CDF/EXOTIC/PUB/PUBLIC/5236

15 Feb 2000
SETTING LIMITS AND MAKING DISCOVERIES IN CDF

John Conway
Rutgers University

Abstract

This paper presents the statistical methods used in setting limits and discov-
ery significances in the search for new particles in the CDF experiment at the
Fermilab Tevatron. For single-channel counting experiments the collaboration
employs the classical Helene formula, with Bayesian integration over system-
atic uncertainties in the signal acceptance and background. For more complex
cases such as spectral fits and combining channels, likelihood-based methods
are used. In the discoveries of the top quark and B, meson, the significance
was estimated from the probability of the null hypothesis, using toy Monte
Carlo methods. Lastly, in the recent SUSY/Higgs Workshop, the Higgs Work-
ing Group used a method of combining channels and experiments based on the
calculation of the joint likelihood for a particular experimental outcome, and
averaging over all possible outcomes.

v1. Introduction

In most new particle searches in high energy physics, one selects from a large
number of recorded events those which bear characteristics of the new pro-
cess while minimizing the retention of events from well-understood processes.
This typically results in a small number of events passing the selection re-
quirements, consistent with the expectation from a calculation of the expected
background. At this stage one typically wishes to determine an upper limit on
the number of signal events present in the sample, at some desired confidence
level (usually 95%), employing a statistical method which allows one to take
into account the systematic uncertainties in signal acceptance and expected
background.

If, on the other hand, one observes an excess number of events passing the se-
lection criteria, possibly consistent with the prediciton of an as-yet-unobserved
new particle, one would like to estimate the statistical significance of the obser-
vation in order to decide if a statistical fluctuation in the number of background
events is more likely the cause of the excess.

This note discusses the method used by the CDF Collaboration to determine
upper limits on Poisson processes in the presence of uncertainties (both statisti-
cal and systematic) simultaneously in the acceptance and background, and the
methods for determining the statistical significance of an excess. The collabo-
ration employs rather different methods for single-channel and multi-channel
(spectral) searches, in the latter case using a likelihood-based approach which
can also be used to estimate experimental sensitivity or expected limits.
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2. Single-Channel Limits without Uncertainties

Given ng, the number of observed events, the probability P for observing that
number depends on u, the mean number of signal events expected, according
to the Poisson distribution (assuming no background events are expected):
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In new particle searches one wishes to determine the value of 1. We define the
upper limit N on the number of expected events! as that value of ; for which
there is some probability € to observe ng or fewer events. The confidence level
(CL) of the upper limit is then simply 1 — e. One can calculate € by summing
over the Poisson probabilities:
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In practice, then, to calculate NV one varies y until finding the value of € corre-
sponding to the desired CL; N is the resulting value of p.

If one expects an average of up background events among the ng observed,
and if one knows u p precisely, then the method can be extended to calculating
a Poisson upper limit IV on the number of signal events present in the obser-
vation. The value of NV represents that value of 115, the mean number of signal
events expected, for which the probability is 1 — € that in a random experiment
one would observe more than ng events and have ng < ng, where np is the
number of background events present in the sample. This can be calculated as
before by adjusting /N until the relation
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obtains.[1] Various editions of the PDG’s Review of Particle Properties in the
1980’s and 1990’s point out that this results in a “conservative” upper limit in
that for some true pg the probability of obtaining V > ug exceeds 1 — € on
average. This statement means no more than that if the true pg exceeds N,
then there is a probability smaller than e that one would observe more than ng
events and have np < ng; clearly if g = N the limit is exact.

Note that if one obtains a value of ng significantly lower than y g, the resulting
limit is “better” in that it results in a lower value for N. This is viewed as
a shortcoming by some authors,[2] though clearly on average the experiments
with larger expected background will on average obtain “worse” (larger) limits
on the signal.

The denominator on the right side of Equation 3 makes € a conditional prob-
ability, and ensures that N remains positive. This is clearly a desirable fea-
ture, and although the method has a frequentist interpretation, this feature is
Bayesian in spirit in that the non-physical values are excluded.

'Note that N is a real number, not an integer.



3. Single-Channel Upper Limits with Uncertainties

There is no generally accepted method in the high-energy physics community
for the incorporation of systematic errors into upper limits on Poisson pro-
cesses. CDF employs a method which is in essence a Bayesian-style integra-
tion over the uncertainties in the signal acceptance and expected background.

Suppose that one knows the value of np to within an overall (statistical plus
systematic) Gaussian uncertainty of op, and the acceptance A to within an
overall uncertainty of o 4. In this case the relative uncertainty on pg is o4 /A.
One can define the Poisson upper limit IV on ug as before: we seek that value
of the true ug for which one would observe more than ng events and have
npg < ng. In this case, however, one seeks the value of N such that
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where we take oy = No4/A. In this way one assumes an a priori Gaus-
sian distribution of the true values of yg and pup about the values obtained
in subsidiary studies, with width given by the uncertainties obtained in those
studies.

One can perform the integral in Equation 4 by various numerical techniques.
The method employed in CDF uses a Monte Carlo integration, rather than per-
forming the integral directly. For each test value of N one generates a large
ensemble of random pseudoexperiments, varying the expected number of sig-
nal and background about their nominal values according to a Gaussian dis-
tribution. In each experiment, the expected number of signal and background
events are chosen from the Gaussians, and Poisson-distributed numbers of sig-
nal (ng) and background (np) events are generated. For those trials where
ng < ng, the fraction f in which ng + ng > ng is recorded. The confidence
level for a given N is in fact equal to f; one must then simply vary N until the
desired CL (1 — ¢) is obtained.

4. Upper Limits with a Bayesian Method

One can also obtain upper limits on a Poisson process using a purely Bayesian
approach, as discussed in the literature. [4] A Bayesian deems it sensible to
treat the unknown expected number of signal events as a random variable, for
which there is some “prior” probability density function (pdf) P(us). Given
the observation of ng events, one can then construct a “posterior” pdf P(us|ng)
which depends on the likelihood L(ng|us) for observing ng events given pg
expected:
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One can set a Bayesian upper limit (or any other confidence interval) on the
unknown parameter y g, then, simply from integration of P (u.g|no).

The values obtained depend, of course, on the choice of the prior P(ug). In
considering the results of a particular experiment, usually one usually uses an



“uninformed” prior pdf; that is, one wants to give no a priori bias to certain
values of pg. This usually results, then, in choosing P(s) to be uniform for
all physical values of ug: P(us) =const. for g > 0.2

Extension to the case where one expects pp background is straightforward:
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For uniform prior P(ug) this reduces to
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Remarkably, as Cousins points out [4], the upper limits obtained with this
expression match exactly those obtained with Equation 3. Note also that the
denominator of Equation 6 can simply be regarded as a normalization constant
whose value depends on ng and pp. Thus we see that

P(us|no, up) < L(nolus + pp) - (8)

To incorporate uncertainties on the signal and background one treats the ex-
pected background and signal as unknown parameters with uniform prior pdf,
with Gaussian likelihood about the estimates from subsidiary studies, just as
in the frequentist case. One thus obtains
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where 05 = (0.4/A)us comes from the relative uncertainty on the acceptance.

To calculate upper limits, one can simply calculate the right hand side of Equa-
tion 9 for an appropriate range of ug, and then define the upper limit on ug as
that value for which

/ P(us|no, ns)dps
us (10)

/ P(us|no, up)dus

obtains for some desired confidence level 1 — e.

In general the upper limits obtained using this method exceed those obtained
with the frequentist version in Equation 4; that is the Bayes intervals “over-
cover” the frequentist (or more properly speaking, frequentist/Bayesian) ones.
This is regarded as a shortcoming by some authors, and as laudably “conser-
vative” by others. The difference lies, however, in the different meaning of the
two statistics.

Note that such a pdf is formally non-normalizable.



5. Discovery Significance: Two Examples

In searching for new particles the possibility exists that the result will be an ex-
cess of observed events in the selected sample. The standard in the community
is to quote a significance for the excess in terms of the number of Gaussian -
sigma the result deviates from the null hypothesis. For Poisson processes with
small numbers of events this is almost always based on the probability that the
background alone can account for the observed number of events. Given ng
observed events, with B + op expected background, one typically wishes to
calculate the probability of observing ng or more, taking into account the un-
certainties present. Then one relates this probability to the number of Gaussian
standard deviations to quote a significance.

If the uncertainty in the expected number of background events is zero or neg-
ligible, then the calculation of the probability Py, of the null hypothesis is a
straightforward sum over Poisson probabilities:

o Bne——B
Pt = 3 =7 - (11)
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To relate this probability to a Gaussian deviation (in units of sigma), one simply
finds that value of z for which

3 oo
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obtains. Note that the normalization constant corresponds to finding that frac-
tion of the integral over the positive half of the Gaussian lying beyond z. This
effectively means that one is calculating the probability that, for a positive
Sfluctuation, one would get z or larger in a Gaussian-distributed quantity. Such
a convention is necessary to ensure consistency with the confidence intervals
determines from the Helene equation (3) and the Bayesian equation (6).

When there is uncertainty in the background, and when there is more than
one channel, calculating Py,;; becomes complicated. Typically in CDF a toy
Monte Carlo is used to actually perform the calculation; two examples of actual
new particle discoveries illustrate this, those of the B, meson and the top quark.

In the case of the search for the B, meson, one sought events where a J/1¢ —
T~ decay from a secondary vertex was accompanied by an additional lepton
(e or ) from the same vertex, coming from the semileptonic decay of the b
quark. The backgrounds were estimated from the sidebands of the J/1) peak.
Table 1 shows the results, the expected background, and the probability that
the background alone could give the observed number of events or more in the
electron and muon channels.

One might at this stage be tempted to simply quote the product of the two prob-
abilities, or add the observed and expected numbers of events together and cal-
culate a probability that way. But the collaboration first determined the number
of signal events present in the sample by minimizing a complicated likelihood
function which took into account systematic uncertainties and correlations in
the expectation. This yielded a value of 20.4 signal events. To estimate the
probability of the null hypothesis a toy Monte Carlo was used to generate
over 350,000 pseudoexperiments in which the number of observed events was
generated according to Poisson distributions of expected background events,



Jip+e J/p+p
observed 19 12
expected 50+1.1  7.1&£1.5
probability  0.00002 0.084

Table 1: Results from the CDF search for the B, meson.

putting in fluctuations and correlations as estimated in the experiment. For
each pseudoexperiment the same likelihood fit was performed, and the frac-
tion of such fits which yielded more than 20.4 events was determined from a
fit to the shape of the distribution of number of signal events. This fraction,
6x10~7, then, corresponded to a 4.8c significance. However, this fraction
included the results of those pseudoexperiments in which the fitted signal con-
tribution was zero (negative values were not allowed). Thus, strictly speaking,
the prescription of considering only positive fluctuations was not adhered to
in this case; had it been, the resulting statistical significance would have been
close to 4.20. )

The case of the top quark discovery was more complicated in that there were
three overlapping search channels involved, the so-called SVX, SLT, and DIL
searches. In the SVX channel, events with a high-pr lepton (e or u) plus
three or more jets were accepted, and at least one of the jets was required to
have been tagged as a b jet with a reconstructed secondary vertex. In the SLT
analysis, the same sample was selected, and one jet had to have been tagged
as a b by the presence of a low-pr lepton. In the DIL (dilepton) channel,
events with two leptons, large missing E7, and two or more jets were selected.
Table 2 shows the observed number of events, the expected background, and
the probability or that channel that the background alone could give rise to the
observed number of events or more.

The acceptance for the SVX and SLT channels clearly overlap to a great extent;
they are based on the same kinematic selection and only differ by the b-tagging
algorithm. To take this into account, the probabilities in the table are calculated
by considering the only that set of pseudoexperiments that give the same num-
ber of lepton plus jets events as were observed in the actual data sample before
b tagging. The overlap in acceptance for the different tagging methods, as
well as other uncertainties in the expected background, are modelled in each
pseudoexperiment by appropriate Gaussian smearing of the parameters.

To determine the overall significance, the three resulting probabilities are mul-
tiplied together, yielding 3.6x10~°. The probability of the null hypothesis is
then taken to be the probability that the product of three random numbers, uni-
formly distributed in the range [0,1], is less than this value. This probability,
in fact, can be calculated from a straightforward equation:

el . )
—1*(Ine)*
P(rirg..tp <€) =€ % (13)
i=0 :

This yields 107, which was claimed to be equivalent to a 4.8c Gaussian sig-
nificance. Howeyver, this value would have been 4.90 had only positive fluctu-
ations been considered, as discussed above.



SVX SLT DIL
observed 27 23 6
expected 6.7+2.1 154420 1.34+0.3
probability 0.00002 0.06 0.003

Table 2: Results from the CDF search for the top quark.

6. Limits from Spectra and Combining Channels

Quite often, particularly in recent years, one uses fits to the spectra of kine-
matic variables in order to maximize the sensitivity to new particles. Such fits
can be made in variables such as the new particle mass, other kinematic quan-
tities which distinguish signal and background, or even the output value of a
neural network trained to distinguish signal and background.

The Helene formula applies to only single-channel counting experiments, and
thus cannot be used in this case. The natural practice in the case of fitting
spectra is to perform a x? or maximum-likelihood fit. For the likelihood, the
Poisson probability of observing the number of events n; in each bin, given the
expected background B; and signal S; is multiplied together:

(14)

where y; = Bs + S;. The likelihood can be maximized (or, more usually,
— In £ is minimized) with respect to the normalization of the signal, or more
generally calculated as a function of the signal normalization. This can be
expressed as a variable f which multiplies the signal prediction, such that we
have u; = B; + fS;. Though it is not often made explicit, if one assumes a flat
prior pdf in f, then the posterior pdf in f is, via Bayes’ Theorem, proportional
to the likelihood:

P(fIni, Si, Bi) o< L(ni|Bi, f55) (15)
One can then, by plotting the likelihood as a function of f, set confidence
intervals on f, the signal normalization. For example, to set a 95% CL limit
on the signal, one finds that value of f beyond which 5% of the total integral
of the likeihood lies. If this value is less than f = 1, then one can conclude
that the theoretical prediction is excluded at at least the 95% level. Stated more
precisely, one can conclude that, if there is equal a priori probability that the
signal could have any normalization from zero to infinity, then it is less than
5% probable that the true value is more than the theoretical value.

Such a technique has been applied in numerous searches in CDF, including
the search for fourth-generation &' quarks decaying to bZ [5], the search for
the Standard Model neutral Higgs [6], and other searches. In fact, in these
cases, the likelihood is written in such a way as to take into account uncertain-
ties in the signal and background, and correlations in these uncertainties, by
integrating over them in the same way as described above for single channel
counting experiments. Also, in these cases, there is more than one channel in-
volved. This is handled by simply multiplying the likelihoods for the different
channels.

This illustrates powerfully the flexibility inherent in likelihood-based methods:
combining channels and taking into account uncertainties is a trivial extension



of the definition of the likelihood. The main difficulty lies in actually calculat-
ing the likelihood in cases where the correlations are complicated. This can be
made tractable by Monte Carlo integration over these uncertainties.

7. Estimating Experimental Sesitivity

Often in new particle searches one wants to know the sensitivity of a particular
analysis, to know how strong a limit can be set with a certain amount of inte-
grated luminosity, or conversely how much integrated luminosity is needed to
set a limit or, more optimistically, discover the new particle. This information
can be used to optimize analyses, or to estimate the discovery reach of a new
machine or detector.

Most often one finds a simple approach is used, in which the ratio of the sig-
nal to the square root of the background, S/ VB is used as the main indictor
of experimental sensitivity. One can then estimate the integrated luminosity
necessary for, say, a 5o discovery by finding when S/ VB = 5. A95% CL
limit would correspond to S/v/B = 1.96, using the one-sided formulation dis-
cussed above. This procedure gives a reasonable estimate of the required inte-
grated luminosity only when uncertainties are negligible, and the statistics are
well in the Gaussian range. It is possible to consider combining single channel
counting experiments this way, by adding the values of .S/ v/B in quadrature,
but doing this procedure for spectral fits is not possible.

The most straightforward way to estimate experimental sensitivities is to use
the likelihood as a function of the signal cross section (or cross section multi-
plier). This immediately allows for the possibility of incorporating systematic
errors and correlations, combining channels, and using spectral fits, just as in
the methods outlined in the previous sections.

The main new element in estimating experimental sensitivities is including the
fact that there are many possible future experimental outcomes: how does one
average over or otherwise take into account the relative probability for all the
possible outcomes?

In the Tevatron Run 2 SUSY/Higgs Workshop [7], the Higgs Working Group
adopted a statistical procedure based on the joint likelihood for all the various
search channels. To take into account all possible future outcomes, the proce-
dure generated large numbers of pseudoexperiments, and for each pseudoex-
periment the same procedure which would be applied in a real experiment was
applied to that particular outcome. In the case of no signal actually present,
for example, the outcome would have only background events present, with
Poisson fluctuations around the expected mean background. Then, the integral
of the likelihood as a function of Higgs cross section was determined, and the
95% point compared with the theoretical value. To determine the integrated lu-
minosity threshold, then, the integrated luminosity was increased or decreased
until in 50% of the pseudoexperiments one could obtain a 95% CL limit. (This
follows the convention set by the LEP-II Working Group.

In the case of determining discovery thresholds, again many pseudoexperi-
ments were generated, this time with signal present at the appropriate rate,
given the theoretical cross section. To determine whether the particular out-
come represented a 5o discovery, for example, the ratio of the maximum like-
lihood to the likelihood at zero cross section was used. If this ratio was greater
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Fig. 1: Illustration of likelihood versus cross section multiplier for two cases in new particle searches, above where there is no
signal, and below with a small signal present.

than the equivalent ratio for a Gaussian at 50, then the outcome was deemed
a 5o discovery. As in the case of setting a limit, if in 50% of the pseudoex-
periments this was the case, then the threshold was said to be met. Figure 1
illustrates graphically the technique, as applied in both cases.

One could also imagine using more standard confidence interval definitions,
such as the 68% central interval, to determine whether the pseudoexperiment
represented a So discovery. In the limit of Gaussian statistics, the methods
should be equivalent. But in the case of a likelihood which is asymmetric about
the maximum, there is no set convention for setting such confidence intervals
anyway. The bottom line was that the likelihood ratio was much easier to
calculate numerically, and with the integral over systematic errors, compute
time was very limited.

8. Summary and Conclusions

The techniques in CDF for setting limits and discovery significances in new
particle searches have evolved, beginning early on with the Helene formula,



extending the formula to include uncertainties on backgrounds and accep-
tance. In recent years the collaboration has shifted to likelihood-based meth-
ods, which allows the use of fits to spectra, and allows combining channels and
the results from different experiments.

For discovery significances, typically CDF has used toy Monte Carlo tech-
niques to estimate the probability of the null hypothesis, the probability that,
in the case of no signal, the background alone could produce the observed
number of events or more. But clearly this question as well can be addressed,
in future analyses, using the same likelihood methods by which we would
otherwise set limits, estimate experimental sensitivity and estimate integrated
luminosity discovery thresholds.

A clear conclusion is thus that basing the estimates of limits, significances, and
sensitivities on the likelihood offers the greatest hope of meeting the needs for
incorporating uncertainties, fitting to spectra, and combining channels. Yet it
leaves open many questions: Should the field abandon the frequentist view
and adopt a purely Bayesian viewpoint? If so, what about the issue of the
choice of prior pdf? If a frequentist approach is the goal, should the field adopt
the Feldman-Cousins unified approach of likelihood ratio ordering or choose
another statistic, such as in the LEP-II C'L; method? [8] Hopefully the field
can overcome the present surfeit of methods and adopt a simply understood,
explainiable, and meaningful method for making these statistical estimates.
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