
Chapter 11

HEAD-TAIL INSTABILITIES

11.1 TRANSVERSE HEAD-TAIL

Let us now consider the short-range field of the transverse impedance; i.e., Z⊥1 (ω)

when ω is large. This is equivalent to replacing the discrete line spectrum by a continuous

spectrum. Since ReZ⊥(ω) is antisymmetric, the summation in Eq. (9.32) or Eq. (10.1)

when transformed into an integration will vanish identically at zero chromaticity. There

can only be instability when the chromaticity is nonzero. The growth rate for the m-th

azimuthal mode is therefore

1

τm
= − 1

1+m

ecIb
4πE0ωβ

∫ ∞
−∞

dω ReZ⊥1 (ω)hm(ω − ωξ) . (11.1)

Note that the factor of M , the number of bunches, in the numerator and denominator

cancel. This is to be expected because the growth mechanism is driven by the short-

range wake field and the instability is therefore a single-bunch effect. This explains why

the growth rate τ−1
m does not contain the the subscript µ describing phase relationship of

consecutive bunches.

Let us demonstrate this by using only the resistive wall impedance. We substitute

the expression of the resistive wall impedance of Eq. (1.38) into Eq. (11.1). The result of

the integration over ω is [1]

1

τm
= − 1

1+m

eIbc

4νβE

(
2

ω0τL

)1/2 ∣∣Z⊥1 (ω0)
∣∣Fm(χ) , (11.2)
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Figure 11.1: Form factor Fm(χ) for head-tail instability for modes m = 0 to 5.

where
∣∣Z⊥1 (ω0)

∣∣ is the magnitude of the resistive wall impedance at the revolution fre-

quency. The form factor is given by

Fm(χ) =
1

2
√
π

∫ ∞
0

dy
√
y

[hm(y−yξ)− hm(y+yξ)] , (11.3)

where hm are power spectra of the m-th excitation mode in Eq. (9.42) written as functions

of y = ωτL/π and yξ = χ/π = ξω0τL/(πη). The first term in the integrand comes from

contributions by positive frequencies while the second term by negative frequencies. The

form factors for m = 0 to 5 are plotted in Fig. 11.1.

This single-bunch instability will occur in nearly all machines. The m = 0 mode is

the rigid-bunch mode when the whole bunch oscillates transversely as a rigid unit. For

the m = 1 mode, the head of the bunch moves transversely in one direction while the

tail moves transversely in the opposite direction with the center-of-mass stationary, and

is called the dipole head-tail mode. This is the head-tail instability first analyzed by

Pellegrini and Sands [2, 3].

For small chromaticity ξ . 4, χ . 2.3 the integrand in Eq. (11.3) can be expanded
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Table 11.1: Linearized form factor of trans-
verse head-tail modes driven by the resistive
wall impedance when χ . 2.3.

Mode Form Factor

m Fm
0 −0.1495χ

1 +0.0600χ

2 −0.0053χ

3 +0.0191χ

4 +0.0003χ

5 +0.0098χ

and the growth rate becomes proportional to chromaticity. The form factor has been

computed and listed in Table 11.1, where negative sign implies damping. We see from

Table 11.1 that mode m= 0 is stable for positive chromaticity. This is expected because

the excitation spectrum for this mode has been pushed towards the positive-frequency

side. All other modes (m > 0) should be unstable because their spectra see relatively

more negative ReZ⊥1 . Looking into the form factors in Fig. 11.1, however, the growth

rate for m= 4 is tiny and mode m= 2 is even stable. This can be clarified by looking

closely into the excitation spectra in Fig. 6.4. We find that while mode m = 0 has a

large maximum at zero frequency, all the other higher even m modes also have small

maxima at zero frequency. As these even m spectra are pushed to the right, these small

central maxima see more impedance from positive frequency than negative frequency.

Since these small central maxima are near zero frequency where |ReZ⊥1 | is large, their

effect may cancel out the opposite effect from the larger maxima which interact with the

impedance at much higher frequency where |ReZ⊥1 | is smaller. This anomalous effect

does not exist in the Legendre modes or the Hermite modes, because the corresponding

power spectra vanish at zero frequency when m > 0.

Although the head-tail instabilities can be damped by the incoherent spread in be-

tatron frequency, it is advisable to run the machine at a negative chromaticity above

transition. In this case, all the higher modes with m 6= 0 will be stable, and the unstable

m = 0 mode can be damped with a damper.

Head-tail modes of oscillations can be excited shifting the chromaticity to the unstable

direction and observed using a wide-band pickup. These modes were first observed in the
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CERN PS Booster [4] and depicted in Fig. 11.2. They have also been measured in the

Fermilab Rings.

m = 0 m = 0

ξ = 0 rad ξ = 2.3 rad

m = 1 m = 2
ξ = 6.9 rad ξ = 6.9 rad

Figure 11.2: A single bunch in the CERN PS Booster seen on about 20 consec-

utive revolutions with a wide-band pickup (bandwidth ∼ 150 MHz). Vertical

axis: difference pickup signal. Horizontal axis: time (50 ns per division). The

azimuthal mode number and chromaticity in each plot are as labeled.

11.2 LONGITUDINAL HEAD-TAIL

The transverse head-tail instability comes about because of nonzero chromaticity or

the betatron tune is a function of energy spread. Most important of all, the introduction
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of a nonzero chromaticity breaks the symmetry of the transverse impedance times beam

power spectrum between positive and negative frequencies. There is also such an analog

in the longitudinal phase space, where the slip factor η is energy-spread dependent. In a

lattice we can write in general at a certain energy

η = η0 + η1δ + η2δ
2 + · · · . (11.4)

Usually, because of the small momentum spread δ, the contribution of the higher-order

terms is small. However, when the operation of the ring is near transition or η ≈ 0, most

of the contribution of the slippage factor will come from the η1 term. When η0 and η1 are

of the same sign, the phase drift of a particle will be larger in one half of the synchrotron

oscillation where the momentum spread is positive and smaller in the second half where

the momentum spread is negative. The inverse will be true when η0 and η1 have opposite

signs. Similar to the transverse situation, this loss of symmetry can excite an instability,

which we call longitudinal head-tail instability. In fact, this instability has been observed

at the CERN SPS [5] and later at the Fermilab Tevatron. Figure 11.3 shows the output of

the rf-bunch phase detector at the CERN SPS, where the bunch length, which was 7 ns at

the beginning, is seen increasing for every synchrotron oscillation. This is an instability

in the dipole mode with ∼ 1011 protons in the bunch. The horizontal scale is 2 s per

division or 20 s in total. Thus the growth rate is very slow.

To higher order in momentum spread, the off-momentum orbit length can be written

as∗

C(δ) = C0

[
1 + α0δ(1 + α1δ + α2δ

2 + · · · )
]
, (11.5)

with C0 = C(0) being the length of the on-momentum orbit. It will be proved in Sec. 17.1

that with

η = η0 + η1δ + η2δ
2 + · · · , (11.6)

we obtain the expressions for the higher-order components of the slippage factor:

η0 = α0 −
1

γ2
, (11.7)

η1 = α0α1 +
3β2

2γ2
− η0

γ2
, (11.8)

η2 = α0α2 +
α0α1

γ2
− 2β4

γ2
+

3α0β2

2γ2
+
η0

γ4
, (11.9)

∗In Europe, α0, α1, α2, etc. are usually referred to as α1, α2, α3, etc. There is also another common
definition, where C(δ) = C0

[
1 + α0δ + α1δ

2 + α2δ
3 + · · · )

]
.
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Figure 11.3: Longitudinal head-tail growth of the dipole synchrotron oscillation
amplitude recorded from the output of the rf phase detector at the CERN SPS for
a bunch with ∼ 1011 protons. Horizontal scale is 2s/div or 20 s total.

For a high energy ring like the Fermilab Tevatron, we have almost η1 = α0α1. For a FODO

lattice without special correction, α1 is positive. Thus, the particle spends more time at

positive momentum offset than at negative momentum offset. Then, the bunch becomes

relatively longer at positive momentum offset than at negative momentum offset, as is

illustrated in Fig. 11.4. The bunch will therefore lose more energy in the lower trajectory

than in the upper trajectory. The amplitude of synchrotron oscillation will therefore grow.

The energy loss by a beam particle per turn is

U(στ ) = 2πe2N

∫
dω |ρ̃(ω, στ)|2ReZ‖0(ω) , (11.10)

where

ρ̃(ω, στ) =
1

2π

∫
dτ ρ(τ, στ)e

iωτ (11.11)

is the spectrum of the bunch of rms length στ with a distribution ρ(τ, στ) normalized to

unity. The rms bunch length στ and the rms energy spread σE are related by

ωsστ =
|η|σE
β2E

, (11.12)
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-

Figure 11.4: A particle trajectory is asymmetric about the on-momentum axis when
the slippage factor is not an even function of momentum offset. The bunch will be
longer at positive than negative momentum offset when the first-order momentum
compaction α0α1 > 0 and above transition.

where E is the synchronous energy of the beam. At the onset of the growth, bunch area

is still approximately constant for a proton bunch. Thus, we have

στ ∝

√
|η|
ωs
∝ |η|1/4 ≈ |η0|

(
1 +

η1δ

4η0

)
, (11.13)

and

στ = στ0

(
1 +

η1δ

4η0

)
, (11.14)

where στ0 is the rms bunch length in the absence of the η1 term. The bunch particle

gains energy for half a synchrotron period when δ > 0 and loses energy for the other half

synchrotron period when δ < 0. Averaging over a synchrotron period, the increase in

energy spread per turn is

∆E =
dU

dστ
στ

∣∣∣∣
δ>0

− dU

dστ
στ

∣∣∣∣
δ<0

=
dU

dστ
στ0

χ

2
δ , (11.15)

where the asymmetry factor χ is just the fractional difference in bunch length for δ >< 0,

and is given by

χ =
η1

η0

=
α0α1 + (3

2
β2−η0)γ−2

η0

≈ α1 +
3

2α0γ2
≈ α1 , (11.16)
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for a proton beam at high energies so that η0 ≈ α0. In above, Eq. (11.8) has been used

and γ and β are the relativistic factors of the particle. Near transition when α0 ≈ γ−2,

however, the asymmetry factor becomes

χ ≈
α0

(
α1 +

3

2

)
η0

. (11.17)

Therefore, this phenomenon is best observed near transition when η0 is small. The time

development of the energy spread is given by ∆E ∝ et/τ . The growth rate of the fractional

energy spread is therefore [6]
1

τ
= −f0

2

dU

dστ

στ0

β2E
χ , (11.18)

where f0 is the revolution frequency and dU/dστ is usually negative. This instability is

essentially a growth of the amplitude of the synchrotron oscillation in the dipole mode.

The frequency involved will be the synchrotron frequency.

If the driving impedanceReZ‖0 comes from a narrow resonance with shunt impedance

Rs at resonant frequency ωr/(2π) and quality factor Q, we have for the energy loss per

turn

U(στ ) =
πRsωre2N

Q
|ρ̃(ωr)|2 , (11.19)

for a bunch containingN particles. For a broad-band impedance, U(στ) drops much faster

with bunch length. For a general resonance, we have computed the asymmetric energy

loss for a parabolic bunch distribution [7],

dU(στ )

dστ
στ =

9e2NωrRs

4sQ

{
2

z3

[
e−2cz sin(2sz+2θ)− sin 2θ

]
+

4

z4

[
e−2cz sin(2sz+3θ) + sin 3θ

]
+

12

z5
e−2cz sin(2sz+4θ)

+
6

z6

[
e−2cz sin(2sz+5θ) + sin 5θ

]}
, (11.20)

where z =
√

5ωrστ , c = cos θ = 1/(2Q), and s = sin θ. This is plotted in Fig. 11.5 for the

case of a sharp resonance and in Fig. 11.6 for the case of a broad-band with Q = 1.

As is shown in Fig. 11.5, the asymmetric energy loss vanishes when the bunch length

goes to zero, because the change in bunch length from positive momentum offset to

negative momentum offset also goes to zero. On the other hand, when the bunch length
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Figure 11.5: Plot of differential bunch energy loss (dU/dστ)στ versus frστ
due to a sharp resonance. Note that the effect on the Run II bunch is much
less than that on the Run I bunch because of the shorter Run II bunch
length.

Figure 11.6: Plot of differential bunch energy loss (dU/dστ)στ versus frστ
due to a broad-band resonance with Q = 1. Note that the effect on the
Run II bunch is much more than that on the Run I bunch because of the
shorter Run II bunch length.
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is very long, the asymmetric energy loss will also be small, because the energy loss for a

long bunch is small.

Let us apply the theory to the Fermilab Tevatron in the collider mode [7]. The

asymmetric factor in Eq. (11.16) has been measured to be χ ∼ +1.17. The fundamental

resonance of the 8 rf cavities serves as a good driving force for this instability. Each cavity

has resonant frequency fr = 53.1 MHz, Rs = 1.2 MΩ, and Q = 7000. For Run I, where the

rms bunch length was στ ≈ 2.684 ns or frστ ≈ 0.1425, (dU/dστ )στ ∼ −0.3890 e2NωrRs/Q

is large and leads to a growth rate of τ−1 = 1.433 × 10−3 s−1 at the injection energy of

E = 150 GeV for a bunch containing N = 2.70 × 1011 particles. However, for Run II,

the bunch will be much shorter. With στ = 1.234 ns or frστ ≈ 0.0655, the asymmetric

energy loss (dU/dστ )στ ∼ −0.1464 e2NωrRs/Q is much smaller and the head-tail growth

rate becomes τ−1 = 0.539× 10−3 s−1. As is shown in Fig. 11.5, we are on the left side of

the (dU/dστ )στ peak; therefore a shorter bunch length leads to slower growth.

The broad-band impedance can also have similar contributions since the resonance

frequency is usually a few GHz and ReZ‖0 is large although Z‖0/n is just a couple of ohms.

Now ωrστ falls on the right side of the (dU/dστ )στ peak instead. We expect shorter bunch

lengths to have faster growth rates, as is indicated in Fig. 11.6. Table 11.2 shows the

longitudinal head-tail growth rates for different resonant frequencies and quality factors;

Z‖0/n = 2 Ω has been assumed. The growth rates driven by the fundamental rf resonance

are also listed in the last row for comparison. It is obvious that the longitudinal head-tail

instability for Run I is dominated by the rf narrow resonance and that for Run II by the

broad-band impedance instead. We observed a growth time of ∼ 250 s in Run I. From

Table VI, it is very plausible that the growth of this head-tail instability will be at least

as fast as that in Run I.

Let us go back to the observation at the CERN SPS. The bunch has a synchronous

momentum of 26 GeV/c. The transition gamma is γt = 23.4, giving η = 5.26× 10−4. For

the horizontal chromaticity setting used during the observation of the longitudinal head-

tail growth in Fig. 11.3, a lattice-code simulation program gives the next higher-order

component of the momentum compaction to be α1 = −0.7. The asymmetry parameter

turns out to be χ = 1.28. We therefore expect an instability if dU/dστ < 0 which is

normally the case. In order words, to observe such an instability, one should perform

the experiment above transition, but not too much above transition so as to enhance the

asymmetry parameter χ.
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Table 11.2: Growth rates for a broad-band resonance of Z
‖
0/n = 2 Ω at

various frequencies and quality factors.

fr (GHz) Q Growth Rate (s−1)

Run I Run II

1 1 0.178× 10−3 1.829× 10−3

1 3 0.022× 10−3 0.267× 10−3

2 1 0.089× 10−3 0.915× 10−3

2 2 0.023× 10−3 0.249× 10−3

1 5 0.009× 10−3 0.114× 10−3

2 3 0.011× 10−3 0.117× 10−3

2 4 0.006× 10−3 0.070× 10−3

Fundamental Rf Resonance 1.433× 10−3 0.539× 10−3

11.3 EXERCISES

11.1. The degrees of freedom of a system are coupled internally. Some degrees of freedom

continue to gain energy and grow while some lose energy and are damped. When the

system is not getting energy from outside, the sum of the damping or antidamping

rates of all degrees of freedom must add up to zero. If the head-tail stability or

instability for all azimuthal modes do not draw energy from outside, energy must

be conserved, or
∞∑
m=0

1

τm
= 0 , (11.21)

where τ−1
m is given by Eq. (11.1), independent of chromaticity and the detail of the

transverse impedance. Show that Eq. (11.21) is only satisfied if the factor (1+m)−1

in Eq. (11.1) is removed. We may conclude that either the factor (1+m)−1 should

not be present in Sacherer formula or this is not an internal system.

Hint: Show that
∑

m |hm(ω)|2 is a constant independent of ω by performing the

summation numerically. This follows from the fact that the modes of excitation

λm(τ ) form a complete set. Then the integration over ReZ⊥1 (ω0) gives zero.

11.2. In an isochronous ring or an ultra-relativistic linac,† the particle at the head of the

bunch will not exchange position with the particle at the tail. Thus the particle
†For all the proton linacs in existence, the highest energy is less than 1 GeV, or proton velocity less

than 0.875 of the velocity of light. Thus, normal synchrotron motion takes place, implying that head and
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at the tail suffers from the wake of the head all the time. We can consider a

macro-particle model with only two macro-particles, each carrying charge eN/2 and

separated by a distance ẑ longitudinally. The head particle executes a free betatron

oscillation

y1(s) = ŷ cos kβs , (11.22)

while the tail sees a deflecting wake force 〈F⊥1 〉 = e2NW1(ẑ)y1(s)/(2`) and its trans-

verse motion is determined by

y′′2 + k2
βy2 = −e

2NW1(ẑ)

2E0`
, (11.23)

where kβ = ωβ/v is the betatron wave number, ` is the length of the vacuum

chamber that supplies the wake. If one prefers, one can define W1 as the wake force

integrated over one rf-cavity period; then ` will be the length of the cavity period.

Show that the solution of Eq. (11.23) is

y2(s) = ŷ

[
cos kβs−

e2NW1(ẑ)

4kβE0`
s sin kβs

]
. (11.24)

The second term is the resonant response to the wake force and grows linearly. Show

that the total growth in transverse amplitude along a length `0 of the linac relative

to the head particle is

Υ = −e
2NW1(ẑ)`0

4kβE0`
. (11.25)

The above mechanism is called beam breakup.

11.3. Derive the asymmetric energy loss, [dU(στ )/dστ ]στ as given by Eq. (11.20) of a

particle in a bunch with linear parabolic distribution driven by a resonance.

tail of a bunch do exchange position. Therefore, Exercise 11.2 applies mostly to electron linacs.
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