
Chapter 13

BEAM BREAKUP

In a high-energy electron linac,∗ the longitudinal positions of the particles inside a

bunch do not change. Thus, the tail particles are always affected by the head particles.

We have shown that the longitudinal wake will cause the tail particles to lose energy. This

loss accumulated throughout the whole length of the linac can be appreciable, leading to

an undesirable spread in energy within the bunch. If the linac is the upstream part of

a linear collider, this energy spread will have chromatic effect in the final focusing and

eventually enlarging the spot size of the beam at the interaction point. We have also

discussed how this energy spread can be corrected by placing the center of the bunch at a

rf phase angle where the rf voltage gradient is equal and opposite to the energy gradient

along the bunch.

Here, we would like to address the effect of the transverse wake potential. A small

offset of the head particles will translate into a transverse force on the particles following.

The deflections of the tail particles will accumulate along the linac. When the particles

hit the vacuum chamber, they will be lost. Even if the aperture is large enough, the

transverse emittance will be increased to an undesirable size. This phenomenon is called

beam breakup. This is not a collective instability, however.

Recently, there is a lot of interest in isochronous or quasi-isochronous rings, where

the spread in the slippage factor for all the particles in the bunch is very tiny, for exam-

ple, ∆η <∼ 10−6. In these rings, the head and tail particles hardly exchange longitudinal

∗All proton linacs in existence are not ultra-relativistic. The highest energy is less than 1 GeV.
Therefore synchrotron oscillations occur.
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13-2 CHAPTER 13. BEAM BREAKUP

position, and we are having a situation very similar to linacs. Problems of beam breakup

will also show up in these rings. The beam breakup discussed in this chapter does not

allow particles to exchange longitudinal positions or change their longitudinal positions.

We therefore assume that their velocities are equal to the velocity of light.

13.1 TWO-PARTICLE MODEL

v v

eN/2 eN/2ẑ

Figure 13.1: The two-particle model, where the bunch is represented by two macro-
particles each carrying half the charge of the bunch separated by a distance ẑ.

Take the simple two-particle model in Fig. 13.1, by which the bunch is represented

by two macro-particles of charge 1
2
eN separated by a distance ẑ. The transverse displace-

ments of the head, y1, and the tail, y2, satisfy

d2y1

ds2
+ k2

β1
y1 = 0 , (13.1)

d2y2

ds2
+ k2

β2
y2 = −e

2NW1(ẑ)

2LE
y1 , (13.2)

where s is the longitudinal distance measured along the designed particle path, W1 is the

transverse wake function for one linac cavity of length L, and kβ is the betatron wave

number. For an isochronous ring, L will be taken as the ring circumference C = 2πR and

kβ =
νβ
R

=
1

〈β〉 , (13.3)

where νβ is the betatron tune and 〈β〉 is the average betatron function. This model

has been giving a reasonably accurate description to the beam breakup mechanism for

short electron bunches when ẑ is taken as the rms bunch length. The head oscillates as

y1(s) = y10 cos kβs and the tail is initially at y2 = y10 with y′2 = 0. The displacement of

the tail can be readily solved and the result is

y2(s) = y10 cos k̄βs cos ∆kβs−
[
e2NW1(ẑ)

4πEk̄β
+
L∆kβ

2π

] [
y10 sin k̄βs

] [sin ∆kβs

∆kβ

]
, (13.4)
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where k̄β = 1
2
(kβ1

+ kβ2) is the mean of the two betatron wave numbers of the head

and tail. When the tune difference ∆kβ = kβ2
− kβ1

approaches zero, the tail is driven

resonantly by the head and its displacement grows linearly with s:

y2(s) = y1(s)−
e2NW1(ẑ)

4ELkβ

[
y10 sin kβ1

s
]
s . (13.5)

In the length `, the displacement of the tail will grow by Υ folds, where [2]

Υ = −e
2NW1(ẑ)`

4ELkβ
= −e

2NW1(ẑ)〈β〉`
4EL

, (13.6)

where W1(ẑ) is negative for small ẑ. In the above, we have written the growth in term

of the average betatron function 〈β〉. This is because the transverse impedance initiates

a kick y′ of the beam and the size of the kicked displacement depends on the betatron

function at the location of the impedance. This can be easily visualized from the transfer

matrix.

For a broadband impedance, the transverse wake function at a distance z behind the

source particle is, for z > 0,

W1(z) = −ω
2
rZ⊥
Qω̄

e−αz/c sin
ω̄z

c
, (13.7)

where Z⊥ is the transverse impedance at the angular resonant frequency ωr, which is

shifted to ω̄ =
√
ω2
r − α2 by the decay rate α = ωr/(2Q) of the wake. Let us introduce

the dimensionless variables

v =
ωrσ`
c

, t =
z

σ`
, and φ = vt cosφ0 =

ω̄z

c
, (13.8)

where the angle φ0 is defined as

cosφ0 =

√
1− 1

4Q2
or sinφ0 =

1

2Q
, (13.9)

assuming that Q > 1
2
. Then, the transverse wake in Eq. (13.7) can be rewritten as, for

φ > 0,

W1(φ) = −2ωrZ⊥ tan φ0 sinφ e−φ tanφ0 , (13.10)

The wake function decreases linearly from zero when φ = ω̄z/c � 1 and reaches a

minimum

W1|min = −2ωrZ⊥ tanφ0 cosφ0 e
−(π2−φ0) tanφ0 (13.11)
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Figure 13.2: Transverse wake function for a broadband impedance with Q = 1 in
units of ωrZ⊥ as a function of φ = ω̄z/c behind the source. With resonant angular
frequency ωr = 50 GHz, the position for z = σ` for the 4-cm bunch is marked, which
is certainly outside the linear region and the 2-particle model will not apply.

at

φ =
π

2
− φ0 or

αz

c
=
(π

2
− φ0

)
tan φ0 . (13.12)

After that it oscillates with amplitude decaying at the rate of α = ωr/(2Q), crossing zero

at steps of ∆φ = ω̄z/c = π. This is illustrated in Fig. 13.2.

Obviously, the growth expression of Eq. (13.6) does not apply to all bunch lengths.

For example, if ẑ just happens to fall on the first zero of W1(ẑ), Eq. (13.6) says there is

no growth at all. However, particles in between will be deflected and they will certainly

affect the tail particle. Thus, the criterion for Eq. (13.6) to hold is the variation of the

wake function along the bunch must be smooth. In other words, we must be in the linear

region of the wake function, or

φ =
ω̄z

c
� 1 −→ σ` �

1

2

λ

2π
, (13.13)

i.e., the rms bunch length must be less than half the reduced wave length of the resonant
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impedance. As an example, if the broad-band impedance with Q ∼ 1 has resonant

frequency 7.96 GHz (ωr = 50 GHz), the two-particle model works only when the rms

bunch length σ` � 3 mm. Therefore, the model cannot be applied to the usual proton

bunches. For the 50 GeV on 50 GeV muon collider, the muon bunches have a rms length

of 4 cm, and will not be able to fit into this model also.

13.2 LONG BUNCH

For a bunch with linear density ρ(z), the transverse motion y(z, s) at a distance z

behind the bunch center and time s is given by

d2y(z, s)

ds2
+ k2

βy(z, s) = −e
2N

LE

∫ z

−∞
dz′ρ(z′)W1(z − z′)y(z′, s) . (13.14)

This equation can be solved first by letting y(z, s) be a free oscillation on the right-hand

side and solving for the displacement y(z, s) on the left-hand side. Then, iterations are

made until the solution becomes stable. Therefore, when Υ is large, the growth will be

proportional to powers of Υ and even exponential in Υ. Thus, 〈β〉Z⊥, ωr, as well as Q

can be very sensitive to the growth.

Simulations have been performed for the 4-cm and 13-cm muon bunches in a quasi-

isochronous collider ring, with a betatron tune νβ ∼ 6.24, interacting with a broadband

impedance with Q = 1 and Z⊥ = 0.1 MΩ/m at the angular resonant frequency ωr =

50 GHz. Initially, a bunch is populated with a vertical Gaussian spread of σy = 3 mm

and y′ = 0 for all particles. There is no offset for the center of the bunch. Ten thousand

macro-particles are used to represent the bunch intensity of 4× 1012. The half-triangular

bin size is 15 ps (or 0.45 cm). In Fig. 13.3 we show the total growth of the normalized

beam size σy ≡ 〈y2 + (〈β〉y′)2〉1/2 relative to the initial beam size up to 1000 turns for

various values of 〈β〉, respectively, for the 13-cm and 4-cm bunches. The turn-by-turn

decay of the muons has been taken into account. We see that the beam size grows very

much faster for larger betatron function. Also the growths for the 4-cm bunch are much

larger than those for the 13-cm bunch because the linear charge density of the former is

larger.

13.2.1 BALAKIN-NOVOKHATSKY-SMIRNOV DAMPING

Kim, Wurtele, and Sessler [2] suggested to suppress the growth of the transverse



13-6 CHAPTER 13. BEAM BREAKUP

Figure 13.3: Beam-breakup growth for 1000 turns of a muon bunch interacting with a
broadband impedance of Q = 1, Z⊥ = 0.1 MΩ/m at the angular resonant frequency of
ωr = 50 GHz. Top: rms 13 cm bunch has total growths of 32.50, 7.4, 2.0, 1.09, 1.006,
respectively for 〈β〉 = 30, 25, 20, 15, 10 m. Bottom: rms 4 cm bunch has total growths
of 29713, 3361, 287, 16.2, respectively for 〈β〉 = 25, 20, 15, 10 m.
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beam breakup by a small tune spread in the beam, coming either through chromaticity,

amplitude dependency, or beam-beam interaction. This is because a beam particle will be

resonantly driven by only a small number of particles in front that have the same betatron

tune. This is a form of Balakin-Novokhatsky-Smirnov (BNS) damping suggested in 1983

[3].

To implement this, we add a detuning term

∆νβi = a[y2
i + (〈β〉y′i)2] (13.15)

to the i-th particle, as if it is contributed by an octupole or sextupole. In Fig. 13.4,

we plot the growths of the normalized beam size relative to the initial beam size with

various rms tune spreads σνβ = a〈σ2
y + (〈β〉σy′)2〉. Here, an average betatron function

of 〈β〉 = 20 m has been used. This is because BPMs, which contribute significantly to

the transverse impedance, are usually installed at locations where the betatron function

is large. We see that to damp the growth of the 13-cm bunch to less than 1%, we need

a rms tune spread of σνβ = 0.0008 or a total tune spread of ∆νβ = 3σνβ = 0.0024. On

the other hand, to damp the growth of the 4-cm bunch to less than 1%, we need a rms

tune spread of σνβ = 0.006 or a total tune spread of ∆νβ = 3σνβ = 0.024. However, if

the transverse impedance is larger, the average betatron function is larger, the resonant

frequency is larger, or the quality factor is smaller, this required tune spread may become

too large to be acceptable. This is because a large amplitude-dependent tune spread can

lead to reduction of the dynamical aperture of the collider ring.

For the lattice of the muon collider ring designed by Trbojevic and Ng [1], in order

to allow for a large enough momentum aperture, the amplitude-dependent tune shifts are

νβx = 8.126− 100εx − 4140εy
νβy = 6.240 − 4140εx − 50.6εy

(13.16)

for the on-momentum particles, where the unnormalized emittances εx and εy are mea-

sured in πm. For the 4-cm bunch, the normalized rms emittance is εNrms = 85×10−6 πm.

Since the muon energy is 50 GeV, the unnormalized rms emittance is εrms = 1.80 ×
10−7 πm, and becomes 1.62 × 10−6 πm when 3σ are taken. Thus, the allowable tune

spread for the on-momentum particles is ∆νβ = 4140 εy = 0.0067. Tune spreads larger

than this will lead to much larger tune spreads for the off-momentum particles, thus

reducing the momentum aperture of the collider ring. For 4-cm bunch, to damp beam

breakup to about 1% when Z⊥ = 0.1 MΩ/m and 〈β〉 = 20 m, one needs ∆νβ = 0.024.

However, we do not know exactly what 〈β〉 and Z⊥ are. Simulations show that if 〈β〉Z⊥
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Figure 13.4: Total growth in 1000 turns in the presence of an amplitude dependent
tune shift, such as provided by an octupole. An average betatron function of 〈β〉 =
20 m has been assumed. Top: growths of the rms 13 cm bunch are 1.36, 1.08,
1.02, 1.007, respectively for rms tune spread of σνβ = 0.0002, 0.0004, 0.0006, 0.0008.
Bottom: growths of the rms 4 cm bunch are 1.58, 1.23, 1.08, 1.03, 1.012, respectively
for rms tune spread of σνβ = 0.002, 0.003, 0.004, 0.005, 0.006.
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becomes doubled, 2.5 times, 5 times, and 10 times, the tune spreads required jump to,

respectively, ∼ 0.054, 0.073, 0.18, and 0.54. Thus, it appears that pure tune spread may

be able to damp beam breakup for the 13-cm bunch but may not work for the 4-cm bunch.

Although tune spreads due to chromaticity and beam-beam interaction will also damp

beam breakup, it is unclear how much the momentum aperture will be reduced due to

these tune spreads.

13.2.2 AUTOPHASING

The transverse beam breakup can be cured by varying the betatron tune of the beam

particles along the bunch, so that resonant growth can be avoided. In the two-particle

model, we can set

∆νβ = −e
2NW1(ẑ)

2LEk̄β
, (13.17)

in Eq. (13.4), so that the tail will be oscillating in phase and with the same amplitude

and tune as the head. The is another form of BNS damping known as autophasing [4].

For a particle-distributed bunch, in order that all particles will perform betatron

oscillation with the same frequency and same phase after the consideration of the per-

turbation of the transverse wake, special focusing force is required to compensate for the

variation of unperturbed betatron tune along the bunch. With the linear distribution

ρ(z), the equations of motion of Eq. (13.2) in the two-particle model generalize to

d2y(z, s)

ds2
+
[
kβ + ∆kβ(z)

]2
y(z, s) = −e

2N

LE

∫ z

−∞
dz′ρ(z′)W1(z − z′)y(z′, s) , (13.18)

where z > 0 denotes the tail and z < 0 the head, or the bunch is traveling towards the

left. We need to choose the compensation ∆kβ(z) along the bunch in such a way that the

betatron oscillation amplitude

y(z, s) ∼ sin
(
kβs+ ϕ0

)
(13.19)

is independent of z, the position along the bunch, with ϕ0 being some phase, because only

in this way any particle will not be driven by a resonant force from any particle in front.

The solution is then simply

2kβ∆kβ + ∆k2
β(z) = −e

2N

LE

∫ z

−∞
dz′ρ(z′)W1(z − z′) , (13.20)
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or, for small compensation ∆kβ(z),

∆kβ(z)

kβ
= − e2NR

2LEk2
β

∫ z

−∞
dz′ρ(z′)W1(z − z′) . (13.21)

If the linear bunch distribution ρ(z) is a Gaussian interacting with a broadband

impedance, the integration can be performed exactly to give

∆kβ(z)

kβ
=

e2N

2LEk2
βE

ω2
rZ⊥

2ω̄Q
e−z

2/(2σ2
` ) Imw

[
vejφ0

√
2
− jz√

2σ`

]
, (13.22)

where w is the complex error function while sinφ0 = 1/(2Q) and v = ωrσ`/c as defined

in Eqs. (13.8) and (13.9). For long bunches and high resonant frequency, or v � Q, the

complex error function behaves as

w(z) =
j√
πz

+O
(

1

|z|3

)
. (13.23)

This is certainly satisfied by both the 4-cm and 13-cm muon bunches, where v = 6.67

and 21.7, respectively, but not by the short electron bunches. Let us first discuss the long

muon bunches in a storage ring. For convenience, we convert the betatron number to

betatron tune by kβ = νβ and the length L to the ring circumference C = 2πR. Thus

∆kβ, the shift in betatron wave number in a cavity length L, becomes ∆νβ, the betatron

tune shift in a turn. Then, the relative tune-shift compensation in Eq. (13.22) can be

simplified to
∆νβ(z)

νβ
≈ e2NωrZ⊥R

2(2π)3/2ν2
βQvE

[
1 +

z

vQσ`

]
e−z

2/(2σ2
` ) . (13.24)

The relative tune-shift compensations required for the two bunches are shown in the top

plot of Fig. 13.5. This is the situation for autophasing of short electron bunches, which is

very different from the autophasing for the longer muon bunches. Note that in Eq. (13.24),

vQ controls the asymmetry of the tune-shift compensation curve. When vQ→∞, there

is no asymmetry and the compensation curve reduces to just a Gaussian, and, at the same

time, ∆νβ/νβ decreases to zero. On the other hand, when v � Q for short bunches or low

broadband resonant frequency, the relative tune-shift becomes rather linear as depicted

by the 1.8 mm (v = 0.3) curve in the lower plot of Fig. 13.5. The curves for the 5.0 mm,

1.0 cm, and 4 cm bunch (v = 0.83, 1.67, and 6.67) are also shown for comparison. Note

that as the bunch length gets shorter, the frequency components of the tune compensation

become much lower. For a very short bunch, the compensation becomes nearly linear in

the region of the bunch.
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Figure 13.5: Relative tune shift autophasing compensation at distance z/σ` behind
the bunch center (or bunch going to the left) to cure beam breakup. Impedance is
broad-band resonating at ωr = 50 GHz. Top: for the rms 4-cm and 13-cm bunches,
where v = ωrσ`/c = 6.67 and 21.7 respectively, with bunch profile plotted in dashes
as a reference. Bottom: for short bunches, rms 1.8, 5.0, 10.0 mm, with v = 0.3, 0.83,
1.67, respectively. The curve for the 4-cm bunch is plotted as comparison. Note
that when v is small, the compensation is of much lower frequencies.
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To cure beam breakup with autophasing damping in an electron linac, the electron

bunch is usually placed off the crest of the rf wave so that the head and tail of the

bunch will acquire slightly different energies, and therefore slightly different betatron

tunes through chromaticity. For muon bunches in the collider ring, however, this method

cannot be used. If one insists on having autophasing, a rf quadrupole must be installed

and pulsed according to the compensation curve for each bunch as the bunch is passing

through it. The variation of a quadrupole field at such high frequencies is not possible at

all. Another method is to install cavities that have dipole oscillations at these frequencies,

which is not simple either. For this reason, autophasing for long bunches is not practical

at all.

13.3 LINAC

13.3.1 ADIABATIC DAMPING

Let us come back to the short electron bunches in a linac. An expression was given in

Eq. (13.6) for the deflection of the tail particle in the two-particle model. In a linac, the

bunches are accelerated and the energy change of the beam particles cannot be neglected.

The equations of motion of the head and tail macro-particles now become

1

γ

d

ds

(
γ
dy1

ds

)
+ k2

βy1 = 0 , (13.25)

1

γ

d

ds

(
γ
dy2

ds

)
+ k2

βy2 = −e
2NW1(ẑ)

2LγE0
y1 , (13.26)

where E0 is the electron rest energy. The betatron wave number, which we have set to

be the same for the two macro-particles, can have different dependency on energy. One

way is to have kβ energy independent or the particle makes the same number of betatron

oscillations per unit length along the linac. This is actually the operation of a synchrotron,

where the quadrupole fields are ramped in the same way as the dipole field. If we further

assume a constant acceleration

γ(s) = γi(1 + αs) , (13.27)

where γi is the initial gamma and α is a constant, the equation of motion of the head

becomes
d

du

(
u
dy1

du

)
+
k2
β

α2
uy1 = 0 , (13.28)
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where u = 1 + αs. Usually the acceleration gradient α is much slower than the betatron

wave number kβ . For example, in the L0 = 3 km SLAC linac where electrons are acceler-

ated from Ei = 1 GeV to Ef = 50 GeV, α = 0.0163 m−1, while the betatron wave number

is kβ = 0.06 m−1. In that case, the solution is (Exercise 13.1)

y1(s) =
ŷ√

1 + αs
cos kβs , (13.29)

which is obtained by letting y1 = A cos kβs with A a slowly varying function of u. The

equation of motion of the tail becomes

d

du

(
u
dy2

du

)
+
k2
β

α2
uy2 = −e

2NW1(ẑ)

2LEiα2

ŷ√
u

cos kβs . (13.30)

To obtain the particular solution, we try y1 = D sin kβs with D a slowly varying function

of u. The final solution is

y2(s) =
ŷ√

1 + αs

[
cos kβs−

e2NW1(ẑ)

2LEiα
ln(1 + αs) sin kβs

]
. (13.31)

Noticing that Eiα ≈ Ef/L0, the growth for the whole length L0 of the linac is

Υ = −e
2NW1(ẑ)L0

4kβEfL
ln
Ef
Ei

. (13.32)

This is to be compared with Eq. (13.6), where we gain here a factor of

F =
Ei
Ef

ln
Ef
Ei

(13.33)

For the SLAC linac, this factor is 7.8, meaning that the tail will be deflected by 7.8 less

with the acceleration. This effect is called acceleration damping.

13.3.2 DETUNED CAVITY STRUCTURE

The dipole wake function of a cavity structure is given by

W1(z) = −2
∑
n

Kn sin
2πνnz

c
e−πνvz/(cQn) z > 0 , (13.34)

where Kn, νn, and Qn are the kick factor, resonant frequency, and quality factor of the

nth eigenmode in the structure. The kick factor is defined as

Kn =
πRnνn
Qn

, (13.35)
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with Rn being the dipole shunt impedance of the nth mode. To reduce beam break up,

it is important to reduce this dipole wake function.

One way to reduce the dipole wake is to manufacture the cavity structure with cell

varying gradually so that each cell has a slightly different resonant frequency. In this case,

the effect of the wake due to each individual cell will not add together and the wake of

the whole structure will be reduced. Such a structure is called a detuned cavity structure

[5].

Let us first study the short-range part of the dipole wake. The assumption that

all the cells do not couple can be made, and the wake function of Eq. (13.34) can be

considered as the summation of the wake due to each individual cell. Thus Kn, νn, and

Qn become the kick factor, resonant frequency, and quality factor of the nth cell. Since

the variation from cell to cell is small, the summation can be replaced by an integral

W1(z) ≈ −2

∫
dν K

dn

dν
sin 2πνzc . (13.36)

Some comments are in order. First, the decays due to the quality factors have been

neglected, because these are high-Q cavity and we are interested in the short-range wake

only. Second, K(dn/dν) is considered as a function of ν and the normalization of dn/dν is

unity because in Eq. (13.36), we refer W1(z) to the dipole wake per cell. Since K(dn/dν)

must be a narrow function centered about the average resonant frequency of the cells ν̄,

the wake can be rewritten as

W1(z) ≈ −2Im
[
e2πν̄z/c

∫
dν K(ν̄ + x)

dn

dν
(ν̄ + x)e2πixz/c

]
. (13.37)

We see that the wake consists of a rapidly varying part, oscillating at frequency ν̄, and a

slowly varying part, the envelope, that is given by the Fourier transform of the function

K(dn/dν) after it has been centered about zero. For uniform frequency distribution with

full frequency spread ∆ν, the wake is given by

W1(z) ≈ −2K̄ sin
2πν̄z

c

sin(π∆νz/c)

π∆νz/c
, (13.38)

with K̄ the average value of K. If the frequency distribution is Gaussian with rms width

σν, then

W1(z) ≈ −2K̄ sin
2πν̄z

c
e−2(πσνz/c)2

. (13.39)

In this case, the envelope also drops as a Gaussian. It seems reasonable to expect that

the proper Gaussian frequency distribution is near ideal in the sense of giving a rapid
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drop in the wake function for a given total frequency spread, and this is the motivation

for choosing the Gaussian detuning.

Take the example of the Next Linear Collider (NLC). Consider a detuned structure

with N = 200 cells. The central frequency is ν̄ = 15.25 GHz. The detuned frequency

distribution is Gaussian with ±2.5σν, where the rms spread σν 2.5% of ν̄. It is found

that the average kick factor is K̄ = 40 MV/nC/m2. Such a wake is shown in the top plot

Fig. 13.6. Notice that the wake function in fact does start from zero and has a first peak

around 80 MV/nC/m2 at z ≈ c/(4ν̄) = 4.91 mm It is important to point out that the

dipole wake function defined in this way differs from our usual definition; it is equal to

our usual W1/L with L = 1 m. The designed rms bunch length is σ` = 0.150 mm which

is much less than the fist peak. Therefore, the detuned structure will not help the single-

bunch breakup at all. The bunch spacing is 42 cm. Over there the wake has dropped by

more than two orders of magnitude. Thus, this lowering of the wake will definitely help

the multi-bunch train beam breakup.

There are some comments on the wake depicted in Fig. 13.6. First, the wake does not

continue to drop exponentially after about 0.4 m. Instead, it rises again having another

peak around 4.2 m, although this peak is very much less than the first one. The main

reason is due to the finite number of cells in the structure so that the Gaussian distribution

has to be truncated. It is easy to understand the situation of the uniform frequency

distribution of Eq. (13.38). The envelope is dominated by the sin x/x term which gives a

main peak at x = 0 and starts to oscillate after the first zero at z = c/∆ν. Second, the

coupling of the cells will nevertheless become important at some larger distance. Thus

the long-range part of the wake cannot be trusted at all. Bane and Gluckstern [5] used

a circuit model with coupled resonators to give a more realistic computation of the long

range wake. Later, Kroll, Jones, et al. [6] introduce a four-hole manifold in the cells to

carry away the dipole wave generated by the beam. The final wake is shown in the bottom

plot of Fig. 13.6. We see that the short-range part of the wake is almost the same as is

given by the top plot of Fig. 13.6. On the other hand, the long-range wake has been kept

much below 1 MV/nC/m2. This wake has been computed first in the frequency domain

as a spectral function and is then converted to the time or space domain via a Fourier

transform. For this reason, we do not expect it to deliver the correct values at very short

distances. The interested readers are referred to Refs. [5] and [6].

For the NLC, assuming a uniform energy independent betatron focusing with 100

betatron oscillations in the linac, the betatron wave number is kβ = 0.06283 m−1. The
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Figure 13.6: Envelope of the dipole wake function of a Gaussian detuned structure.
Top: Coupling between cells has been ignored. Bottom: Coupling between cells has
been included using a circuit model. Also the structure is coupled to a manifold.
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NLC bunch has a vertical rms beam size of σy0 = 4.8 µm, or the normalized rms vertical

emittance εy = 0.028 µm. The deflection of the tail particle in the two-particle model

is multiplied only Υ ∼ 2.1 fold per unit offset of the head particle (see Exercise 13.3).

Assuming 1 µm initial offset of the head particle, and conservation of normalized emittance

in the absence of beam breakup, the normalized vertical emittance becomes εy = 0.30 µm.

For autophasing, assuming a chromaticity ξ = 1 defined by

∆kβ
kβ

= ξδ , (13.40)

an energy spread of 0.34% will be enough to damp the growth of the tail. These values

are in close agreement of the simulations performed by Stupakov [10], as illustrated in

Fig. 13.7.

13.3.3 MULTI-BUNCH BEAM BREAKUP

The NLC delivers a train of 95 bunches with bunch spacing 42 cm. Even if there

is not beam breakup for a single bunch, the bunches in the train can also suffer beam

breakup driven by the bunches preceding them. The first thing to do to ameliorate the

situation is to design the linac cavities in such a way that the long-range dipole wake

function will be as small as possible. The Gaussian detuned structure has been a way to

lower the dipole wake by as much as two orders of magnitudes. According to the lower

plot of Fig. 13.6, at 42 cm, the dipole wake is only ∼ 0.21 MV/nC/m2.

The two-particle model can be extended to accommodate the study of multi-bunch

beam breakup. Each bunch is visualized as a macro-particle containing N electrons. Then

the equation governing the displacement of the first bunch is

d2y1

ds2
+ k2

βy1 = 0 , (13.41)

and that of the second bunch is

d2y2

ds2
+ k2

βy2 = −e
2NW1(ẑ)

LE
y1 , (13.42)

The first equation is the free betatron oscillation and is the same as Eq. (13.1). For the

second equation differs slightly from Eq. (13.2) in not having the factor 2 in the denomi-

nator. This is because in the two-particle model of a bunch, each macro-particle contains
1
2
N electrons and here each macro-particle represents one bunch which is composed of N
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Figure 13.7: The normalized vertical emittance of a NLC bunch from the beginning
to the end of the main linac, assuming an initial vertical offset of 1 µm. Top: The
emittance increases to ∼ 0.3 µm because of beam breakup. Bottom: An energy
spread of ∼ 0.8% is added across the bunch by offsetting the rf phase. The emittance
increase has been damped.
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electrons. Also the dipole wake W1(ẑ) in Eq. (13.42) is evaluated at the bunch spacing ẑ.

Recall that the two-particle model will not work when the bunch length is too long and

falls out of the linear region of the dipole wake, because some particles in between the

head and the tail will suffer more beam-breakup deflections than the tail. However, this

model still works for a long train of bunches, because unlike a long bunch, there are no

particles between the point bunches.

Now the solution for the first bunch is

y1(s) = Re ŷeikβs . (13.43)

The solution for the second bunch is

y2(s) = Re ŷ Γseikβs , (13.44)

where

Γ =
ie2NW1(ẑ)

2kβLE
, (13.45)

and we have neglected the general solution

y2(s)|general = ŷe±ikβs , (13.46)

which is much smaller than the particular solution in Eq. (13.44) which grows linearly as

s. The equation for the deflection of the third bunch is

d2y3

ds2
+ k2

βy3 = −e
2NW1(2ẑ)

LE
y1 −

e2NW1(ẑ)

LE
y2 . (13.47)

Here, we are going to retain only the largest driving force on the right-side. This means

that the driving force from y1 can be neglected and so is the force from the general solution

of y2. Substituting Eq. (13.44) in Eq. (13.47), we solve for the most divergent solution

y3(s) = Re ŷ 1

2
Γ2s2eikβs . (13.48)

Continuing this way, the deflection for the mth bunch will be (Exercise 13.4)

ym(s) = Re ŷ 1

(m− 1)!
Γm−1sm−1eikβs . (13.49)

Stupakov [11] tries to estimate how much energy spread will be required to BNS damp

the multi-bunch beam breakup. In order to damp the deflection of the second bunch the

amount of tune spread is
∆kβ
kβ

= −e
2NW1(ẑ)

2k2
βEf

ln
Ef
Ei

, (13.50)
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taking the linac acceleration into account. It is reasonable to assume that nb times spread

will be required for nb bunches. Next the natural chromaticity for a FODO lattice of

phase advance µ is

ξ = − 2

π
tan

µ

2
. (13.51)

For 95 bunches, one gets the required energy spread of 2.7% (Exercise 13.5). The simu-

lations by Stupakov are shown in Fig. 13.8. The initial bunch offset is 1 µm and it takes

an rms energy spread of 0.8% among the bunches to damp the growth.

Figure 13.8: The relative change in vertical emittance of the 95th bunch, taking
the vertical size as the vertical offset of the bunch center added to the actual rms
vertical size in quadrature. The initial vertical offset is 1 µm. Curve 1 shows the
growth without any energy variation in the bunches. Curve 2 shows the beam-
breakup growth has been damped with a 0.8% rms energy spread from the first to
the 95th bunch.

13.3.4 ANALYTIC TREATMENT

Analytic computation of beam breakup for a bunch train has been attempted by
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many authors [8, 7]. In all these papers, the dipole wake has been taken as a single

dipole resonance and BNS damping has not been included. Recently, Bohn and Ng [9]

have been able to include an energy chirp and derive analytic expressions for the BNS

damping of a train of point bunches. Essentially, the energy chirp gives rise to a spread

in betatron wave number among the bunches. In order for the derivation to go through

analytically, it has been assumed that the betatron wave number decreases as γ−1/2. This

focusing arrangement implies that all the quadrupoles are identical and they can be on

one common bus, because the focusing field gradient will be exactly the same along the

linac. This implies the focusing becomes weaker as the energy increases. In fact, the NLC

quadrupoles are deployed roughly in this way, although the quadrupoles there are all on

separate buses for the ease of beam alignment. An outline of the analytic derivation is

given below.

Introduce the dimensionless spatial parameter σ = s/L0 normalized to the total linac

length L0. Introduce also the dimensionless time parameter ζ = ωr(t − s/c), with ωr
being the dipole resonant angular frequency, to describe the arrival of the first particle

of the beam at position s along the linac. Thus, ζ measures the longitudinal position

of the particle inside the beam. The transverse displacement of a particle in the beam,

represented by y(σ, ζ), depends on both σ and ζ and its motion is governed by[
1

γ

∂

∂σ

(
γ
∂

∂σ

)
+ κ2(σ, ζ)

]
y(σ, ζ) = −ε(σ)

∫ ζ

0

dζ ′w(ζ−ζ ′)F (ζ ′)y(σ, ζ ′) , (13.52)

which is just another way of writing Eq. (13.14) with acceleration included as in Eq. (13.26).

Here, the normalized betatron wave number is κ = kβL0. The beam profile F (ζ) will be

defined in Eq. (13.55) below. The normalized dipole wake is

w(ζ) = −H(ζ) e−ζ/(2Q) sin ζ , (13.53)

where Q is its quality factor and H(ζ) is the Heaviside step function. All the rest is

lumped into the dimensionless beam-breakup coupling strength

ε(σ) =
e2Nw0L2

0

γE0ωrτ
, (13.54)

where w0 is the sum-wake amplitude or twice the kick factor of the dipole resonance

measured in V/C/m2 and N/(ωrτ ) is the number of electrons per longitudinal time ζ. For

a train of bunches with temporal spacing τ , N becomes the number per bunch. When

these bunches are further considered as points, the beam profile in above is represented
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by

F (ζ) =

∞∑
n=−∞

δ

(
ζ

ωrτ
− n
)
. (13.55)

A betatron linear chirp is now introduced,

κ(σ, ζ) = κ0(σ) + κ1(σ, 0)ζ , (13.56)

where κ0(σ) is the normalized betatron wave number without the chirp and κ1(σ, 0)

represents the strength of the chirp. With the assumption that the acceleration gradient

is much less than the betatron wave number, we can introduce a new transverse offset

variable

ξ(σ, ζ) =
√
γ(σ) y(σ, ζ) e−iζ∆(σ) , (13.57)

where ∆(σ) =
∫ σ

0
dσ′K1(σ′, 0). Now Eq. (13.52) can be rewritten as[

∂2

∂σ2
+ κ2

0(σ)

]
ξ(σ, ζ) ' −ε(σ)

∫ ζ

0

dζ ′w∆(σ, ζ−ζ ′)F (ζ ′)ξ(σ, ζ ′) , (13.58)

where the assumption of strong focusing, ∂ξ(σ, ζ)/∂σ ' iκ0ξ(σ, ζ), has been used. The

chirped-modified wake in Eq. (13.58) is defined as

w∆(σ, ζ) = w(ζ)e−iζ∆(σ) , (13.59)

where obviously the exponential comes from the definition of ξ(σ, ζ). This exponential,

when combined with the exponential of the original wake of Eq. (13.53), gives an effective

quality factor Qeff , where
1

2Qeff
=

1

2Q
+ i∆ . (13.60)

Immediately, a result can be drawn that the chirp will be important if Q is high, but will

be masked if Q is sufficiently low.

The transformation into Eq. (13.58) is important, because the operator on the left

side no longer depends on ζ, and the chirp has been incorporated into the dipole wake. In

this form, the WKB method can be employed to give a formal result for ξ(σ, ζ). Denoting

the displacement for the (m+ 1)th bunch as ym(σ) = y(σ,mωrτ ), the solution is [8, 12]

ym(σ)=
1

2π

m∑
n=0

e−nωrτ/(2Q)

∫ π

−π
dθ e−inθ

{
ym−n(0)C(σ, θ;m) + y′m−n(0)

S(σ, θ;m)

Λ(0, θ)

}
,

(13.61)



13.3. LINAC 13-23

in which

Λ(σ, θ) = κ0(σ)

{
1− ε(σ)

4κ2
0(σ)

ωrτ sinωrτ

cos[θ + ωrτ∆(σ)]− cosωrτ

}
(13.62)

is an auxiliary function reflecting the coupling between the bunch spacing and the deflecting-

mode frequency, and

{
C(σ, θ;m)

S(σ, θ;m)

}
=

√
Λ(0, θ)

Λ(σ, θ)

{
Re
Im

}
exp

[
imωrτ∆(σ) +

∫ σ

0

dσ′Λ(σ′, θ)

]
(13.63)

are cosine-like and sine-like functionals, respectively.

It is evident from Eq. (13.61) that upon taking θ → −θ and remembering that ym
is real, the algebraic sign of ∆(σ) affects only the phase of ym(σ) but not the envelope.

This demonstrates that, as expected intuitively, the effect of a linear increase in focusing

from head to tail is the same as a linear decrease.

For further discussion, let us set the initial conditions ym(0) = y0 and y′m(0) = 0

for every bunch, and assume a constant acceleration gradient in the linac. The sum in

Eq. (13.61) can be decomposed into two parts:
∑m

0 =
∑∞

0 −
∑∞

m . The first part pertains

to the steady-state displacement yss that would arise were the deflecting wake first seeded

with an infinitely long bunch train immediately preceding the actual bunch train. Given

strong focusing, the steady-state displacement is

yss(σ,mωrτ ) ' y0

[
Ei
Eσ

]1/4

cos

[
mωrτ∆(σ) +

∫ σ

0

dσ′κ0(σ′)

]
, (13.64)

where we have written, for convenience, the energy of the beam particle at location σ as

Eσ = γ(σ)E0 and the initial energy as Ei = γ(0)E0. Later we will also write the energy

at linac exit as Ef = γ(1)E0.

The second part pertains to the transient displacement δym = ym−yss. Saddle-point

integration gives a closed-form solution for δym, whose bounding envelope takes the form:

|δym|
y0
'
[
Ei
Eσ

]1
4
√
P exp [q(η)P −mωrτ/(2Q)]

4m
√

2π | sin(ωrτ/2)|
×


|1− η2|−

1
4 η not near 1(

4

3

)1
6
P

1
6

Γ
(

1
3

)
√

2π
η = 1.

(13.65)
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The auxiliary relations comprising Eq. (13.65) are:

P (σ,m) =

[
4mw0e2NL2

0

κ̄0Ei

]1/2

[(√
Ef/Ei − 1

)(√
Eσ/Ei − 1

)]1/2

Ef/Ei − 1
,

η(σ,m) =
κ̄0|fγ|

2P

m

M

√
Eσ/Ei − 1√
Ef/Ei − 1

,

q(η) =


√

1−η2

2
+

1

4η
tan−1

(
2η
√

1−η2

1−2η2

)
η < 1

π

4η
η ≥ 1 ,

in which κ̄0 is the focusing strength averaged over the linac and is related to the focusing

strength at entrance κ0(0) by

κ̄0 =
2κ0(0)√
Ef/Ei + 1

, (13.66)

M is the total number of bunches in the train, |fγ| is the magnitude of the total fractional

energy spread across the bunch train, or twice the total fractional focusing variation.

The expression for |δym| in Eq. (13.65) reflects a number of physical processes. The

coefficient involving beam energy manifests adiabatic damping. The factor | sin(ωrτ/2)| is
a relic of a resonance function deriving from the coupling between the bunch spacing and

the deflecting-mode frequency. Resonances lie near even-order wake zero-crossings [8];

because the solution is valid only away from zero-crossing, resonance is removed. The

focusing variation represented by |fγ | regulates exponential growth, and finite Q yields

exponential damping. Yet “η=1” does have special physical significance; it demarks the

onset of saturation of exponential growth and, with infinite Q, algebraic decay of the

envelope. For η≥1 the “growth factor” q(η)P is independent of bunch number m and of

linac coordinate σ; temporal “damping” then ensues through a negative power of m, and

spatial “damping” ensues adiabatically as already mentioned. Therefore η=1 corresponds

to a global maximum in the envelope |δym|. The effect of the focusing variation is the

saturation of the exponential growth, not damping; its action distinctly differs from that

of a real effective Q.

The special significance of η= 1 translates into a criterion for the focusing variation

to be effective. Specifically, one should choose a value of fγ that ensures η(1,M) > 1,

i.e., that η = 1 is reached somewhere along the bunch train before it leaves the linac.
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According to the auxiliary relations to Eq. (13.65), the criterion is

|fγ| >
2P (1,M)

κ̄0
. (13.67)

The analytic envelope at the linac exit is plotted in Fig. 13.9 with total energy spread of

1.5% at the top and 3% at the bottom. Simulations are also displayed showing excellent

agreement with theory. The plots are made with the scenario that the linac is L0 = 10 km

long, accelerating 90 bunches with bunch spacing τ = 2.8 ns from 10 GeV to 1 TeV.

Each bunch contains 1 nC of charges or N = 6.24× 109 electrons, making 1000 betatron

oscillations along the linac. The dipole wake is of resonant frequency ωr/(2π) = 14.95 GHz

with infinite quality factor Q and sum-wake amplitude w0 = 1 MV/nC/m2.

The steady-state and transient displacements, being uncorrelated, comprise a mea-

sure of the total projected normalized emittance as

ε ≡
(
|yss|2 + |δym|2max

) γκ0

L0
, (13.68)

wherein |yss| = y0[Ei/Eσ]1/4 per Eq. (13.64), and |δym|max is the maximum value of the

transient envelope reached along the bunch train. If η< 1 always, then the maximum is

reached at the last bunch m = M . Otherwise, the maximum corresponds to the value of

|δym| at which η=1. Imposing a focusing variation will reduce the transient envelope, but

it also will establish a harmonic variation of yss with m and thereby introduce a nonzero

steady-state emittance εss. For this reason the quantity of interest is the ratio

(ε− εss)/εss =

(
|δym|max
|yss|

)2

, (13.69)

from which one sees the benefit of keeping the ratio of envelopes small. This quantity,

calculated from the analytic expressions given in Eqs. (13.64) and (13.65), is plotted

against |fγ | in Fig. 13.10 for various values of the sum-wake amplitude w0. Fig. 13.10

points to the region of parameter space that, respecting multibunch beam breakup, ad-

mits viable linear-collider designs. In particular it shows that to achieve low multibunch

emittance without aid from a focusing variation requires small sum-wake amplitudes,

w0
<∼ 0.5 V/pC/mm/m. Otherwise, as depicted, a few-percent energy spread relieves the

constraint on sum-wake amplitude. There are, of course, practical limitations on the en-

ergy spread, to include longitudinal beam requirements at the interaction point, lattice

chromaticity, degradation in acceleration, etc. Nonetheless, introducing a modest en-

ergy spread constitutes a backup in case sufficiently low wake amplitudes prove generally

infeasible.
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Figure 13.9: Analytic envelope at the linac exit (solid curve) plotted against

the transverse displacement of bunches calculated numerically, with total en-

ergy spreads of 1.5% (top) and 3% (bottom).
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Figure 13.10: Total normalized transverse multibunch emittance at the linac exit,
referenced to its steady-state value, versus total energy spread across the bunch
train, plotted for various sum-wake amplitudes w0 = 2K.

It is worth mentioning that the plots in Figs. 13.9 and 13.10 have been performed with

the data of the upgraded NLC. If we use the present lower energy design of accelerating

the bunches up to only 500 GeV, we lose a lot of acceleration adiabatic damping and the

growths of the bunch deflections at the linac exit will be increased tremendously. To BNS

damp such growths, an energy chirp close to 50% will be necessary. Certainly this is not

workable because of the large momentum spread of the bunches which later translates into

unacceptable transverse bunch sizes at the interaction point. The acceleration gradient

will also be largely reduced. Needless to say, the linac itself will hardly have such large

energy aperture for the bunches to pass through. What we actually want to point out

is BNS damping is only feasible when the actual beam breakup is not too large, because

only a small amount of energy chirp is acceptable in reality.
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13.4 EXERCISES

13.1. (1) Assuming that the acceleration gradient is much less than the betatron wave

number, derive the beam-breakup solutions, Eqs. (13.29) and Eq. (13.31), for the

displacements of the head and tail in the two-particle model.

(2) The dipole transverse wake function of the SLAC linac per cavity cell at 1 mm

is 62.9 V/pC/m. The bunch is of rms length 1 mm containing 5 × 1010 electrons.

The cavity accelerating frequency is 2.856 GHz, with each cavity having the length

of 1
3

wavelength. The betatron wave number is kβ = 0.06 m−1. In a two-particle

model, compute the ratio of the deflection of the tail particle versus that of the head

particle along the whole linac. Compute the same ratio if the linac stays at 1 GeV

without acceleration.

13.2. A linac has a lattice consisting of N FODO cells. In between two consecutive

quadrupoles, there is an acceleration structure of length `, which is half of the

FODO cell length. The acceleration is linear with Ef/Ei = 1 + 2Nα` where Ei and

Ef are, respectively, the initial and final energy across the N FODO cells.

(1) Show that the transverse transfer matrix across the nth acceleration structure

is  1
1+nα`

α
ln

1+(n+1)α`

1+nα`

0
1+nα`

1+(n+1)α`

 . (13.70)

(2) Is the transfer matrix symplectic? Give a physical answer.

Hint: Solve Eq. (13.28) with kβ = 0.

13.3. The NLC bunch has a rms length of σ` = 150 µm containing 1.1 × 109 electrons.

The linac has a length of 10 km, accelerating electrons from 10 GeV to 500 GeV.

Assume a uniform betatron focusing with 100 betatron oscillations in the linac

The accelerating structure has a transverse mode at the mean frequency of ν̄ =

15.25 GHz with a rms spread σν = 25% of ν̄.

(1) Use Eq. (13.39) to compute the transverse wake function at a distance σ`,

assuming that the average kick factor is K̄ = 40 MV/nC/m2.

(2) Compute the multiplication factor of the tail particle in the two-particle model

at the end of the linac.

(3) Assuming the natural chromaticity of ξ = (∆kβ/kβ)/δ = −1 for the FODO-cell
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lattice, compute the energy spread between the head and tail of the bunch in order

to damp the deflection of the tail.

13.4. (1) Complete the derivation of the beam-breakup deflection of the mth bunch as

given by Eq. (13.49).

(2) For the NLC with 95 bunches with spacing 42 cm, estimate the deflection of the

last bunch if the first bunch has an initial offset of 1 µm. You may take the mean

energy of the linac in the computation and the dipole wake at one bunch spacing as

0.21 MV/nC/m2.

13.5. Fill in the steps and give the estimate of the energy spread from the first to the 95th

bunch in order to damp the beam breakup instability of the bunch train as outlined

in Sec. 13.3.3.



13-30 CHAPTER 13. BEAM BREAKUP



Bibliography

[1] C.M. Ankenbrandt et al. (Muon Collider Collaboration), Phys. Rev. ST Accel.

Beams 2, 081001 (1999).

[2] E.-S. Kim, A,M, Sessler, and J.S. Wurtele, Part. Accel. Conf., March 29 - April 2,

1999, New York City, Article THP45.

[3] V. Balakin, A. Novokhatsky, and V. Smirnov, Proc. 12th Int. Conf. High Energy

Accel., Fermilab 1983, p.119.

[4] V.E. Balakin, Proc. Workshop on Linear Colliders, SLAC, 1988, p.55.

[5] K.L.F. Bane and R.L. Gluckstern, Particle Accelerators 42, 123 (1993).

[6] R. Jones, K. Ko, N.M. Kroll, R.H. Miller, and K.A. Thompson, Equivalent Circuit

Analysis of the SLAC Damped Detuned Structure, EPAC’96, 1996: R. Jones, K. Ko,

N.M. Kroll, and R.H. Miller, Spectral Function Calculation of Angle Wakes, Wake

Moments, and Misalignment Wakes for the SLAC Damped Detuned Structures (DDS),

PAC’97, 1997.

[7] K. Yokoya, Cumulative Beam Breakup in Large-Scale Linacs, DESY 86-084, ISSN

0418-9833, 1986.

[8] C.L. Bohn and J.R. Delayen, Phys. Rev. A45, 5964 (1992). “Multibunch Domain B”

introduced in this reference is the limit of zero focusing variation away from wake

zero-crossing.

[9] C.L. Bohn and K.Y. Ng, Phys. Rev. Lett. 85, 984 (2000); Preserving High Multibunch

Luminosity in Linear Colliders, Fermilab Report FERMILAB-PUB-00-072-T, 2000.

[10] G. Stupakov, talk given in SLAC-Fermilab Video Conference, September, 1999.

13-31



13-32 BIBLIOGRAPHY

[11] G. Stupakov, Effect of Energy Spread in the Beam Train on Beam Breakup Instability,

SLAC Report, LLC-0027, 1999.

[12] C.L. Bohn, Proceedings of the 1990 Linear Accelerator Conference, Los Alamos Na-

tional Laboratory Report No. LA-12004-C, p. 306.


