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NONPERTURBATIVE GEOMETRODYNAMIC
CALCULATION OF CHAOTIC MIXING TIME IN

CHARGED-PARTICLE BEAMS

COURTLANDT L. BOHN

Fermilab, Batavia, IL 60510-0500, USA
E-mail: clbohn@fnal.gov

The time scale for irreversible mixing in a charged-particle bunch as a consequence
of time-independent, nonlinear space-charge forces is estimated analytically to be
a few plasma periods, much shorter than the two-body relaxation time. The basis
for the estimate is a metric tensor inferred from Hamilton’s least-action princi-
ple. Geodesics derived from the metric tensor correspond to particle trajectories.
Their behavior reflects the properties of the curvilinear manifold in which they
are embedded, among which irregularities associated with parametric resonances
are of foremost importance. Exponential separation of nearby chaotic trajectories
is thereby accessible to the geometrodynamic approach. The e-folding time as-
sociated with dispersing an initially localized perturbation throughout the bunch
characterizes the process of irreversible mixing. It thereby constrains both the
placement and size of hardware for emittance compensation that may be needed,
for example, to undo phase-space degradation arising from coherent synchrotron
radiation in magnetic bends. These constraints are estimated for linacs powering
modern infrared and x-ray free-electron lasers.

1 Introduction

The past six years have seen the development of a geometrodynamic technique
for analytically estimating the largest Lyapunov exponent in a system having
many degrees of freedom. A comprehensive synopsis of the work appears in
a new preprint posted subsequent to this Workshop.1 The technique permits
consideration of chaotic orbits that mix through the configuration space on an
exponential time scale. The mixing is irreversible in the sense that infinites-
imally small fine-tuning is needed to reassemble the initial conditions. It is
also distinctly different from phase mixing (linear Landau damping), a regu-
lar, reversible process that “winds up” the phase space through a distribution
of orbital frequencies. Phase mixing proceeds on a relatively slow time scale
set by the distribution of frequencies.

Based on geometrodynamics, this paper presents an estimate of the time
scale for chaotic mixing in a charged-particle bunch under the influence of
nonlinear space-charge forces. The time scale is used to infer constraints on
emittance-compensation schemes, particularly those related to undoing the
effects of coherent synchrotron radiation in accelerators that power modern
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free-electron lasers. Although key aspects of the geometrodynamic technique
are discussed herein, the interested reader is referred to Ref. 1 for details and
further discussion.

2 Preliminaries

Space charge will typically result in a nonintegrable potential, i .e., one in
which the degrees of freedom are coupled. Systems having at least two de-
grees of freedom and a nonintegrable potential can be expected to comprise
a significant percentage of chaotic orbits. This is true even if the potential is
in a stationary state.

We consider a charged-particle bunch governed by an autonomous (time-
independent) Hamiltonian in which space charge is active. We formulate the
problem with respect to a reference frame comoving with the bunch; the origin
of the reference frame coincides with the centroid of the bunch. Calculated
time scales are then Lorentz-transformed to the laboratory frame.

On a global scale, the bunch will generally be three-dimensional and have
a density distribution exhibiting a Debye tail.2 Interior particles that never
reach into the Debye tail are effectively screened from external forces; how-
ever, particles reaching into the Debye tail will respond to these forces and
communicate their influence throughout the bunch. Nonlinear space-charge
forces likewise predominate in the Debye tail, so these same particles are also
the ones that are most susceptible to chaotic behavior. Moreover, on a local
scale, a bunch is fully 3N -dimensional, with N representing the number of
particles. All of the constituent particles are therefore under the influence
of local space-charge fluctuations, and conditions can be such that a generic
orbit is chaotic. That nonlinear space-charge forces establish chaotic orbits is
evident in, for example, many of the papers in these Proceedings.

We now turn attention toward calculating the time scale for mixing. Ac-
tion principles in classical mechanics are tantamount to extremals of “arc
lengths;” thus, one can infer a metric tensor from an action principle.3 The
metric tensor manifests all of the properties of the manifold over which the
system evolves, with these properties being calculable following standard prin-
ciples of differential geometry.4 Of special interest for determining Lyapunov
exponents, quantities that measure the exponential rate at which initially
localized trajectories separate, is the equation of geodesic deviation:

D2δqα

ds2
+ Rαβγδ

dqβ

ds
δqγ

dqδ

ds
= 0, (1)

in which q(s) denotes the coordinate vector of the system, δq(s) represents
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the separation vector between neighboring geodesics at “proper time” s, D/ds
denotes covariant differentiation, Rαβγδ is the Riemann tensor derivable from
the metric tensor, and summation over repeated indices is implied with each
index spanning the number of degrees of freedom accessible to the system.
Equation (1) is fundamental for determining a Lyapunov exponent λ because
it is defined in terms of the separation vector:

λ = lim
t→∞

1
t

ln
|δq(t)|
|δq(0)| . (2)

Any number of action principles, and therefore any number of metric ten-
sors, can be selected to proceed further. Eisenhart’s metric, which is consis-
tent with Hamilton’s least-action principle, is probably the most convenient
choice.5 It offers what is probably the easiest calculation of the Riemann
tensor, and it avoids spurious results traceable to the singular boundary of
the perhaps better-known Jacobi metric that is derivable from Maupertius’
least-action principle.6 Eisenhart’s metric operates over a combined space-
time manifold in which the geodesics are parameterized by the real time t,
i .e., ds2 = dt2 with

ds2 = − 2V (q)(dq0)2 + δijdq
idqj + 2dq0dqN+1, (3)

in which V (q) is the potential, δij is the unit tensor corresponding (without
loss of generality) to a cartesian spatial coordinate system, the indices i, j
run from 1 to the number of degrees of freedom N (= 3N generally), q0 = t,
qN+1 = t/2−

∫ t
0
dt′L(q, q̇), and L is the Lagrangian. The resulting geodesic

equations for the spatial coordinates qi are Hamilton’s equations of motion,
so the particle trajectories correspond to a canonical projection of the Eisen-
hart geodesics onto the configuration’s space-time manifold. A convenient
byproduct of the Eisenhart metric is that the only nonzero components of the
Riemann tensor are R0i0j = ∂i∂jV , in which ∂i = ∂/∂qi. In turn, the only
nonzero component of the Ricci tensor Rαβ ≡ Rγαγβ is R00 = ∂i∂iV .

3 Generic Geodesic Deviation

Rather than evaluate the geodesic deviation along all possible directions, we
instead construct and study a generic geodesic deviation. To set up the gov-
erning equation, we put δq ∝

√
ψn̂, with n̂ = δq/|δq| denoting the unit vector.

Then, recognizing that there is no exponential growth of a deviation that is
parallel to the geodesic, we average the equation of geodesic deviation (1) over
all N −1 perturbations δq that are orthogonal to the reference geodesic. The
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resulting equation of “generic” geodesic deviation is7

d2ψ

dt2
+
Hββ
N − 1

ψ = 0, (4)

in which Hββ = Rµν q̇
µq̇ν = ∂i∂iV measures the curvature of the manifold

along the geodesics, i .e., the particle trajectories. Although the potential
V (q) is taken to be explicitly time-independent, the “curvature” Hββ = ∂i∂iV
nevertheless depends on time because it is measured with reference to the
geodesics that are parameterized by the time t. The potential is a function of
the coordinate vector q(t), which in turn is implicitly time-dependent.

4 Stochastic Influence of Parametric Resonances

As they flow over the manifold, each particle will respond to the “bumpiness,”
i .e., the local curvature, it sees, the bumpiness being associated with para-
metric resonances between the instantaneous orbital period and the effective
nonlinear forces. For a chaotic orbit we regard the resonances to act stochas-
tically, and we take the equation of generic geodesic deviation to be that of a
stochastic oscillator:

d2ψ

dt2
+ [κt + σtη(t)]ψ = 0, (5)

in which κt and σt are related to the time-averaged curvature and fluctuations,
respectively:

κt =
〈Hββ〉t
N − 1

; σt =

√〈
(Hββ)2 − 〈Hββ〉2t

〉
t√

N − 1
, (6)

and η(t) denotes a gaussian stochastic process. Specifically, 〈η(t)η(t − τ)〉 =
τδ(t), where the average is taken over all realizations of the process, and τ
is the correlation time, which is intermediate between the time required for
the particle to traverse the average curvature radius and the time for it to
transit the length scale of a typical fluctuation.9 A gaussian process is the
zeroth-order approximation of a cumulant expansion of the actual stochastic
process.

As t→∞, which is the limit of interest for calculating a Lyapunov expo-
nent, orbits of total energy E that mix through the configuration space will
evolve toward an invariant measure, specifically the microcanonical ensemble
µ = δ(H − E), over which time averages become equivalent to phase-space
averages. Given our expectation that space charge will typically establish a
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preponderance of chaotic orbits, we therefore consider it a reasonable approx-
imation to average over the microcanonical ensemble, which is tantamount
to invoking the so-called “chaotic hypothesis”.8 Accordingly, for an arbitrary
function A(q) of the spatial coordinate q, the average becomes

lim
t→∞
〈A〉t = 〈A〉µ =

∫
dq
∫
dq̇ A(q)δ[H(q, q̇) −E]∫

dq
∫
dq̇ δ[H(q, q̇)− E]

, (7)

and the generic geodesic approximately adheres to the simplified stochastic-
oscillator equation

d2ψ

dt2
+ [κ+ ση(t)]ψ = 0, (8)

in which κ, σ is shorthand notation for 〈κ〉µ, 〈σ〉µ. Note that all averages 〈A〉µ
are evaluated for a given total particle energy E; the averages are therefore
functions of particle energy.

Van Kampen10 devised a method for calculating from Eq. (8) the evolu-
tion of the process-averaged second moments of ψ, out of which the Lyapunov
exponent corresponding to the mixing rate appears as a function of the corre-
lation time τ .9 Using a reasonable estimate of τ , one can write the Lyapunov
exponent in the following convenient analytical form:

λ(ρ) =
1√
3
L2(ρ) − 1
L(ρ)

√
κ;

L(ρ) =
[
T (ρ) +

√
1 + T 2(ρ)

]1/3
, T (ρ) =

3π
√

3
8

ρ2

2
√

1 + ρ+ πρ
; (9)

in which ρ ≡ σ/κ, a quantity that measures the ratio of the average curvature
radius to the length scale of fluctuations.11 A plot of λ/

√
κ versus ρ is given

in Fig. 1; the plot makes clear that the time scale for mixing, 1/λ, is a ρ-
dependent multiple of κ−1/2, so that κ−1/2 is the fundamental time scale
governing the irreversible process. Near the origin the curve scales as ρ2, and
at large ρ it scales as ρ1/3.

There are seemingly several approximations leading to Eq. (9); however,
they are all summarized concisely by the notion that a generic trajectory
is chaotic, governed by a gaussian random process under the influence of
parametric resonances, and evolves toward an invariant measure that is the
microcanonical ensemble. Numerical experiments, principally concerning con-
densed matter and stellar systems, historically guided the thinking that led
to the estimate. For example, Ref. 1 summarizes simulations of coupled-spin
systems with long-range interactions and shows the analytically estimated
Lyapunov exponents agree remarkably well with computed values. We are
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Figure 1. Lyapunov exponent in units of
√
κ plotted as a function of ρ = σ/κ; the quantities

κ and σ are defined in the text.

therefore led to inquire what the method will predict concerning the influence
of space charge in beams.

5 Application to Beams with Space Charge

5.1 Time Scale for Onset of Irreversibility

We presume that when space charge is important, it influences a given parti-
cle trajectory primarily through a coarse-grained potential that is everywhere
proportional to the local particle density. Consequently, we shall apply the
foregoing results to a single charge that orbits in a smooth, three-dimensional
(N = 3) potential V = Vo + Vs, with Vo denoting the potential associated
with focusing forces external to the bunch, and Vs denoting the coarse-grained
potential associated with space-charge forces internal to the bunch. For con-
creteness we take the external forces to be linear so Vo is quadratic in the
coordinates, i .e., Vo(q) = (ω2

xx
2 + ω2

yy
2 + ω2

zz
2)/2. Application of Poisson’s

equation then gives a simple result:

∇2V = ω2
o −

e

εo
n(q), (10)
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in which ω2
o = ω2

x+ω2
y+ω2

z , e is the single-particle charge, εo is the permittivity
of free space, and n(q) is the particle density.

The quantities κ and σ are both determined from the Laplacian of the
coarse-grained potential. It is convenient to express the results in terms of the
plasma frequency at the bunch centroid, ωpo, the “reduced” focusing strength
ω2
s = ω2

o − ω2
po, and the normalized particle density ν(q) = n(q)/n(0):

κ =
ω2
po

2

[(
ωs
ωpo

)2

+ 1− 〈ν〉
]
,

σ =
ω2
po√
2

√
〈ν2〉 − 〈ν〉2,

ρ =
σ

κ
=

√
2
√
〈ν2〉 − 〈ν〉2

(ωs/ωpo)2 + 1− 〈ν〉 . (11)

From the estimated Lyapunov exponent as given by Eq. (9), one sees that the
time scale for chaotic mixing and its associated irreversibility, τm ≡ 1/λ, is
principally determined by the value of 1/

√
κ and is modified in the prescribed

way by the value of ρ which carries the influence of the operative parametric
resonances. Equation (11) makes clear that τm is a multiple of the plasma
period τp ≡ 2π/ωpo. In realistic inhomogeneous density distributions, the
value of ρwill typically be small but appreciable, and in turn Fig. 1 makes clear
that τm will typically be a few plasma periods. Thus, as concerns guarding
against the deleterious influence of space charge on a process of emittance
compensation, a reasonable conservative criterion is to ensure the process is
completed within a plasma period.

5.2 Reversibility Criterion vs. Beam Parameters

The criterion that emittance compensation be done within a plasma period
carries implications for the location and size of the associated hardware.
For example, there are several options for reversing or minimizing emittance
growth from coherent synchrotron radiation (CSR) in magnetic bends.12 One
of them is to add magnetic optics as a source of dispersion to undo the
CSR-induced bunch distortion. Our criterion implies the associated hard-
ware would need to be contained inside a length L < βcτp. The objective
here is to express this constraint in terms of beam parameters.

The plasma frequency can be expressed in the laboratory frame in terms of
the total bunch charge Q, the particle rest mass m, and the root-mean-square

geometro: submitted to World Scientific on January 27, 2000 7



widths x̃, ỹ, z̃ of the density profile as follows:13

ωp =
1
γ3/2

√
3Qe

20π
√

5εomx̃ỹz̃
, (12)

from which the plasma period is simply τp = 2π/ωp. The constraint L < βcτp
thereby imposes a corresponding constraint on the particle kinetic energy
T = (γ − 1)mc2 above which the emittance compensation should succeed:

T

mc2
>

(
L

β

)2/3( 3Qe
80π3

√
5εomc2x̃ỹz̃

)1/3

− 1. (13)

Specialized to a bunched electron beam (β ∼ 1), and written in units repre-
sentative of modern high-brightness electron linacs, this constraint becomes

T (MeV) > 2.5
{

Q(nC)[L(m)]2

x̃(mm)ỹ(mm)z̃(mm)

}1/3

− 0.511. (14)

5.3 Example: Linacs for Free-Electron Lasers

High-brightness linacs are generally required for free-electron lasers (FELs)
that are intended to produce high-average-power coherent light and/or short
wavelengths. The essential requirement is to confine the electrons compris-
ing the high-charge bunch to within the optical mode through the undulator
so that they all, or nearly all, participate in the lasing process. Examples
are Jefferson Laboratory’s infrared FEL (the “IR Demo”) for which commis-
sioning was completed in summer 1999 resulting in sustained 1.7 kW aver-
age continuous-wave power at wavelengths in the range 3-6 µm,14 and x-ray
FELs presently under development at SLAC and DESY.15 In both cases CSR-
induced emittance degradation is a concern, although the IR Demo was de-
signed to circumvent the influence of CSR on lasing while still providing a
platform for CSR-related experiments. To get some numbers, we shall imag-
ine that hardware for emittance compensation spans L = 5 m, a nominal
length scale for a chicane of dipole magnets.

Typical beam parameters for the IR Demo are Q ∼ 0.1 nC, T ≤ 48 MeV,
and x̃ ∼ ỹ ∼ z̃ ∼ 1 mm; whereas typical beam parameters in linacs for x-ray
FELs will be Q ∼ 1 nC, T ≤ 1 GeV, and x̃ ∼ ỹ ∼ z̃ ∼ 0.1 mm. Thus,
to avoid space-charge-driven chaotic mixing and its associated irreversibility,
the hardware would need to be placed at T > 3 MeV in the IR Demo, or
T > 70 MeV in the x-ray FELs. By comparison, the IR Demo injector delivers
10 MeV beam, which is to say compensation could be done anywhere after the
injector. In the case of x-ray FELs, bunch compression/compensation appears
viable as long as it is done not too close to the front end of the machine.
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6 Summary and Discussion

Using geometrodynamics we found that the fundamental time scale for chaotic
mixing induced by nonlinear space-charge forces in a stationary beam bunch
is the plasma period ωp. Because the process is macroscopically irreversible,
emittance compensation needs to be done within this time scale to be most
effective.

The mixing time is very short compared to the collisional relaxation time.
The latter scales roughly as ND/ωp, where ND is the number of particles in
a Debye sphere. The collisional relaxation time in a beam with space charge
is thus typically a factor ∼ ND , i .e., several orders of magnitude, larger than
the mixing time.

The mixing time calculated here differs from a relaxation time. For ex-
ample, the geometrodynamic treatment based on Eisenhart’s metric takes no
account of the evolution of velocity space. Moreover, the use of a coarse-
grained potential in the calculation washes out the influence of collisions. Al-
though we have specialized to beams with space charge, we may nevertheless
infer that, for a system in which parametric resonances cause typical particle
trajectories to be chaotic, the mixing time will be governed principally by a
global time scale derivable from the Lagrangian of the potential. Thus the
time scale of interest in plasmas is the plasma period, in gravitational systems
it is the free-fall time, etc.

In discussing a mixing time, one must take care to do so in terms of
globally chaotic behavior of the system. In other words, an initially localized
perturbation may be regarded to have mixed only after it has grown to the
point that its scale is comparable to the size of the system. By contrast, noise
associated with single-particle interactions can also generate rapid exponen-
tial growth of perturbations, but the growth saturates on small scales and is
therefore not representative of mixing.16

Our calculation has the attractive feature of being focussed on the behav-
ior of a generic, i .e., “average” trajectory that samples the global phase space
established by a coarse-grained potential. By design it appropriately predicts
zero mixing due to local interparticle interactions. For example, it predicts
that the chaotic mixing time is infinite for linear external and space-charge
forces. In this limit the particle density is uniform, and one can see from
Eqs. (9) and (11) that the corresponding Lyapunov exponent is zero. The
same can be seen, of course, in the case that the external forces are linear and
there is no space charge, i .e., ωp = 0.

With the aid of a more general metric, specifically a Finsler metric, the ge-
ometrodynamic method can be generalized to include a potential that is both
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time-dependent and velocity-dependent.17 It is therefore potentially applica-
ble to a wide variety of beam-dynamics problems. For example, one might
be able to develop a geometric measure of chaos over a Finsler manifold for
use in rapidly constructing a system’s Poincaré surface of section, as has been
done for the Hénon-Heiles potential.18 If so, then the method may provide
an efficient means of calculating dynamic apertures in circular machines in
which magnet nonlinearities, and perhaps beam-beam interactions, establish
parametric resonances that gradually degrade the beam. Traditional methods
require very long integration times and their attendant numerical difficulties.

In the case of a beam under the influence of a time-dependent potential,
one can postulate a lowest-order approximation in which the principal effect
of the time dependence on chaotic mixing is to establish various parametric
resonances. These could arise, for example, by way of resonant coupling
between space-charge modes and a periodic transport lattice. The mixing time
would then follow from the methodology presented here, wherein the time-
averaged potential forms the basis for defining the microcanonical ensemble.
The result takes the form of Eq. (11), and insofar as it involves the depressed
betatron frequency via the ratio ωs/ωpo, it agrees with “relaxation” time scales
observed in simulations and experiments.13 However, one must take care not to
infer too much from this conjecture. The Eisenhart metric, being independent
of velocity space, cannot account for energy exchange between space-charge
modes and individual particles. Thus, important processes such as violent
relaxation and attendant halo formation are missing.19,20 In principle, they
can be accessed with a Finsler metric.

As a final remark, it will be of interest to compare the geometrodynamic
predictions against numerical experiments specifically focussed on the behav-
ior of particle trajectories and their associated mixing in the presence of non-
linear space-charge forces. In this context the evolution of particle ensembles
that could represent, for example, initially localized perturbations ostensibly
caused by transient forces external to the bunch is of special interest.
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