics.

Although we have used the example of heavy quark
leptoproduction, let us comment briefly on the impli-
cations of this scheme for the more complex case of
hadroproduction.[ 1, 23, 24, 25] At present, we have
calculations for the all the O(α2

s) hadroproduction sub-
processes such as gg → QQ̄ and gQ → gQ. At O(α3

s)
we have the result for the gg → gQQ̄ sub-processes,

but not the general result for gQ → ggQ with non-
zero heavy quark mass. With the SACOT scheme, we
can set the heavy quark mass to zero in the gQ→ ggQ
sub-process and thus make use of the simple result al-
ready in the literature.23 This is just one example of
how the SACOT has the practical advantage of allow-
ing us to extend our calculations to higher orders in
the perturbation theory. We now turn to the case of
heavy quark production for hadron colliders.

5. Heavy Quark Hadroproduction

Figure 33. Differential cross section for b-production
vs. pT comparing the Fixed-Order (FO) and the
Fixed-Order Next-to-Leading-Log (FONLL) result in
the MS scheme. The bands are obtained by vary-
ing independently the renormalization and factoriza-
tion scales. The cross section is scaled by m5

T with

mT =
√
m2

b + p2
T , and

√
s = 1800GeV , mb = 5GeV ,

y = 0, with CTEQ3M PDF’s. Figure taken from Cac-
ciari, Greco, and Nason, Ref. [ 27].

There has been notable progress in the area of
hadroproduction of heavy quarks. The original NLO
calculations of the gg → bb̄ subprocess were performed
by Nason, Dawson, and Ellis [ 23], and by Beenakker,
Kuijf, van Neerven, Meng, Schuler, and Smith[ 24].
Recently, Cacciari and Greco[ 26] have used a NLO
fragmentation formalism to resum the heavy quark
contributions in the limit of large pT ; the result is a
decreased renormalization/factorization scale variation
in the large pT region. The ACOT scheme was applied
to the hadroproduction case by Olness, Scalise, and

23For a related idea, see the fragmentation function formalism
of Cacciari and Greco[ 26] in the following section.
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Tung.[ 25] More recently, the NLO fragmentation for-
malism of Cacciari and Greco has been merged with
the massive FFN calculation of Nason, Dawson, and
Ellis by Cacciari, Greco, and Nason,[ 27]; the result
is a calculation which matches the FFN calculation at
low pT , and takes advantage of the NLO fragmentation
formalism in the high pT region, thus yielding good be-
havior throughout the full pT range. This is displayed
in Fig. 33 where we see that this Fixed-Order Next-
to-Leading-Log (FONLL) calculation displays reduced
scale variation in the large pT region, and matches on
the the massive NLO calculation in the small pT re-
gion. Further details can be found in the report of the
LHC Workshop b-production group.24

6. W + Heavy Quark Production

PDF Set Mass (GeV) LO WQQ̄ NLO

CTEQ1M mc=1.7 96 20 161
MRSD0’ mc=1.7 81 20 138
CTEQ3M mc=1.7 83 20 141
CTEQ3M mb=5.0 0.17 9.09 9.33

Table 3
The W + charm-tagged one-jet inclusive cross section
in pb for LO,W+QQ̄, and NLO (including theW+QQ̄
contribution) using different sets of parton distribution
functions. Table is taken from Ref. [ 28].

The precise measurement of W plus heavy quark
(W+Q) events provides an important information on
a variety of issues. Measurement of W+Q allows us
to test NLO QCD theory at high scales and investi-
gate questions about resummation and heavy quark
PDF’s. For example, if sufficient statistics are avail-
able, W+charm final states can be used to extract
information about the strange quark distribution. In
an analogous manner, the W+bottom final states are
sensitive to the charm PDF; furthermore, W+bottom
can fake Higgs events, and are also an important back-
ground for sbottom (̃b) searches.

The cross sections for W plus tagged heavy quark jet
were computed in Ref. [ 28], and are shown in Table. 3.
Note that this process has a large K-factor, and hence
comparison between data and theory will provide dis-
cerning test of the NLO QCD theory. While the small
cross sections of these channels hindered analysis in

24 The LHC Workshop b-production group is organized by
Paolo Nason, Giovanni Ridolfi, Olivier Schneider, Giuseppe
Tartarelli, Vikas Pratibha, and the report is currently in prepa-
ration. The webpage for the b-production group is located at
http://home.cern.ch/n/nason/www/lhc99/

Figure 34. Differential dσ/dpγ
T for γ plus tagged heavy

quark production as compared with Pythia and the
NLO QCD results. Figure taken from Ref. [ 29]. NLO
QCD calculations from Ref. [ 30].

Run I, the increased luminosity in Run II can make
this a discriminating tool. For example, Run I pro-
vided minimal statistics on W+Q, but there was data
in the analogous neutral current channel γ+Q. The
NLO QCD cross sections for γ plus heavy quark were
computed in Ref. [ 30]. Fig. 34 displays preliminary
Tevatron data from Run I and the comparison with
both the PYTHIA Monte Carlo and the NLO QCD
calculations; again, note the large K-factor. If similar
results are attainable in the charged current channel
at Run II, this would be revealing.

Extensive analysis the W+Q production channels
were performed in Working Group I: “QCD tools for
heavy flavors and new physics searches,” and we can
make use of these results to estimate the precision to
which the strange quark distribution can be extracted.
We display Fig. 35 (taken from the WGI report[ 31])
which shows the distribution in x of the s-quarks which
contribute to the W+c process.25 This figure indicates
that there will good statistics in an x-range compara-
ble to that investigated by neutrino DIS experiments;[
2, 3] hence, comparison with this data should provide
an important test of the strange quark sea and the
underlying mechanisms for computing such processes.

25For a detailed analysis of this work including selection crite-
ria, see the report of Working Group I: “QCD Tools For Heavy
Flavors And New Physics Searches,” as well as Ref. [ 31].
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Figure 35. Distribution of Events/0.01 vs. x of the
s-quarks which contribute to the s + W → c process.
Figure taken from Ref. [ 31].

7. The Strange Quark Distribution

A primary uncertainty for W+charm production
discussed above comes from the strange sea PDF, s(x),
which has been the subject of controversy for sometime
now. One possibility is that new analysis of present
data will resolve this situation prior to Run II, and
provide precise distributions as an input the the Teva-
tron data analysis. The converse would be that this
situation remains unresolved, in which case new data
from Run II may help to finally solve this puzzle.

The strange distribution is directly measured by
dimuon production in neutrino-nucleon scattering.26

The basic sub-process is νN → µ−cX with a subse-
quent charm decay c→ µ+X ′.

The strange distribution can also be extracted indi-
rectly using a combination of charged (W±) and neu-
tral (γ) current data; however, the systematic uncer-
tainties involved in this procedure make an accurate
determination difficult.[ 32] The basic idea is to use
the relation

FNC
2

FCC
2

=
5

18

{
1 − 3

5

(s+ s̄) − (c+ c̄) + ...

q + q̄

}
(48)

to extract the strange distribution. This method is
complicated by a number of issues including the xF3

component which can play a crucial role in the small-

26Presently, there are a number of LO analyses, and one NLO
analysis.[ 2, 3]
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Figure 36. Variation of x s(x, µ) for three choices of µ,
and also with a “SR” (slow-rescaling) type correction:
x→ x(1 +m2

c/Q
2).

x region—precisely the region where there has been a
long-standing discrepancy.

The structure functions are defined in terms of the
neutrino-nucleon cross section via:

d2σν,ν̄

dx dy
=

G2
F ME

π

[
F2(1 − y) + xF1y

2 ± xF3y(1 − y

2
)
]

It is instructive to recall the simple leading-order cor-
respondence between the F ’s and the PDF’s:27

F
(ν,ν̄)N
2 = x

{
u+ ū+ d+ d̄+ 2s+ 2c

}

xF
(ν,ν̄)N
3 = x

{
u− ū+ d− d̄± 2s∓ 2c

}
(49)

Therefore, the combination ∆xF3:

∆xF3 = xF νN
3 − xF ν̄N

3 = 4x{s− c} (50)

can be used to probe the strange sea distribution,
and to understand heavy quark (charm) production.
This information, together with the exclusive dimuon
events, may provide a more precise determination of
the strange quark sea.

To gauge the dependence of ∆xF3 upon various fac-
tors, we first consider xs(x, µ) in Fig. 36, and then
27To exhibit the basic structure, the above is taken the limit of
4 quarks, a symmetric sea, and a vanishing Cabibbo angle. Of
course, the actual analysis takes into account the full structure.[
32]
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the full NLO ∆xF3 in Fig. 37; this allows us to see the
connection between ∆xF3 and xs(x, µ) beyond leading
order. In Fig. 36 we have plotted the quantity xs(x, µ)
vs. Q2 for two choices of x in a range relevant to the
the dimuon measurements. We use three choices of the
µ2 scale: {Q2, Q2 + m2

c , P
2
Tmax

}. The choices Q2 and
Q2 +m2

c differ only at lower values of Q2; the choice
P 2

Tmax
is comparable to Q2 and Q2 +m2

c at x = 0.08
but lies above for x = 0.015. The fourth curve labeled
Q2 + “SR” uses µ2 = Q2 with a “slow-rescaling” type
of correction which (crudely) includes mass effects by
shifting x to x(1 + m2

c/Q
2); note, the result of this

correction is significant at large x and low Q2.
In Fig. 37 we have plotted the quantity ∆xF3/2 for

an isoscalar target computed to order α1
s. We dis-

play three calculations for three different x-bins rele-
vant to strange sea measurement. 1) A 3-flavor cal-
culation using the GRV98[ 33] distributions,28 and

µ =
√
Q2 +m2. 2) A 3-flavor calculation using the

28The scale choice µ =
√

Q2 + m2 for the 3-flavor GRV calcula-
tion precisely cancels the collinear strange quark mass logarithm
in the coefficient function thereby making the coefficient function
an exact scaling function, i.e. independent of µ2.

CTEQ4HQ distributions, and µ = Q. 3) A 4-flavor
calculation using the CTEQ4HQ distributions, and
µ = Q.

The two CTEQ curves show the effect of the charm
distribution, and the GRV curve shows the effect of
using a different PDF set. Recall that the GRV calcu-
lation corresponds to a FFN scheme.

The pair of curves using the CTEQ4HQ distribu-
tions nicely illustrates how the charm distribution
c(x, µ2) evolves as ln(Q2/m2

c) for increasing Q2; note,
c(x, µ2) enters with a negative sign so that the 4-
flavor result is below the 3-flavor curve. The choice
µ = Q ensures the 3- and 4-flavor calculation coin-
cide at µ = Q = mc; while this choice is useful for
instructive purposes, a more practical choice might be
µ ∼

√
Q2 +m2, cf., Sec. 2, and Ref. [ 17].

For comparison, we also display preliminary data
from the CCFR analysis.[ 32] While there is much free-
dom in the theoretical calculation, the difference be-
tween these calculations and the data at low Q values
warrants further investigation.

8. Conclusions and Outlook

A detailed understanding of heavy quark produc-
tion and heavy quark PDF’s at the Tevatron Run II
will require analysis of fixed-target and HERA data
as well as Run I results. Comprehensive analysis of
the combined data set can provide incisive tests of the
theoretical methods in an unexplored regime, and en-
able precise predictions that will facilitate new particle
searches in a variety of channels. This document serves
as a progress report, and work on these topics will con-
tinue in preparation for the Tevatron Run II.

This work is supported by the U.S. Department
of Energy, the National Science Foundation, and the
Lightner-Sams Foundation.
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PARTON DENSITIES FOR HEAVY
QUARKS
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Abstract

We compare parton densities for heavy quarks.

Reactions with incoming heavy (c,b) quarks are of-
ten calculated with heavy quark densities just like
those with incoming light mass (u,d,s) quarks are cal-
culated with light quark densities. The heavy quark
densities are derived within the framework of the so-
called zero-mass variable flavor number scheme (ZM-
VFNS). In this scheme these quarks are described by
massless densities which are zero below a specific mass
scale µ. The latter depends on mc or mb. Let us
call this scale the matching point. Below it there are
nf massless quarks described by nf massless densities.
Above it there are nf +1 massless quarks described by
nf +1 massless densities. The latter densities are used
to calculate processes with a hard scale M ≫ mc,mb.
For example in the production of single top quarks via
the weak process qi + b → qj + t, where qi, qj are
light mass quarks in the proton/antiproton, one can
argue that M = mt should be chosen as the large scale
and mb can be neglected. Hence the incoming bottom
quark can be described by a massless bottom quark
density.

The generation of these densities starts from the so-
lution of the evolution equations for nf massless quarks
below the matching point. At and above this point
one solves the evolution equations for nf + 1 mass-
less quarks. However in contrast to the parameteri-
zation of the x-dependences of the light quarks and
gluon at the initial starting scale, the x dependence of
the heavy quark density at the matching point is fixed.
In perturbative QCD it is defined by convolutions of
the densities for the nf quarks and the gluon with spe-
cific operator matrix elements (OME’s), which are now
know up to O(α2

s) [ 1]. These matching conditions
determine both the ZM-VFNS density and the other
light-mass quark and gluon densities at the matching
points. Then the evolution equations determine the
new densities at larger scales. The momentum sum
rule is satisfied for the nf + 1 quark densities together
with the corresponding gluon density.

29Work supported in part by the NSF grant PHY-9722101
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Figure 38. The charm quark density xcNNLO(5, x, µ2)
in the range 10−5 < x < 1 for µ2 = 20.25, 25, 30, 40
and 100 in units of (GeV/c
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Figure 39. Same as Fig.1 for the NLO results from
MRST98 set 1.

Parton density sets contain densities for charm and
bottom quarks, which generally directly follow this ap-
proach or some modification of it. The latest CTEQ
densities [ 2] use O(αs) matching conditions. The x
dependencies of the heavy c and b-quark densities are
zero at the matching points. The MRST densities [ 3]
have more complicated matching conditions designed
so that the derivatives of the deep inelastic structure
functions F2 and FL with regard to Q2 are continu-
ous at the matching points. Recently we have pro-
vided another set of ZM-VFNS densities [ 4], which
are based on extending the GRV98 three-flavor den-
sities in [ 5] to four and five-flavor sets. GRV give
the formulae for their LO and NLO three flavor den-
sities at very small scales. They never produced a c-
quark density but advocated that charm quarks should
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Figure 40. Same as Fig.1 for the NLO results from
CTEQ5HQ.

only exist in the final state of production reactions,
which should be calculated from NLO QCD with mas-
sive quarks as in [ 6]. We have evolved their LO and
NLO densities across the matching point µ = mc with
O(α2

s) matching conditions to provide LO and NLO
four-flavor densities containing massless c-quark den-
sities. Then these LO and NLO densities were evolved
between µ = mc and µ = mb with four-flavor LO
and NLO splitting functions. At this new matching
point the LO and NLO four-flavor densities were then
convoluted with the O(α2

s) OME’s to form five-flavor
sets containing massless b-quarks. These LO and NLO
densities were then evolved to higher scales with five-
flavor LO and NLO splitting functions. Note that the
O(α2

s) matching conditions should really be used with
NNLO splitting functions to produce NNLO density
sets. However the latter splitting functions are not yet
available, so we make the approximation of replacing
the NNLO splitting functions with NLO ones.

In this short report we would like to compare the
charm and bottom quark densities in the CS, MRS and
CTEQ sets. We concentrate on the five-flavor densi-
ties, which are more important for Tevatron physics.
In the CS set they start at µ2 = m2

b = 20.25 GeV2. At
this scale the charm densities in the CS, MRST98 (set
1) and CTEQ5HQ sets are shown in Figs.1,2,3 respec-
tively. Since the CS charm density starts off negative
for small x at µ2 = m2

c = 1.96 GeV2 it evolves less than
the corresponding CTEQ5HQ density. At larger µ2 all
the CS curves in Fig.1 are below those for CTEQ5HQ
in Fig.3 although the differences are small. In general
the CS c-quark densities are more equal to those in the
MRST (set 1) in Fig.2.

At the matching point µ2 = 20.25 GeV2 the b-quark
density also starts off negative at small x as can be seen
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Figure 41. The bottom quark density xbNNLO(5, x, µ2)
in the range 10−5 < x < 1 for µ2 = 20.25, 25, 30, 40
and 100 in units of (GeV/c

2
)2.

1e−05 0.0001 0.001 0.01 0.1 1

x

0

0.5

1

1.5
xb

(x
,µ

2 ) 
20.25  GeV

2

25 GeV
2

30 GeV
2

40 GeV
2

100 GeV
2

Fig. 5

Figure 42. Same as Fig.4 for the NLO results from
MRST98 set 1.

in Fig.4, which is a consequence of the explicit form of
the OME’s in [ 1]. At O(α2

s) the OME’s have non-
logarithmic terms which do not vanish at the match-
ing point and yield a finite function in x, which is the
boundary value for the evolution of the b-quark den-
sity. This negative start slows down the evolution of
the b-quark density at small x as the scale µ2 increases.
Hence the CS densities at small x in Fig.4 are smaller
than the MRST98 (set 1) densities in Fig.5 and the
CTEQ5HQ densities in Fig.6 at the same values of µ2.
The differences between the sets are still small, of the
order of five percent at small x and large µ2. Hence
it should not really matter which set is used to cal-
culate cross sections for processes involving incoming
b-quarks at the Tevatron.

We suspect that the differences between these re-
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Figure 43. Same as Fig.4 for the NLO results from
CTEQ5HQ.

sults for the heavy c and b-quark densities are pri-
marily due to the different gluon densities in the three
sets rather to than the effects of the different bound-
ary conditions. This could be checked theoretically if
both LO and NLO three-flavor sets were provided by
MRST and CTEQ at small scales. Then we could re-
run our programs to generate sets with O(α2

s) bound-
ary conditions. However these inputs are not available.
We note that CS uses the GRV98 LO and NLO gluon
densities, which are rather steep in x and generally
larger than the latter sets at the same values of µ2.
Since the discontinuous boundary conditions suppress
the charm and bottom densities at small x, they en-
hance the gluon densities in this same region (in order
that the momentum sum rules are satisfied). Hence
the GRV98 three flavour gluon densities and the CS
four and five flavor gluon densities are generally sig-
nificantly larger than those in MRST98 (set 1) and
CTEQ5HQ. Unfortunately experimental data are not
yet precise enough to decide which set is the best one.
We end by noting that all these densities are given in
the MS scheme.
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Abstract

The hadroproduction of lepton pairs with mass Q
and finite transverse momentum QT is described in
perturbative QCD by the same partonic subprocesses
as prompt photon production. We demonstrate that,
like prompt photon production, lepton pair production
is dominated by quark-gluon scattering in the region
QT > Q/2. This feature leads to sensitivity to the
gluon density in kinematical regimes accessible in col-
lider and fixed target experiments, and it provides a
new independent method for constraining the gluon
density.

1. Introduction

The production of lepton pairs in hadron collisions
h1h2 → γ∗X ; γ∗ → ll̄ proceeds through an intermedi-
ate virtual photon via qq̄ → γ∗, and the subsequent
leptonic decay of the virtual photon. Traditionally, in-
terest in this Drell-Yan process has concentrated on
lepton pairs with large mass Q which justifies the ap-
plication of perturbative QCD and allows for the ex-
traction of the antiquark density in hadrons [ 1].

Prompt photon production h1h2 → γX can be cal-
culated in perturbative QCD if the transverse mo-
mentum QT of the photon is sufficiently large. Be-
cause the quark-gluon Compton subprocess is domi-
nant, gq → γX , this reaction provides essential in-
formation on the gluon density in the proton at large
x [ 2]. Unfortunately, the analysis suffers from frag-
mentation, isolation, and intrinsic transverse momen-
tum uncertainties. Alternatively, the gluon density can
be constrained from the production of jets with large
transverse momentum at hadron colliders [ 3], but the
information from different experiments and colliders is
ambiguous.

30Supported by the U.S. Department of Energy, Division of High
Energy Physics, under Contract W-31-109-ENG-38.
31Supported by Bundesministerium für Bildung und Forschung
under Contract 05 HT9GUA 3, by Deutsche Forschungsgemein-
schaft under Contract KL 1266/1-1, and by the European Com-
mission under Contract ERBFMRXCT980194.

In this paper we demonstrate that, like prompt pho-
ton production, lepton pair production is dominated by
quark-gluon scattering in the region QT > Q/2. This
realization means that new independent constraints on
the gluon density may be derived from Drell-Yan data
in kinematical regimes that are accessible in collider
and fixed target experiments but without the theo-
retical and experimental uncertainties present in the
prompt photon case.

In Sec. 2, we review the relationship between vir-
tual and real photon production in hadron collisions in
next-to-leading order QCD. In Sec. 3 we present our
numerical results, and Sec. 4 is a summary.

2. Next-to-leading order qcd formalism

In leading order (LO) QCD, two partonic subpro-
cesses contribute to the production of virtual and real
photons with non-zero transverse momentum: qq̄ →
γ(∗)g and qg → γ(∗)q. The cross section for lepton
pair production is related to the cross section for vir-
tual photon production through the leptonic branch-
ing ratio of the virtual photon α/(3πQ2). The virtual
photon cross section reduces to the real photon cross
section in the limit Q2 → 0.

The next-to-leading order (NLO) QCD corrections
arise from virtual one-loop diagrams interfering with
the LO diagrams and from real emission diagrams.
At this order 2 → 3 partonic processes with incident
gluon pairs (gg), quark pairs (qq), and non-factorizable
quark-antiquark (qq̄2) processes contribute also. Sin-
gular contributions are regulated in n=4-2ǫ dimensions
and removed through MS renormalization, factoriza-
tion, or cancellation between virtual and real contri-
butions. An important difference between virtual and
real photon production arises when a quark emits a
collinear photon. Whereas the collinear emission of a
real photon leads to a 1/ǫ singularity that has to be
factored into a fragmentation function, the collinear
emission of a virtual photon yields a finite logarithmic
contribution since it is regulated naturally by the pho-
ton virtuality Q. In the limit Q2 → 0 the NLO virtual
photon cross section reduces to the real photon cross
section if this logarithm is replaced by a 1/ǫ pole. A
more detailed discussion can be found in [ 4].

The situation is completely analogous to hard photo-
production where the photon participates in the scat-
tering in the initial state instead of the final state. For
real photons, one encounters an initial-state singular-
ity that is factored into a photon structure function.
For virtual photons, this singularity is replaced by a
logarithmic dependence on the photon virtuality Q [
5].

A remark is in order concerning the interval in QT
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in which our analysis is appropriate. In general, in
two-scale situations, a series of logarithmic contribu-
tions will arise with terms of the type αn

s lnn(Q/QT ).
Thus, if either QT >> Q or QT << Q, resumma-
tions of this series must be considered. For practical
reasons, such as event rate, we do not venture into
the domain QT >> Q, and our fixed-order calcula-
tion should be adequate. On the other hand, the cross
section is large in the regionQT << Q. In previous pa-
pers [ 4], we compared our cross sections with available
fixed-target and collider data on massive lepton-pair
production, and we were able to establish that fixed-
order perturbative calculations, without resummation,
should be reliable for QT > Q/2. At smaller values of
QT , non-perturbative and matching complications in-
troduce some level of phenomenological ambiguity. For
the goal we have in mind, viz., contraints on the gluon
density, it would appear best to restrict attention to
the region QT ≥ Q/2, but below QT >> Q.

3. Predicted cross sections

In this section we present numerical results for the
production of lepton pairs in pp̄ collisions at the Teva-
tron with center-of mass energy

√
S = 1.8 and 2.0

TeV. We analyze the invariant cross section Ed3σ/dp3

averaged over the rapidity interval -1.0 < y < 1.0.
We integrate the cross section over various intervals
of pair-mass Q and plot it as a function of the trans-
verse momentum QT . Our predictions are based on
a NLO QCD calculation [ 6] and are evaluated in the
MS renormalization scheme. The renormalization and
factorization scales are set to µ = µf =

√
Q2 +Q2

T .
If not stated otherwise, we use the CTEQ4M parton
distributions [ 7] and the corresponding value of Λ in
the two-loop expression of αs with four flavors (five if
µ > mb). The Drell-Yan factor α/(3πQ2) for the decay
of the virtual photon into a lepton pair is included in
all numerical results.

In Fig. 44 we display the NLO QCD cross section for
lepton pair production at the Tevatron at

√
S = 1.8

TeV as a function of QT for four regions of Q. The
regions of Q have been chosen to avoid resonances,
i.e. between 2 GeV and the J/ψ resonance, between
the J/ψ and the Υ resonances, above the Υ’s, and a
high mass region. The cross section falls both with
the mass of the lepton pair Q and, more steeply, with
its transverse momentum QT . No data are available
yet from the CDF and D0 experiments. However,
prompt photon production data exist to QT ≃ 100
GeV, where the cross section is about 10−3 pb/GeV2.
It should be possible to analyze Run I data for lep-
ton pair production to at least QT ≃ 30 GeV where
one can probe the parton densities in the proton up to

pp
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 → γ*X at √S = 1.8 TeV
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Figure 44. Invariant cross section Ed3σ/dp3 as a func-
tion of QT for pp̄ → γ∗X at

√
S = 1.8 TeV in non-

resonance regions of Q. The cross section falls with
the mass of the lepton pair Q and, more steeply, with
its transverse momentum QT .

xT = 2QT /
√
S ≃ 0.03. The UA1 collaboration mea-

sured the transverse momentum distribution of lepton
pairs at

√
S = 630 GeV up to xT = 0.13 [ 8], and their

data agree well with our theoretical results [ 4].
The fractional contributions from the qg and qq̄ sub-

processes through NLO are shown in Fig. 45. It is evi-
dent that the qg subprocess is the most important sub-
process as long as QT > Q/2. The dominance of the
qg subprocess diminishes somewhat with Q, dropping
from over 80 % for the lowest values ofQ to about 70 %
at its maximum for Q ≃ 30 GeV. In addition, for very
largeQT , the significant luminosity associated with the
valence dominated q̄ density in pp̄ reactions begins to
raise the fraction of the cross section attributed to the
qq̄ subprocesses. Subprocesses other than those initi-
ated by the qq̄ and qg initial channels are of negligible
import.

We update the Tevatron center-of-mass energy to
Run II conditions (

√
S = 2.0 TeV) and use the latest

global fit by the CTEQ collaboration (5M). Figure 46
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Figure 45. Contributions from the partonic sub-
processes qg and qq̄ to the invariant cross section
Ed3σ/dp3 as a function of QT for pp̄ → γ∗X at

√
S

= 1.8 TeV. The qg channel dominates in the region
QT > Q/2.

demonstrates that the larger center-of-mass energy in-
creases the invariant cross section for the production of
lepton pairs with mass 5 GeV < Q < 6 GeV by 5 % at
low QT ≃ 1 GeV and 20 % at high QT ≃ 100 GeV. In
addition, the expected luminosity for Run II of 2 fb−1

should make the cross section accessible to QT ≃ 100
GeV or xT ≃ 0.1. This extension would constrain the
gluon density in the same regions as prompt photon
production in Run I.

Next we present a study of the sensitivity of collider
and fixed target experiments to the gluon density in
the proton. The full uncertainty in the gluon density
is not known. Here we estimate this uncertainty from
the variation of different recent parametrizations. We
choose the latest global fit by the CTEQ collaboration
(5M) as our point of reference [ 3] and compare results
to those based on their preceding analysis (4M[ 7]) and
on a fit with a higher gluon density (5HJ) intended
to describe the CDF and D0 jet data at large trans-
verse momentum. We also compare to results based on

pp
_
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Figure 46. Invariant cross section Ed3σ/dp3 as a func-
tion of QT for pp̄ → γ∗X and two different center-of-
mass energies of the Tevatron (Run 1:

√
S = 1.8 TeV,

Run 2:
√
S = 2.0 TeV). The cross section for Run 2 is

5 to 20 % larger, depending on QT .

global fits by MRST [ 2], who provide three different
sets with a central, higher, and lower gluon density,
and to GRV98 [ 9]1.

In Fig. 47 we plot the cross section for lepton pairs
with mass between the J/ψ and Υ resonances at Run II
of the Tevatron in the region between QT = 10 and 30
GeV (xT = 0.01 . . .0.03). For the CTEQ parametriza-
tions we find that the cross section increases from 4M
to 5M by 2.5 % (QT = 30 GeV) to 5 % (QT = 10
GeV) and from 5M to 5HJ by 1 % in the whole QT -
range. The largest differences from CTEQ5M are ob-
tained with GRV98 at low QT (minus 10 %) and with
MRST(g↑) at large QT (minus 7%).

The theoretical uncertainty in the cross section can
be estimated by varying the renormalization and fac-

1In this set a purely perturbative generation of heavy flavors
(charm and bottom) is assumed. Since we are working in a
massless approach, we resort to the GRV92 parametrization for
the charm contribution [ 10] and assume the bottom contribution
to be negligible.
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Figure 47. Invariant cross section Ed3σ/dp3 as a func-
tion of QT for pp̄ → γ∗X at

√
S = 2.0 TeV in the re-

gion between the J/ψ and Υ resonances. The largest
differences from CTEQ5M are obtained with GRV98
at low QT (minus 10 %) and with MRST(g↑) at large
QT (minus 7 %).

torization scale µ = µf around the central value√
Q2 +Q2

T . Figure 48 shows this variation for pp̄ →
γ∗X at

√
S = 2.0 TeV in the region between the

J/ψ and Υ resonances. In the interval 0.5 <
µ/

√
Q2 +Q2

T < 2 the dependence of the cross section
on the scale µ = µf drops from ±15% (LO) to the small
value ±2.5% (NLO). The K-factor ratio (NLO/LO) is
approximately 2, as one might expect naively.

A similar analysis for Fermilab’s fixed target experi-
ment E772 [ 11] is shown in Fig. 49. In this experiment,
a deuterium target is bombarded with a proton beam
of momentum plab = 800 GeV, i.e.

√
S = 38.8 GeV.

The cross section is averaged over the scaled longitu-
dinal momentum interval 0.1 < xF < 0.3. In fixed
target experiments one probes substantially larger re-
gions of xT than in collider experiments. Therefore one
expects greater sensitivity to the gluon distribution in
the proton. We find that use of CTEQ5HJ increases
the cross section by 7 % (26 %) w.r.t. CTEQ5M at
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Figure 48. Invariant cross section Ed3σ/dp3 as a
function of the renormalization and factorization scale
µ = µf for pp̄ → γ∗X at

√
S = 2.0 TeV in the re-

gion between the J/ψ and Υ resonances and QT = 5.5
GeV. In the interval 0.5 < µ/

√
Q2 +Q2

T < 2 the de-
pendence of the cross section on the scale µ = µf

drops from ±15% (LO) to ±2.5% (NLO). The K-
Factor (NLO/LO) is approximately 2.

QT = 3 GeV (QT = 6 GeV) and by 134 % at QT = 10
GeV. With MRST(g↓) the cross section drops relative
to the CTEQ5M-based values by 17 %, 40 %, and 59
% for these three choices of QT .

Figure 50 shows the variation of the fixed target
cross section on the renormalization and factorization
scale µ = µf . In the interval 0.5 < µ/

√
Q2 +Q2

T < 2
the dependence decreases from ±49% (LO) to ±37%
(NLO). An optimal scale choice might be µ = µf =√
Q2 +Q2

T /4, where the points of Minimal Sensitiv-
ity (maximum of NLO) and of Fastest Apparent Con-
vergence (LO=NLO) nearly coincide. At µ = µf =√
Q2 +Q2

T , the K-factor ratio is 2.6. The NLO cross
section turns negative at the lowest scale shown µ =
µf =

√
Q2 +Q2

T /8 ≃ 1 GeV, a value too low to guar-
antee perturbative stability.

4. Summary

The production of Drell-Yan pairs with low mass
and large transverse momentum is dominated by gluon
initiated subprocesses. In contrast to prompt pho-
ton production, uncertainties from fragmentation, iso-
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pN → γ*X at plab = 800 GeV
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Figure 49. Invariant cross section Ed3σ/dp3 as a func-
tion of QT for pN → γ∗X at plab = 800 GeV. The
cross section is highly sensitive to the gluon distribu-
tion in the proton in regions of xT where it is poorly
constrained in current analyses.

lation, and intrinsic transverse momentum are absent.
The hadroproduction of low mass lepton pairs is there-
fore an advantageous source of information on the
parametrization and size of the gluon density. The in-
crease in luminosity of Run II increases the accessible
region of xT from 0.03 to 0.1. The theoretical uncer-
tainty has been estimated from the scale dependence
of the cross sections and found to be very small for
collider experiments.
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CONCLUSION: MANIFESTO

Our goal in this conclusion is not to summarize each
of the individual contributions, but to introduce simple
guidelines, a “Manifesto”, for RunII analysis 2:

• Each analysis should provide a way to calculate
the Likelihood for their data, the probability of
the data given a theory prediction.

• The likelihood information should be stored per-
manently and made available.

The current practice is generally to take experimen-
tal data, correct for acceptance and smearing and com-
pare the result to the theoretical predictions. In many
cases, the acceptance and smearing corrections depend
on the theoretical prediction and thus the practice may
lead to uncontrolled uncertainties. Data are generally
presented as tables of central values with one-sigma
standard deviation. That information is clearly not
enough to reconstruct the Likelihood when the uncer-
tainties are not Gaussian distributed. Hence the first
guideline of our Manifesto to provide a way to calcu-
late the likelihood, the probability of the data given
a theory. The likelihood contains all the information
about the experiment and is the basis for any analysis.
It should consist of a code and necessary input tables
of “data”. The code can be as simple as a χ2 calcula-
tion when all the appropriate conditions are met, but
will be significantly more involved in the general case,
see [ 2]. The likelihood function should be stored in a
format which remains valid for several decades. This
means ASCII format for data and simplicity in the
code. This is important if we want the experimental
data to remain useful even as theoretical calculations
evolve. If the experimental results are not tied to the-
ory as it stands in the year 2001, they we will be able
to continue to use them, even as the theory evolves
from NLO to NNLO to resummed calculation.

The likelihood functions should be stored in a central
repository and treated in the same fashion as papers3.
This is important because Collaboration evolve over
time and eventually disappear.

Note that the burden is of course not just on the
experimental side. Theoreticians need to provide pre-
dictions with understood theoretical uncertainties over
a defined kinematic range. Numerical calculations
should be made more efficient. Codes are usually writ-
ten with the anticipation that they will be run a few
times with a few different PDFs. One can anticipate
that if the goal to extract uncertainties for the PDFs

2clearly this manifesto could be applied to any experiment
3Auxiliary files in the FNAL preprints database may be one
location or Web pages

from data is to be reached that these codes will have
to be run many orders of magnitude more. Event gen-
erators are preferable as they allow a better match to
experimental cuts and the possibility of comparison of
smeared theory to raw data. A central repository for
the theoretical code would also be very helpful.

In this series of workshops several groups reported
significant progress towards extracting PDFs from data
with uncertainties [ 2, 3]. Note also that other groups,
not connected to this workshop [ 4], have reported re-
sults on PDF uncertainties since this workshop started.
We are therefore optimistic that realistic PDF uncer-
tainties will be available from several groups by the
start of Run II at the Tevatron.

Progress has also been made on the study of the
best way to present data [ 5] for Run II. Clearly, the
use of the Run II Tevatron data to their full potential
will require planning and care through a collaborative
effort between phenomenologists and experimentalists.
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