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Abstract

Current errors on jVubj are dominated by model dependence. For inclusive de-

cays, the model dependence comes from the Fermi motion of the b quark. By

combining the endpoint photon and lepton spectra from the inclusive decays

B ! Xs 
 and B ! Xu ` ��, it is possible to remove this model dependence.

We show how to combine these rates including the resummation of the end-

point logs at next to leading order. The theoretical errors on jVubj on the order

of 10% are possible. We also give a brief discussion on comparing di�erent

extractions.

�Talk given at the conference \Radcor 2000", Carmel, California, September 2000.
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I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa matrix element Vub is very important for under-

standing CP violation in the Standard Model. An accurate measurement of jVubj puts
strong constraints on the Unitarity Triangle. Unfortunately, Vub is vary hard to mea-

sure. Current measurements have errors that are dominated by model dependence. Some

of the best extractions so far have come from exclusive decays, such as B ! �`�� or

B ! �`��. The problem with exclusive decays is the strong hadronic dynamics can

not be calculated, and we have to resort to models, light-cone sum rules, or lattice

QCD calculations to obtain the form factors [1]. At the present time, all these meth-

ods give around 20% errors. A recent measurement from CLEO [2] using B ! �`�� gives

jVubj = [3:25�0:14(stat:)+0:21
�0:29(syst:)�0:55(model)]�10�3. In the future, the lattice will give

accurate predictions for the form factors, but until then, a measurement of 20% is probably

the best we can hope for from exclusive decays.

In some ways, inclusive decays should provide a straightforward means to measure jVubj.
All we need to do is measure the total rate b ! u`��, which is proportional to jVubj2 and is

known to order �2
s [3]. If we could measure the total rate, we would not have to worry about

quark-hadron duality violations, thus a very accurate measurement would be possible.

Unfortunately, there is a very large background from b ! c decays, which is about 100

times more abundant than b ! u decays. To remove this large background, kinematic

cuts must be made. Three basic cuts are discussed in the literature, each having its own

advantages: a cut on the electron energy spectrum, a cut on the hadronic invariant mass

spectrum, and a cut on the leptonic invariant mass spectrum. For now we will concentrate

on the electron energy spectrum, and return to the other cuts later.

Since the u quark is much lighter than the c quark, the electron energy spectrum for b! u

decays extends past the endpoint for b! c decays, see Fig. I. Thus it is possible to remove

the charm quark background by cutting above the b! c endpoint. All that is necessary is

a theoretical prediction for the integrated rate above the cut. Unfortunately, putting a cut
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FIG. 1. Electron spectrum for semi-leptonic b decay rates to c and u quarks. The rate for

b! ue�� has been multiplied by a factor of 10. The region in �E can only have b! u decays, and

thus is useful for extracting jVubj.

near the endpoint introduces a new small mass scale, �E � 300 MeV, which introduces large

perturbative [log(mb=�E)] and non-perturbative (�=�E) corrections. Therefore both the

perturbative and non-perturbative series must be resummed for the rate to be trustworthy.

The calculation of the rate begins with the e�ective Hamiltonian [4]

Heff =
�4GFp

2
Vub(�u
�PLb)(�̀


�PL�`)

=
�4GFp

2
VubJ�J

�
` ; (1)

obtained by integrating out the t quark and W bosons. The di�erential decay distribution

can then be written as the product of leptonic and hadronic tensors

d� / jVubj2L��W��: (2)
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Using the Optical Theorem, the hadronic tensor W�� can be related to the imaginary part

of the time ordered product of currents

W�� = � 1

�
ImT��; (3)

T�� = � i

2MB

Z
d4xe�iq�xhBjT (Jy

�(x)J�(0))jBi: (4)

The time ordered product can be calculated by expanding in an Operator Product Ex-

pansion (OPE). The Wilson coe�cients can be calculated (over most of phase space) in

perturbation theory [5,6], while higher dimensional operators in the OPE are suppressed

(over most of phase space) by powers of 1=mb. Thus, the leading term in the OPE gives free

b quark decay. The �rst corrections enter at order 1=m2
b , and are proportional to the Heavy

Quark E�ective Theory parameters

�1 =
hBj�hv(iD)2hvjBi

2MB
; (5)

�2 =
hBj�hvg���G��jBi

12MB

: (6)

The problems begin as the energy of the lepton approaches the endpoint. De�ning

x = 2E`=mb to be the rescaled lepton energy, the higher dimensional operators in the OPE

are actually suppressed by

�

mb(1� x)
! 1 as x! 1: (7)

Higher dimensional operators in the expansion are no longer suppressed. In other words,

the expansion is becoming singular as we approach the endpoint.

The breakdown in the OPE can be seen in the expression for the rate at order 1=m2
b [7],

d�

dx

�����
O(1=m2

b
)

/ 5�1 + 33�2
3m2

b

�(1� x)� �1 + 33�2
6m2

b

�(1� x)� �1
6m2

b

�0(1� x); (8)

by the appearance of singular functions at the endpoint.

To handle the breakdown of the non-perturbative series, the leading singular terms must

be resummed. These corrections resum into a non-perturbative structure function, f(k+)

[8]. The di�erential rate is now a convolution of f(k+) with the partonic rate [8,9]
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d�

dE`
=

Z
dk+ f(k+)

d�p
dE`

(m�
b); (9)

where m�
b = mb + k+. The structure function is universal, meaning that the same function

occurs for b ! u`�� and b ! s
 decays. Being a non-perturbative function, f(k+) is not

known; we do know the �rst few moments of f(k+), however. Thus, to handle the endpoint

region, some model for f(k+) must be introduced. We could in principle extract the structure

function from b ! s
 decays and then apply it to b ! u`��, but this is di�cult because of

the way f(k+) enters the rate (9). Instead, we will skip the step of extracting the structure

function and directly use the b! s
 rate in the b! u`�� rate. But �rst we need to discuss

the perturbative corrections.

Near the endpoint, the perturbative correction to the rate looks like [10]

d�

dx
/ 1� 2�s

3�

�
log2(1� x) +

31

6
log(1� x) + �2 +

5

4

�
: (10)

As x ! 1, the logs become large and the perturbative series breaks down. To trust the

prediction, the logs need to be resummed. There are similarly large logs in the rate for

b! s
, so the logs must be resummed there, too [11].

It is possible to resum the series using Infrared Factorization, which is also used for DIS,

Drell-Yan, etc. The idea is that in the endpoint region, the light quark is shot out with

large energy, but with small invariant mass. This quark produces a jet of particles through

collinear radiation. While the constituents of the jet can talk to each other (and the original

b quark) through soft gluons, hard gluon exchange is disallowed. The soft radiation cannot

tell if the jet was initiated by a u quark or an s quark, thus it will be the same for b ! u

and b! s decays.

Mathematically, there is a separation of momentum regions into [12]

Hard (H) : k+ � k� � kt = O(mb); (11)

Jet (J) : k+ = O[mb(1� x)]; k� = O(mb); kt = O(mb

p
1� x); (12)

Soft (S) : k+ � k� � kt = O[mb(1� x)]: (13)

5



By introducing a factorization scale � to keep these regions separated, we can write the rate

in factorized form as

d�

dx
�

Z
dzS(z; �)J(z; �)H(�): (14)

The soft function S(z; �) is the same for b! u and b! s, while J(z; �) and H(�) depend

on the process.

The rate completely factorizes after taking moments,

M

N =

Z MB=mb

o
dx xn�1 1

�
o

d�


dx
= SNJ



NH



N ; (15)

M sl
N = �

Z MB=mb

o
dx xn�1 1

�
o

d

dx

d�


dx

=
Z
dx�SNJ

sl
N(x�)H

sl
N(x�); (16)

where M

N and M sl

N are the moments of the b! s
 and b! u`�� rates, respectively.

The soft function contains perturbative and non-perturbative pieces

SN = fN�N ; (17)

where fN are the moments of the structure function introduced earlier. Thus we can write

the moments (15) and (16) as

M

N = fN�NJ



NH



N ; (18)

M sl
N =

Z
dx�fN�NJ

sl
N (x�)H

sl
N(x�): (19)

All the large logarithms are contained in the combination �NJN . The only fact we

need about the perturbative resummation is that after resumming, including next-to-leading

logarithms, there is the relation [13]

�NJ
sl
N = �NJ



N exp[gsl(�s logN)]; (20)

where exp[gsl(�s logN)] is a known function.

We can now combine the above results. Substituting �rst (20) into (19), and then (18)

the result, we get
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M sl
N =

Z
dx�fN�NJ

sl
N (x�)H

sl
N(x�)

=
Z
dx�fN�NJ



N exp[gsl(�s logN)]Hsl

N(x�)

=
Z
dx�

M

N

H

exp[gsl(�s logN)]Hsl

N (x�): (21)

Note that the dependence on the unknown structure function fN has been eliminated.

We can go back to x-space by taking an inverse Mellin transform. The left-hand side of

(21) is just the semi-leptonic rate. The right-hand side is a convolution of the b ! s
 rate

with a known function. Rearranging, we can write this as [14]

jVubj2
jV �

tsVtbj2
=

R
�(b! u`�)R R

d�
=dx
 �K(x
 ; �s)
: (22)

So in words, what we have done is written jVubj2 as the ratio of the b ! ue�� rate over a

convolution of the b! s
 rate with a known function.

What are the uncertainties? First, there are higher order corrections that we neglected,

which enter at the order of �=mb, �s(1�x) and (1�x)3. For the value of the electron energy
cut, xcut � 0:87, these corrections should all be less that 10%. Of course, we are estimating

the size of the higher order corrections, since they have not been calculated. They may be

larger or smaller by a factor of 2 or 3. Without calculating the corrections directly, it is not

possible to know. We will come back to this quali�cation shortly.

Second, there are the violations of quark-hadron duality. These violations are hard to

quantify, but they should be small if we are not dominated by a just a few resonances; the

more �nal states, the smaller the duality violations. In the region that we are interested in,

it does not appear that we are dominated by resonances, so neglecting them should be okay.

It would be better if we could have a larger number of the decay products.

This is possible if we cut on di�erent kinematic variables. The other variables discussed in

the literature are the hadronic invariant mass [15], and the lepton invariant mass [16]. The

hadronic invariant mass spectrum also has dependence on the structure function [15,17],

which introduces model dependence. However, by using a method analogous to the one

described above for the electron spectrum, the dependence on the structure function can
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be eliminated [18,19]. The errors from higher order corrections are similar to the electron

spectrum and should be around 10%. The main advantage of the hadronic invariant mass is

that after a cut to remove the charm background, between 40% and 80% of the possible �nal

states will be included. This is much larger than for the electron spectrum, which includes

about 10% of the possible �nal states. Thus the quark-hadron duality violations should be

negligible.

The leptonic invariant mass cut has di�erent advantages [16,20]. Here the structure

function is not important, so we do not need to do anything to remove this model dependence.

Higher order non-perturbative corrections are on the order of (�=mc)
3, which leads to an

error again of around 10%. This disadvantage for this cut is the fraction of �nal states

included after the cut is around 20%, so the quark-hadron duality errors may be an issue.

There is also some question about how good a resolution can be obtained on the lepton

invariant mass, which is the only immediate problem for this method.

All three of the above methods should have a theoretical uncertainty (modulo quark-

hadron duality violations) of around 10%. Again, these are estimates of higher order correc-

tions. The actual errors may be bigger or smaller. Also, the duality violations could enter

in di�erent ways for each measurement. To really trust any extraction of jVubj, we should
measure it as many ways as possible, and only after (or if) there is a convergence of the

results should we trust the extracted value.
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