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A better understanding of the formation of large-scale structure in the Universe
is arguably the most pressing question in cosmology. The most compelling and
promising theoretical paradigm, In
ation + Cold Dark Matter, holds that the
density inhomogeneities that seeded the formation of structure in the Universe
originated from quantum 
uctuations arising during in
ation and that the bulk
of the dark matter exists as slowing moving elementary particles (`cold dark
matter') left over from the earliest, �ery moments. Large redshift surveys (such
as the SDSS and 2dF) and high-resolution measurements of CBR anisotropy
(to be made by the MAP and Planck Surveyor satellites) have the potential to
decisively test In
ation + Cold Dark Matter and to open a window to the very
early Universe and fundamental physics.

1. From Quark Soup to Large-scale Structure

The hot big-bang cosmology is so successful that for two decades it has been
called the standard cosmology (see e.g., Peebles 1993 or Kolb & Turner 1990).
It provides an accounting of the Universe from a fraction of a second after the
beginning when the Universe was a hot, smooth soup of quarks and leptons to
the present, some 13Gyr later. The observational foundation of the standard
cosmology rests upon three strong pillars: the expansion of the Universe; the
cosmic microwave background radiation (CBR); and the abundance pattern of
the light elements, D, 3He, 4He, and 7Li, produced seconds after the bang (see
e.g., Peebles et al., 1991).
In contrast to the early Universe, the Universe today abounds with struc-

ture: galaxies, clusters of galaxies, superclusters, voids and great walls of galaxies
stretching across the sky. According to the standard cosmology, all this structure
evolved by gravitational ampli�cation of small density inhomogeneities over the
past 13Gyr or so. The detection of 30 microKelvin variations in the temperature
of the CBR between points on the sky separated by 10� by the DMR instrument
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2 M. S. Turner

Figure 1. Summary of current CBR anisotropy measurements, where the temperature vari-
ation across the sky has been expanded in spherical harmonics, �T (�; �) =

P
i
almYlm and

Cl � hjalmj
2i. The curves illustrate CDM models with 
0 = 1 and 
0 = 0:3. Note the prefer-

ence of the data for a 
at Universe (Figure courtesy of M. Tegmark).

on NASA's COBE satellite (Smoot et al., 1992) gave the �rst evidence for the
existence of these density perturbations, and further, showed they were of the
size needed to account for the observed structure. The COBE results have been
followed up many other independent detections on angular scales from 20� down
to a fraction of a degree (Bennett et al., 1997), summarized in Fig. 1.
While the standard cosmology leaves a number of fundamental questions unex-

plained { the matter/antimatter asymmetry, origin of the smoothness and 
atness
of the Universe, nature of the big bang itself { the most pressing question involves
the initial data for structure formation: the nature and origin of the density in-
homogeneities and the quantity and composition of matter and energy in the
Universe. Because of powerful and expansive theoretical ideas and an impending
avalanche of data, cosmology is poised for a major advance on this front, and
with it fundamental physics, because the most promising ideas are inspired by
speculations about elementary particle physics at very high energies and short
distances.

(a ) Origin of inhomogeneity

The two most promising ideas for the origin of the seed inhomogeneities are cos-
mological in
ation and cosmological symmetry breaking phase transitions. While
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Structure from Quantum Fluctuations 3

both ideas involve the physics of the early Universe, they are orthogonal, concep-
tually and technically. According to in
ation, quantum-mechanical 
uctuations
in the scalar �eld driving in
ation lead to density perturbations, which then be-
come 
uctuations in the local curvature of the Universe during the in
ationary
epoch. The other early-Universe alternative involves the production of topolog-
ical defects in a symmetry-breaking phase transition around 10�36 sec after the
beginning. The defects themselves { monopoles, cosmic strings, or textures { do
not directly lead to density perturbations on astrophysically interesting scales.
Rather, the conversion of energy into defects causes a pressure perturbation which
propagates outward, and much later on, leads to a perturbation in the matter
density. (This type of density perturbation is called isocurvature.) I will focus
exclusively on the in
ationary scenario; the defect scenario is discussed by Turok
(1998).

(b ) Nature of the matter and energy in the Universe

The other crucial issue is the quantity and composition of matter and energy
in the Universe. The amount of matter that clusters can be measured in a variety
of ways: galaxy and cluster mass-to-light ratios, peculiar motions of galaxies, the
cluster baryon fraction, and the shape of the power spectrum of density perturba-
tions. At present all methods are consistent with 
M ' 0:35� 0:07 (Dekel et al.,
1997; Bahcall et al., 1993; Willick et al., 1997); however, the remaining systematic
uncertainties are such that it is probably not possible to rule out 
M as small
as 0.1 or as large as 1. Matter in the form of stars and closely related material
contributes a tiny fraction of this, 
lum ' 0:003h�1. The fact that 
lum � 
M
implies that most of the matter in the Universe is dark and is only revealed by
its gravitational e�ects. (
i is the fraction of critical density contributed by com-
ponent i, and h = H0=100 km s�1Mpc�1. Current measurements of the Hubble
constant imply h = 0:65� 0:07).
The abundances of the light elements produced seconds after the bang depends

upon the density of ordinary matter (baryons); using the recently determined
ratio of deuterium-to-hydrogen in high-redshift hydrogen clouds (Burles & Tytler,
1998a and 1998b), the theory of BBN implies that 
B = (0:02�0:002)h�2 ' 0:05.
(This lies within the larger concordance interval previously determined from the
abundances of all the light elements; see Schramm & Turner, 1998.)
Since 
B � 
lum, big-bang nucleosynthesis implies that most of the baryons

in the Universe are `dark' { that is, not in the form of bright stars and closely
related material (plausible possibilities include di�use hot and/or warm gas, or
dark stars). Further, the fact that 
B is signi�cantly smaller than 
M strongly
indicates that most of the matter is something other than baryons. Elementary-
particle physics provides three plausible particle candidates: light neutrinos; an
axion of mass around 10�5 eV, and a neutralino of mass between 10GeV and
500GeV (see e.g., Turner 1993b; Jungman et al., 1996). The axion and the neu-
tralino have a predicted abundance today that is comparable to the critical den-
sity; for neutrinos, whose number density today is 113 cm�3, a mass of order
30 eV corresponds to the critical density. All three possibilities are predictions
made by theories that attempt to go beyond the standard model of particles and
unify the forces and particles of Nature.
The total energy density is less well known. Expressed as a fraction of the
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4 M. S. Turner

critical density and denoted by 
0 =
P
i 
i (i = baryons, particle dark matter,

vacuum energy, ....), it is related to the spatial curvature,

R2
curv = H�2

0 =j
0 � 1j: (1.1)

The amount of dark matter implies that 
0 must be greater than 0.2, and the
age of the Universe and the anisotropy of the CBR constrain 
0 to be not much
greater than 1. The most powerful measure of the curvature is the position of the
�rst acoustic (or Doppler) peak in the angular power spectrum of CBR anisotropy:
lDoppler � 220=

p

0.y Current measurements are consistent with 
0 = 1; see Fig. 1

and Hancock et al. (1997). Ongoing measurements of anisotropy around l � 200
(angular scale � � 100�=l � 0:5�) may soon settle the question.
If 
0 = 1 and 
M = 0:3 there is a third dark-matter puzzle: What is the

nature of the component of energy that does not clump with matter and is nearly
uniformly distributed? To avoid clumping the `X-component' (
X = 1 � 
M �
0:7) must be relativistic (Turner & White, 1997); however, relativistic particles
per se are out, because they lead to CBR anisotropy that is inconsistent with
current data (Lopez et al., 1998) and a Universe that is too youthful (for a
radiation-dominated Universe t0 =

1
2H

�1
0 , rather than 2

3H
�1
0 which pertains for

a matter-dominated Universe).
The remaining possibility is that the smooth component has negative pressure

(is elastic) that is comparable in magnitude to its energy density, pX <� ��X=3.
Plausible examples include: a cosmological constant (or vacuum energy) with
pX = ��X (Turner et al., 1984; Peebles, 1984; Efstathiou et al., 1990), a network
of light, frustrated defects (e.g., strings in which case pX = ��X=3; Vilenkin,
1984; Spergel & Pen, 1997), and an evolving scalar �eld (called quintessence by
some) with a time-varying relation between pressure and energy density, � =
1
2
_�2 + V (�) and p = 1

2
_�2 � V (�) (Freese et al., 1987; Ozer & Taha, 1987; Ratra

& Peebles, 1988; Bloom�eld-Torres & Waga, 1996; Coble et al., 1996; Caldwell
et al., 1998).
A smooth component does not reveal its presence in dynamical measurements

and is di�cult to detect. It does have a striking signature: an accelerated (rather
than decelerated) expansion rate, re
ected in Sandage's deceleration parameter,

q0 � �( �R=R)

H2
0

=

M
2

+

X
2

[1 + 3pX=�X ] < 0 (1.2)

where R(t) is the cosmic-scale factor. Recent measurements of the magnitude {
redshift relation for supernovae of type Ia (SNe1a) indicate accelerated expansion
(q0 < 0), with 
X � 0:6 and pX=�X � �1 (Riess et al., 1998; Perlmutter et al.,
1997).
In ending this brief review of the quantity and composition of matter and

energy in the Universe, I cannot resist commenting that, for the very �rst time,
we have a prima facie case for a complete and consistent accounting: The Doppler
peak is telling us that 
0 = 1; dynamical measurements indicate 
M � 1=3; and
SNe1a indicate that 
X � 2=3. And further, the picture that has emerged is

y The position of the �rst acoustic (Doppler) peak also depends upon the composition of the matter
and energy density, e.g., the presence or absence of a cosmological constant. This dependence is much
less important. If the density perturbations are isocurvature, the Doppler peak is shifted to larger l.
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Structure from Quantum Fluctuations 5

consistent with in
ation, our most promising scenario for extending the standard
cosmology. If this turns out to be correct, 1998 will be remembered as a turning
point in our understanding of the Universe.

2. From Quantum Fluctuations to Large-scale Structure

In
ation has revolutionized the way cosmologists view the Universe and pro-
vides the current working hypothesis for extending the standard cosmology. It
explains how a region of size much, much greater than our Hubble volume could
have become smooth and 
at without recourse to special initial conditions (Guth
1981), as well as the origin of the density inhomogeneities needed to seed struc-
ture (Hawking, 1982; Starobinsky, 1982; Guth & Pi, 1982; and Bardeen et al.,
1983). In
ation is based upon well de�ned, albeit speculative physics { the semi-
classical evolution of a weakly coupled scalar �eld { and this physics may well be
connected to the uni�cation of the particles and forces of Nature.
On the negative side, while there are numerous working models of in
ation,

motivated by a variety of concerns { supersymmetry, superstrings, grand uni�ca-
tion and simplicity { there is no standard model of in
ation. And a disquieting
technical point, in all models of in
ation the scalar �eld that drives in
ation
must have a very 
at potential and must be very weakly coupled to other �elds.
Most particle physicists �nd this displeasing or, at the very least, begging for
further explanation. The extreme 
atness and weak coupling trace directly to
the requirement of producing density perturbations of amplitude 10�5 (for recent
reviews of in
ation see e.g., Turner, 1997a or Lyth & Riotto, 1998).
It would be nice if there were a standard model of in
ation, but there isn't.

What is important, is that almost all in
ationary models make three very testable
predictions: 
at Universe,y nearly scale-invariant spectrum of Gaussian density
perturbations, and nearly scale-invariant spectrum of gravitational waves. These
three predictions allow the in
ationary paradigm to be decisively tested. While
the gravitational waves are an extremely important test, I do not have space to
mention them again here (see e.g., Turner 1997c).
The di�erence between di�erent models of in
ation lies in the scalar-�eld po-

tential; once the scalar-�eld potential is speci�ed, the story is the same. In
ation
begins with the scalar �eld displaced from the minimum of its potential (for
whatever reason); as it evolves toward the potential-energy minimum the scalar-
�eld potential energy drives a nearly exponential expansion. In most models, the
time required to evolve to the minimum is many hundreds or thousands of Hub-
ble times, during which the scale factor of the Universe grows by an enormous
factor. When the scalar �eld nears the minimum of its potential, its evolution
accelerates and it rapidly oscillates about the minimum. `The graceful exit' from
the in
ationary era occurs as the original potential energy, which now resides in
coherent scalar-�eld oscillations, decays into relativistic particles, which through
interactions eventually thermalize, creating the heat of the hot big-bang model.
The tremendous expansion that occurs during in
ation is key to its bene�-

cial e�ects and robust predictions: A small, subhorizon-sized bit of the Universe

y It is possible, by the introduction of additional scalar �elds and �ne tuning, to evade the 
atness
prediction; this author still considers 
atness to be a robust prediction of in
ation. For another opinion,
see Bucher et al. (1995), Linde & Mezhlumian (1995), or Turok (1998).
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6 M. S. Turner

can grow large enough to encompass the entire observable Universe and much
more. The same small bit of the Universe is smaller than its radius of curvature
and appears 
at; this relationship is una�ected by the expansion since then and
so the Hubble radius today is much, much smaller than the curvature radius,
implying 
0 = 1 (recall, Rcurv = H�1

0 =j
0 � 1j1=2). Lastly, the tremendous ex-
pansion stretches quantum 
uctuations on truly microscopic scales (<� 10�23 cm)
to astrophysical scales (>� Mpc).
The accelerated expansion associated with in
ation is crucial. If, and only if, the

expansion accelerates (i.e., �R > 0), can a comoving scale begin smaller than the
horizon and grow larger. In the standard cosmology, the expansion is always de-
celerating, and all comoving scales (e.g., the scale corresponding to the presently
observable Universe) begin larger than the horizon scale (set by the inverse of
the expansion rate H�1) and then cross inside the horizon. Thus, objects from
galaxies to the presently observable Universe were much larger than the horizon
during the earliest moments and outside the sphere of causal in
uence. In
ation
changes that: these objects begin smaller than the horizon where microphysics
can a�ect them and then cross outside the horizon during in
ation.
Accelerated expansion makes it kinematically possible to create density in-

homogeneities on astrophysical interesting scales, and the quantum 
uctuations
associated with the deSitter space of accelerated expansion provide the dynamical
mechanism. Quantum 
uctuations in the scalar �eld that drives in
ation, whose
amplitude is set by the Gibbons{Hawking temperature H=2�, lead to energy den-
sity 
uctuations �� = V 0�� = V 0H=2�. As each scale, from galaxies to clusters to
the present Hubble scale, crosses outside the horizon, these perturbations become

uctuations in the curvature of the Universe.
The curvature perturbations created by in
ation are characterized by two im-

portant features: 1) they are almost scale-invariant, which refers to the 
uctu-
ations in the gravitational potential being independent of scale { and not the
density perturbations themselves; 2) because they arise from 
uctuations in an
essentially noninteracting quantum �eld, their statistical properties are that of a
Gaussian random �eld.
Scale invariance speci�es the dependence of the spectrum of density perturba-

tions upon scale. The normalization (overall amplitude) depends upon the speci�c
in
ationary model (i.e., scalar-�eld potential). Ignoring numerical factors for the
moment, the 
uctuation amplitude is given by: �� ' (��=�)HOR � V 3=2=m3

PLV
0.

(The amplitude of the density perturbation on a given scale at horizon crossing is
equal to the 
uctuation in the gravitational potential ��.) To be consistent with
the COBE measurement of CBR anisotropy on the 10� scale, �� must be around
2� 10�5. Not only did COBE produce the �rst evidence for the existence of the
density perturbations that seeded all structure, but also, for a theory like in
a-
tion that predicts the shape of the spectrum of density perturbations, it provides
the overall normalization that �xes the amplitude of density perturbations on all
scales (see Fig. 2). The COBE normalization began precision testing of in
ation.

3. Testing In
ation + CDM in the Era of Precision Cosmology

The in
ationary predictions of a 
at Universe and scale-invariant density per-
turbations, together with the failure of the hot dark matter theory of structure
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Structure from Quantum Fluctuations 7

Figure 2. Summary of measurements of the present power spectrum derived from redshift surveys
(Peacock & Dodds, 1994) and the predictions of di�erent COBE-normalized CDM models.
Because of the possibility that light does not faithfully trace mass (i.e., biasing), the shape of
the spectrum is most important in constraining models.

formation, make cold dark matter (CDM) a key prediction and a powerful means
of testing in
ation. The key elements of CDM are: 1) Gaussian scale-invariant
density perturbations; and 2) dark matter whose primary constituent is slowly-
moving, very weakly interacting particles such as axions or neutralinos. CDM is
hierarchical in the sense that structure forms from the `bottom up' { galaxies (at
redshifts of a few), followed by clusters of galaxies (redshifts of one or less) and
�nally superclusters (today) (see e.g., Blumenthal et al., 1984).y
CDM is generally consistent with the key tests that have been carried out thus

far: anisotropy of the CBR on angular scales from less than a degree to 100�,
measurements of the distribution of galaxies today, and studies of the evolution

y If the bulk of the dark matter is \hot" { that is fast moving particles such as 30 eV neutrinos { then
structure forms from the `top down,' with superclusters forming �rst and fragmenting into galaxies. This
is because hot dark matter particles can stream from regions of high density to regions of low density
and erase density perturbations on scales smaller than superclusters. Since the pioneeringwork of White
et al. (1983), hot dark matter has been disfavored because galaxies form too late. Since we now know
that the bulk of galaxies formed at redshifts of a few and superclusters are only forming today (Steidel,
1998) the hot dark matter scenario is completely incompatible with observations.
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8 M. S. Turner

of galaxies and clusters (see e.g., Steidel, 1998). This is no mean feat; at present,
CDM is the only theory for structure formation that is still viable: the theories
based upon defects as the seeds for structure are strongly disfavored by a combi-
nation of CBR anisotropy and the power spectrum of inhomogeneity today (Pen
et al., 1997; Allen et al. 1997) and Peebles' \baryon only" model (Peebles, 1987)
with isocurvature perturbations (PIB) was ruled out by CBR anisotropy several
years ago.
As we look forward to the abundance (avalanche!) of high-quality observations

that will test In
ation + CDM, we have to make sure the predictions of the theory
match the precision of the data. In so doing, CDM + In
ation becomes a ten (or
more) parameter theory. For astrophysicists, and especially cosmologists, this is
daunting, as it may seem that a ten-parameter theory can be made to �t any set
of observations. This is not the case when one has the quality and quantity of data
that will be coming. The standard model of particle physics o�ers an excellent
example: it is a nineteen-parameter theory and because of the high-quality of
data from experiments at Fermilab's Tevatron, SLAC's SLC, CERN's LEP and
other facilities it has been rigorously tested and the parameters measured to a
precision of better than 1% in some cases. My worry as an in
ationist is not that
many di�erent sets of parameters will �t the upcoming data, but rather that no
set of parameters will!
In fact, the ten parameters of CDM + In
ation are an opportunity rather

than a curse: Because the parameters depend upon the underlying in
ationary
model and fundamental aspects of the Universe, we have the very real possibility
of learning much about the Universe and in
ation. The ten parameters can be
organized into two groups: cosmological and dark-matter (Dodelson et al., 1996).

Cosmological Parameters

(i) h, the Hubble constant in units of 100 km s�1Mpc�1.
(ii) 
Bh

2, the baryon density. Primeval deuterium measurements and together
with the theory of BBN imply: 
Bh

2 = 0:02� 0:002.
(iii) n, the power-law index of the scalar density perturbations. CBR mea-

surements indicate n = 1:1 � 0:2; n = 1 corresponds to scale-invariant density
perturbations. Several popular in
ationary models predict n ' 0:95; range of
predictions runs from 0:7 to 1:2 (Lyth & Riotto, 1996; Huterer & Turner, 1998).
(iv) dn=d lnk, \running" of the scalar index with comoving scale (k =wavenum-

ber). In
ationary models predict a value of O(�10�3) or smaller (Kosowsky &
Turner, 1995).
(v) S, the overall amplitude squared of density perturbations, quanti�ed by

their contribution to the variance of the CBR quadrupole anisotropy.
(vi) T , the overall amplitude squared of gravity waves, quanti�ed by their

contribution to the variance of the CBR quadrupole anisotropy. Note, the COBE
normalization determines T + S (see below).
(vii) nT , the power-law index of the gravity wave spectrum. Scale-invariance

corresponds to nT = 0; for in
ation, nT is given by �1
7
T
S .

Dark-matter Parameters

(i) 
� , the fraction of critical density in neutrinos (=
P
im�i=90h

2). While the
hot dark matter theory of structure formation is not viable, it is possible that
a small fraction of the matter density exists in the form of neutrinos. Further,
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Structure from Quantum Fluctuations 9

small { but nonzero { neutrino masses are a generic prediction of theories that
unify the strong, weak and electromagnetic interactions.y
(ii) 
X , the fraction of critical density in a smooth component of unknown

composition and negative pressure (wX <� �0:3). There is mounting evidence
for such a component, with the simplest example being a cosmological constant
(wX = �1).
(iii) g�, the quantity that counts the number of ultra-relativistic degrees of

freedom (around the time of matter-radiation equality). The standard cosmol-
ogy/standard model of particle physics predicts g� = 3:3626 (photons in the
CBR + 3 massless neutrino species with temperature (4=11)1=3 times that of the
photons). The amount of radiation controls when the Universe became matter
dominated and thus a�ects the present spectrum of density inhomogeneity.
Since 
0 = 1:0 is taken to be an in
ationary prediction, 
CDM = 1�
��
B�


X . Additional parameters can be added (e.g., 
0, wX , the epoch of reionization).
Bond's list totals nineteen, coincidentally equal to the number of parameters in
the standard model of particle physics (Bond & Ja�e, 1998). The main point
is that testing in
ation + CDM requires precision predictions, which in turn,
depend on ten or so parameters.
As mentioned, the parameters involving density and gravity-wave perturba-

tions depend directly upon the in
ationary potential. In particular, they can be
expressed in terms of the potential and its �rst three derivatives (see e.g., Turner,
1997a):

S � 5hja2mj2i
4�

' 2:2
V�=m

4
Pl

(mPlV 0
�=V�)

2
(3.1)

n � 1 = � 1

8�

�
mPlV

0
�

V�

�2
+

mPl

4�

�
mPlV

0
�

V�

�0
(3.2)

dn

d ln k
= � 1

32�2

 
mPl

3V 000
�

V�

!�
mPlV

0
�

V�

�

+
1

8�2

 
mPl

2V 00
�

V�

!�
mPlV

0
�

V�

�2
� 3

32�2

�
mPl

V 0
�

V�

�4
(3.3)

T � 5hja2mj2i
4�

= 0:61(V�=m
4
Pl) (3.4)

nT = � 1

8�

�
mPlV

0
�

V�

�2
(3.5)

where V (�) is the in
ationary potential, prime denotes d=d�, and V� is the value
of the scalar potential when the present horizon scale crossed outside the hori-
zon during in
ation. These expressions are given to lowest-order in the deviation
from scale invariance (i.e., n � 1 and nT ), and assume a matter-dominated Uni-
verse today; the next-order corrections have been calculated (Liddle & Turner,

y As this article went to press, the Super-Kamiokande Collaboration presented evidence that the at
least one of the neutrino species has a mass of greater than about 0.1 eV, based upon the de�cit of
atmospheric muon neutrinos (Kajita, 1998).
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10 M. S. Turner

1994) and the analogous expressions, including the possibility of a cosmological
constant, have been computed (Turner & White, 1996).
Bunn & White (1997) have used the COBE four-year dataset to determine S

as a function of T=S and n � 1; they �nd

V�=m
4
Pl

(mPlV 0
�=V�)

2

�
=

S

2:2

�
= (1:7� 0:2)� 10�11

exp[�2:02(n� 1)]q
1 + 2

3
T
S

(3.6)

From which it follows that

V� < 6� 10�11mPl
4; (3.7)

equivalently, V
1=4
� < 3:4 � 1016GeV. This indicates that in
ation must involve

energies much smaller than the Planck scale. (To be more precise, in
ation could
have begun at a much higher energy scale, but the portion of in
ation relevant
for us, i.e., the last 60 or so e-folds, occurred at an energy scale much smaller
than the Planck energy.)
This normalization can also be expressed in terms of the horizon-crossing am-

plitude for the comoving scale k = H0:

�H(k = H0) �
"
k3=2j�kjp

2�2

#
k=H0

= 1:9� 10�5
exp[�1:01(n� 1)]q

1 + 2
3
T
S

: (3.8)

That is, for n = 1 and T=S = 0, the COBE normalization implies that the
horizon-crossing amplitude of density perturbations is about 2� 10�5.
Finally, it should be noted that the `tensor tilt,' deviation of nT from 0, and the

`scalar tilt,' deviation of n� 1 from zero, are not in general equal; they di�er by
the rate of change of the steepness. The tensor tilt and the ratio T=S are related:
nT = �1

7
T
S , which provides a potential consistency test of in
ation.

(a ) Present status of In
ation + CDM

A useful way to organize the di�erent CDM models is by their dark-matter
content; within each CDM family, the cosmological parameters vary. One list of
models is:
(i) sCDM (for simple): Only CDM and baryons; no additional radiation (g� =

3:36). The original standard CDM is a member of this family (h = 0:50, n = 1:00,

B = 0:05), but is now ruled out (see Fig. 3).
(ii) �CDM: This model has extra radiation, e.g., produced by the decay of an

unstable massive tau neutrino (hence the name); here we take g� = 7:45.
(iii) �CDM (for neutrinos): This model has a dash of hot dark matter; here we

take 
� = 0:2 (about 5 eV worth of neutrinos).
(iv) �CDM (for cosmological constant): This model has a smooth component

in the form of a cosmological constant; here we take 
� = 0:6.
Figure 3 summarizes the viability of these di�erent CDM models, based upon

CBR measurements and current determinations of the present power spectrum of
inhomogeneity (derived from redshift surveys). sCDM is only viable for low values
of the Hubble constant (less than 55 km s�1Mpc�1) and/or signi�cant tilt (devi-
ation from scale invariance); the region of viability for �CDM is similar to sCDM,
but shifted to larger values of the Hubble constant (as large as 65 km s�1Mpc�1).

Phil. Trans. R. Soc. Lond. A (1997)
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Figure 3. Summary of viable CDM models, based upon CBR anisotropy and determinations of
the present power spectrum of inhomogeneity (Dodelson et al., 1996).

�CDM has an island of viability around H0 � 60 km s�1Mpc�1 and n � 0:95.
�CDM can tolerate the largest values of the Hubble constant.
Considering other relevant data too { e.g., age of the Universe, determinations

of 
M , measurements of the Hubble constant, and limits to 
� { �CDM emerges
as the hands-down-winner of `best-�t CDM model' (Krauss & Turner, 1995; Os-
triker & Steinhardt, 1995; Liddle et al., 1996; Turner, 1997b). Moreover, not only
is it consistent with all the data (see Fig. 4), but also its `smoking gun signature,'
negative q0, has apparently been con�rmed (Riess et al., 1998; Perlmutter et al.,
1997). Given the possible systematic uncertainties in the SNe1a data and other
measurements, it is premature to conclude that �CDM is anything but the model
to take aim at.

4. Testing In
ation with Maps of the Universe

Over the next decade two maps of the Universe with unprecedented precision
will be made. The �rst, derived from high-resolution (around 0:1�) measurements
of the CBR by NASA's MAP and ESA's Planck satellites, will provide a snapshot
of the Universe at a simpler time, 300,000yrs after the beginning when the average

Phil. Trans. R. Soc. Lond. A (1997)
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Figure 4. Constraints used to determine the best-�t CDM model: PS = large-scale structure +
CBR anisotropy; AGE = age of the Universe; CBF = cluster-baryon fraction; and H0= Hubble
constant measurements. The best-�t model, indicated by the darkest region, has h ' 0:60�0:65
and 
� ' 0:55� 0:65 (Krauss & Turner 1995; Turner, 1997c).

level of inhomogeneity was much less than 1%. The second, derived from the more
than one million galaxy redshifts to be gathered by the SDSS and 2dF teams, will
provide an accurate picture of the structure that exists in the Universe today.
The two maps are complementary and together have great leverage to settle the
question of how structure in the Universe originated as well as to probe cosmology
and fundamental physics.
The SDSS and 2dF redshift surveys will probe the Universe on scales from less

than 1h�1Mpc to 500h�1Mpc. The structure that exists today depends not only
upon the primordial spectrum of inhomogeneity, but also upon the composition
of the dark matter, cosmological parameters and the complicated astrophysical
relationship between the present distribution of light and mass. CBR anisotropy
probes the primeval spectrum of inhomogeneity on scales from 10h�1Mpc to
104h�1Mpc. Together, they will probe inhomogeneity over almost six orders-of-
magnitude in length.
The power of these twomaps when used together has been stressed by a number

of authors (see e.g., Eisenstein et al., 1998). I mention but a few examples. CBR
anisotropy should determine 
0 and h to a precision of better than 1%; large-scale
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structure can accurately determine 
Mh (the shape parameter). Together, they
determine accurately 
M , 
X and h. The e�ect of a neutrino mass as small as a
few tenths of an eV should be detectable by a combination of redshift data and
CBR anisotropy (Hu et al., 1998). The two maps will both probe inhomogeneity
on scales of 10h�1Mpc to around 500h�1Mpc, which will allow the mismatch
between the distribution of light and mass (biasing) to be addressed.

(a ) Looking `out' to see `in'

In
ation and cold dark matter are a bold attempt to extend our knowledge
of the Universe to within 10�32 sec of the bang. The scenario is deeply rooted
in fundamental physics. I am con�dent that redshift surveys, CBR anisotropy
and a host of other cosmological observations and laboratory experiments will
decisively test in
ation + CDM. Further, I believe prospects for discriminating
among the di�erent CDMmodels and models of in
ation are excellent. If in
ation
+ CDM is shown to be correct, an important aspect of the standard cosmology
{ the origin and evolution of structure { will have been resolved and a window
to the early moments of the Universe and physics at very high energies will have
been opened.
While the window has not been opened yet, I would like to end with one

example of what one could hope to learn. As discussed earlier, S, n� 1, T=S and
nT are related to the in
ationary potential and its �rst two derivatives. If one
can measure the power-law index of the density perturbations and the amplitudes
of the density and gravity-wave perturbations, one can recover the value of the
potential and its �rst two derivatives (see e.g., Turner 1993a; Lidsey et al. 1997)

V� = 1:65T mPl
4; (4.1)

V 0
� = �

s
8�

7

T

S
V�=mPl; (4.2)

V 00
� = 4�

�
(n� 1) +

3

7

T

S

�
V�=mPl

2; (4.3)

where the sign of V 0 is indeterminate (under the rede�nition � $ �� the sign
changes). If, in addition, the gravity-wave spectral index can also be measured the
consistency relation, T=S = �7nT , can be used to test in
ation. Reconstruction
of the in
ationary scalar potential would shed light both on in
ation as well as
physics at energies of the order of 1014GeV. Already, the success of In
ation +
CDM is evidence for physics beyond the standard model of particle physics.
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