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1 LONGITUDINAL FOCUSING

A bunch of electrons has a spread of energy because of many reasons, for example, random quantum
excitation which changes the enengy of the particles radomly, intrabeam scattering which is just Coulomb
scattering among the particles, and Touschek scattering [1] which is large-angle Coulomb scattering which
converts the transverse momentum of a particle into longitudinal. In an accelerator ring or storage ring,
particles with different energies have different closed orbits, their lengths are given by

C = C0

[
1 + α0δ +O(δ2)

]
, (1.1)

where δ is the fractional spread in momentum and C0 is the orbit length of the so-called on-momentum
particle. The proportionality constant α0 is called the momentum-compaction factor of the accelerator ring.
Here, we assume the velocity of the on-momentum electron to be c, the velocity of light; therefore fraction
momentum spread δ = ∆p/p0 will be the same as fraction energy spread ∆E/E0, where p0 and E0 are
the momentum and energy of the on-momentum particle. For most electron rings, α0 > 0, implying that
particles with larger energy will travel along a longer closed orbit. Thus the period of revolution will be
relatively longer. Therefore, particles with lower energies will slip ahead by ∆T every turn, while particle
with higher energies will slip behind. The particles will spread out longitudinally and the bunch will be
destroyed. The slip factor η is defined as

η =
∆T
T0

=
∆C
C0
− ∆v

v0
= α0 −

1
γ2

, (1.2)

where T0 and v0 are, respectively, the revolution period and velocity of the on-momentum particle, and
γ = E0/me, me being the electron rest mass. With v0 = c, we have actually η = α0 and we called the
operation above the transition energy. For low-energy hadron rings, the velocity term may dominate making
η < 0 and we say the operation is below the transition energy. Obvious the transition energy is defined as
Et = γtm0c

2, where m0 is the rest mass of the particle and γt = α
−1/2
0 .

In order to have the particle bunched, a longitudinal focusing force will be required. This is done by
the introduction of rf cavities. Consider 3 particles arriving in the first turn at exactly same time at a cavity
gap, where the rf sinusoidal voltage curve is at 180◦, as shown in Fig. 1a. All three particles are not gaining
any energy from the rf wave. One turn later, the on-momentum particle arrives at the cavity gap at exactly
the time when the rf sinusoidal voltage curve is again at 180◦ and gains no energy. The lower energy particle
arrives at the gap earlier by τ1, which we call time slip. It sees the positive part of the rf voltage and gains
energy, as illustrated in Fig. 1b. For the second turn, it will arrives at the gap earlier by τ1 + τ2, where
τ2 < τ1 because the particle energy have been raised in the second passage. This particle will continue to
gain energy from the rf every turn and its turn-by-turn additional time slip diminishes. Eventually, this
particle will have an energy higher than the on-momentum particle and starts to arrive at the cavity gap
later turn after turn, or its turn-by-turn time slip becomes negative. Similar conclusion can be drawn for
the particle that has energy initial energy higher than the on-momentum particle. With the rf voltage
wave, the off-momentum particles will oscillates around the on-momentum particle and continue to form a
bunch. In reality, the particles lose an amount of energy Us every turn due to synchrotron radiation. This
is compensated by shifting the rf phase slightly from 180◦ to φs = sin−1(Us/Vrf) so that the on-momentum
electron will see the rf voltage at the phase φs when traversing the cavity gap. This particle is also called
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Figure 1: Three particles are shown in the longitudinal phase planes. (a) Initially, there
are all at the rf phase of 180◦ and do not gain or lose any energy. (b) One turn later, the
on-momentum particle arrives with the same phase of 180◦ without any change in energy.
The particle with lower energy arrives earlier and gains energy from the positive part of the
rf at phase < 180◦. The particle with higher energy arrives late and loses energy because it
sees the rf at phase > 180◦.

the synchronous particle. The equations of motion can be written as

dτ

dn
= −α0T0

∆E
E0

, (1.3)

d∆E
dn

= eVrf [sin(φs − hω0τ)− sinφs]− [U(δ)− Us] , (1.4)

where ω0/(2π) = 1/T0 is the revolution frequency of the ring, Vrf is the rf voltage (the peak value of the rf
wave), and h is the rf harmonic, which is the number oscillations the rf wave makes during one revolution
period. Here e is the absolute value of the electron charge. We neglect the small difference between the
energy lost U(δ) by the off-momentum particle and the energy lost Us by the on-momentum particle. For
small amplitude oscillations, the above can be simplified to

d2τ

dn2
− 2πα0heVrf cosφs

E0
τ = 0 . (1.5)

Therefore, the bunch particles are oscillating with a tune

νs =
√
−α0heVrf cos φs

2πE0
, (1.6)

which we called the synchrotron tune, from which we obtain the synchrotron frequency ωs/(2π) = νsω0/(2π).
The negative sign inside the square root implies that φs should be near 180◦ in the second quadrant. When
the oscillation amplitude is larger, the sine wave cannot be linearized. The focusing force is smaller and the
synchrotron tune will become smaller. In other words, there will be a spread in the synchrotron tune which
will be very essential to the Landau damping of the collective instabilities to be discussed later. As the
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oscillation amplitude continue to increase, a point will be reached when there is no more focusing provided
anymore. This boundary in the τ -∆E phase space gives the maximum possible bunch area allowed and is
called the bucket holding the bunch. Any particle that goes outside the bucket will be lost.

2 LONGITUDINAL MICROWAVE INSTABILITY

The beam particles interact with the discontinuities of the vacuum chamber leaving an electromagnetic
wake which acts on the particles behind and disturbs their motion. Under some conditions, this disturbance
will accumulate leading to the growths of the bunch length, transverse sizes, momentum spread, etc. The
effects can be so violent that some parts of the beam or the whole beam may be lost. These are called
collective instabilities, because some particular collective modes of oscillation inside the bunch are excited.
We will start in this section the study of the longitudinal microwave instability driven by a short longitudinal
wake.

The equations of motion of Eqs. (1.3) and (1.4) are now replaced by

dτ

dn
= −α0T0

∆E
E0

, (2.1)

d∆E
dn

= eVrf [sin(φ0 − hω0τ)− sinφ0]− [U(δ)− U0] +C0(〈F ‖0 〉 − 〈F
‖
0s〉) , (2.2)

where the additional term, C0〈F ‖0 〉, is the energy gained by the particle in a turn due to the average
electromagnetic wake potential left by the preceding particles. It can be expressed as

C0〈F ‖0 (τ)〉 = e2

∫ ∞
τ

dτ ′ρ(τ ′)W ′0(τ ′ − τ) , (2.3)

where W ′0(τ) is the monopole longitudinal wake function, or the integrated energy received by a witness
particle of unit charge from a source particle of unit charge that has a relative time advance τ . The wake
potential is casual, meaning that W ′0(τ) = 0 when τ < 0. This is the description in the time domain. In
the frequency domain, we talk about the monopole longitudinal impedance, Z‖0 (ω), of the vacuum chamber,
which is defined as Fourier transform of the longitudinal wake function:

Z
‖
0 (ω) =

∫ ∞
−∞

eiωτW ′0(τ)dτ . (2.4)

It has the same dimension as the impedance in a circuit. The language of impedance is convenient because
we can have the picture of the particle beam current circulating seeing lumped impedances at the wall of
the vacuum chamber. The term 〈F ‖0s〉 is the wake force on the synchronous particle. It is a constant energy
loss, which is compensated by suitably choosing the synchronous phase φs.

Because of the random quantum excitation in the electron bunch, there is a finite probability of having
electrons jumping outside the bucket and getting lost. To increase the quantum lifetime of an electron
bunch, the rf bucket has to be large. Also Touschek scattering will convert transverse momentum spread of
electrons into longitudinal. In order that those electrons will not be lost, the rf bucket has to be large. For
this reason, the bucket in an electron machine is in general very much larger than the size of the electron
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bunch, usually the height of the bucket is more than 10 times the rms energy spread of the bunch. To
achieve this, the rf voltage Vrf for an electron ring will be relatively much larger than that in a proton ring
of the same energy. Another reason of a high Vrf in an electron machine is to compensate for the energy
loss due to synchrotron radiation. For example, in the high-energy ring of PEP II storing 9 GeV electrons,
Vrf = 18.5 MV is required. On the other hand, Vrf for the Fermilab Tevatron storing 1 TeV protons is only
2.16 MV. As a result, the synchrotron tunes for electron rings, νs ∼ 0.01, are usually an order of magnitude
larger than those for proton rings, νs ∼ 0.001. For this reason, in the consideration of collective instabilities,
the synchrotron period of the protons are sometimes much longer than the instability growth times, and
the proton bunches can therefore be viewed locally as coasting beams. Thus, the theory of longitudinally
microwave instability, which is based on coasting beam, can be used when the average bunch current Ib is
replaced by the local peak current Ipk. The instability can therefore be studied for each individual revolution
harmonic. The stability limit is given by the Keil-Schnell criterion [2], which for a bi-Gaussian distributed
bunch reads [3] ∣∣∣∣∣Z‖0n

∣∣∣∣∣ < 2πηE0σ
2
δ

eIpk
, (2.5)

where σδ is the rms fractional momentum or energy spread of the bunch.

2.1 MODE-MIXING INSTABILITY

For electron bunches, the synchrotron period is usually much shorter than the collective instability
growth times. Thus, synchrotron oscillation cannot be neglected in the study of longitudinal instability
and the coasting-beam based theory of microwave instability cannot be applied. Here, we must study the
different modes of oscillation inside a bunch.

Because the beam particles execute synchrotron oscillations, it is more convenient to use circular coor-
dinates r, φ in the longitudinal phase space instead. We define τ = r cosφ ,

pτ = r sinφ =
ηδ

ωs
,

(2.1)

A few azimuthal modes are shown in Fig. 2. One type of oscillation is azimuthal in φ, such as cosmφ. For
example, m = 1 corresponds to a rigid dipole oscillation which we usually observe when the bunch is injected
with a phase error. m = 2 corresponds to a quadrupole oscillation when there is a mismatch between the
bunch and the rf bucket. It is clear that to drive the higher azimuthal modes, longitudinal impedance of
higher frequencies will be required. Of course, there will also be radial modes, where the bunch oscillates
with nodes at certain radii r. Let us concentrate on only one radial mode per azimuthal, the one that is most
easily excited. At zero beam intensity, these modes are separated by the synchrotron frequency ωs/(2π);
for example, the mth mode exhibits as a sideband mωs/(2π) away from a revolution harmonic line. If the
intensity of the bunch is increased, the spacings of the sidebands will change.

Here, we wish to study the collective motion of the bunch, implying that it will oscillate with a coherent
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Figure 2: Azimuthal synchrotron modes of a bunch in the longitudinal phase space (top)
and as linear density (bottom).

frequency Ω/(2π). The time dependent part is written as

∞∑
q=−∞

Fqe
−i(qω+Ω)t , (2.2)

where Fq is some factor depending on q. Suppose that the synchrotron dipole mode is excited, we will have
Ω ≈ +ωs, provided that the intensity of the bunch is not too large. Therefore, the spectrum of the bunch
will consist of only upper synchrotron sidebands at a distance ωs above the harmonic line, as shown in the
top plot of Fig. 3. Of course, not all the sidebands will be excited equally. The excitation will depend on the
driving impedance and also the bunch shape. However, in an oscilloscope or network analyzer, we can see
only positive frequencies. This is equivalent to folding the spectrum about the zero frequency point, the upper
synchrotron sidebands corresponding to the negative harmonics will appear as lower synchrotron sidebands
for the positive frequencies, or the lower plot of Fig. 3. When the driving impedance is a narrow resonance,
we may have Ω ≈ −ωs instead. However, notice that ReZ‖0 is even in frequency, or ReZ‖0 (ω) = ReZ‖0 (−ω).
There for ωr = qω0 − ωs, where ωr/(2π) is resonant frequency of the impedance and q > 0, we can always
write −ωr = q′ω0 + ωs with q′ = −q. The conclusion is that for longitudinal collective motion, it is suffice
to study only the situation of having the coherent frequency Ω ≈ +ωs. In other words, we can assume all
the synchrotron sidebands to be only upper sidebands in the language of having both positive and negative
frequencies. This analysis, however, is not correct for transverse collective motion.

Assume a broad-band impedance resonating at ωr. The impedance will be inductive when ω < ωr and
capacitive when ω > ωr. If the rms length of the bunch στ > ω−1

r , the bunch particles are seeing mostly
the inductive part of the impedance. Because the beam particles are traveling at the velocity of light in a
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Figure 3: Top plot shows the synchrotron lines for both positive and negative revolution har-
monics. The revolution harmonics are shown in dashes and the synchrotron upper sidebands
in solid. Lower plot shows the negative-harmonic side folded onto the positive-harmonic side.
We see upper and lower sideband for each harmonic line.

ring with positive momentum compaction, this inductive force is repulsive opposing the focusing force of
the rf voltage, thus lengthening the bunch and lowering the synchrotron frequency. Therefore, all azimuthal
modes will be shifted downward, except for the dipole mode m = 1. This is because the centroid of the
bunch does not see any reactive impedance. When the bunch intensity is large enough, the m = 2 mode
will collide with the m = 1 mode, and an instability will occur if the frequencies corresponding to these two
modes fall inside the resonant peak of ReZ‖0 . Mathematically, the frequency shifts become complex. This is
called longitudinal mode-mixing instability. An illustration is shown in Fig. 4 for a parabolic bunch of full
length τL interacting with a broad band impedance resonating with impedance R at frequency ωr/(2π). A
rough threshold can be derived by, for example, equating the shift to ωs. It happens to be roughly the same
as the Keil-Schnell criterion in Eq. (2.5), except that the left side is replaced by

∣∣∣∣∣Z‖0n
∣∣∣∣∣ −→ Z

‖
0

n

∣∣∣∣∣
eff

=

∫
dω
Z
‖
0 (ω)
ω

ω0hm(ω)∫
dωhm(ω)

, (2.3)

where hm(ω) is the power spectrum of the mth azimuthal mode depicted in the bottom plots of Fig. 2.
For this reason, this instability is also called microwave instability. The signal measured should correspond
roughly to the rms frequency of the bunch spectrum, which is also in the microwave region because an
electron bunch is often shorter than the transverse size of the vacuum chamber. For Sacherer’s approximate
sinusoidal modes, the power spectra of some lower azimuthal modes are shown in Fig. 5.

2.2 BUNCH LENGTHENING AND SCALING LAW

If the bunch length στ < ω−1
r , the bunch particles will sample mostly the capacitive part of the broad-
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Figure 4: Plot showing longitudinal mode-mixing instability of a parabolic bunch of full
length τL interacting with a broad band impedance resonating with impedance R at fre-
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r so that the bunch particles
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Figure 5: Power spectra hm(ω) for modes m = 0 to 3 with zero chromaticity.
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Figure 6: Both the bunch length and energy spread begin to grow after the bunch current
exceeds its microwave instability threshold Ith. (a) The bunch length starts with its natural
value at zero current and becomes shortened due to the capacitive potential-well distortion.
(b) Below the instability threshold, the energy spread is always at its natural value unaffected
by the effect of potential-well distortion.

band impedance. The frequencies of the azimuthal modes will shift upward instead. It will therefore be
harder for the m = 2 and m = 1 modes to collide, the threshold will be relatively higher. Typical plots of
the bunch length and energy spread are shown in Fig. 6. Note that because of the balancing of synchrotron
radiation and random quantum excitation, there is a natural momentum spread σδ0 and the corresponding
natural bunch length στ0 is determined by the rf voltage. This is what we see below the threshold. As the
bunch intensity increases, the bunch length decreases because of the attractive capacitive impedance. This
is called potential-well distortion. However, the momentum spread is still determined by its natural value
and is not changed. Unlike a proton bunch which can be lost after the microwave instability threshold, the
electron bunch can stabilize itself by self-increasing its length and energy spread, as illustrated in Fig. 6.
One way to observe this instability is to measure the increase in bunch length. We can also monitor the
synchrotron sidebands and see the m = 2 sideband approach the m = 1 sideband. This frequency shift,
which is a coherent shift, as a function of beam intensity is a measure of the reactive impedance of the ring.
An accurate measurement of the frequency shift of the m = 2 mode may sometimes be difficult. An alternate
and more accurate determination of the frequency shift can be made by monitoring the phase shift in the
beam transfer function.

There is a scaling law relating the bunch lengthening and the frequency dependency of the impedance
sampled by the bunch. It says that the rms bunch length στ above threshold depends on only one parameter

ξ =
ηIb
ν2
sE0

, (2.1)

as
στ ∝ ξ1/(2+a) (2.2)
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when the part of the impedance sampled by the bunch behaves like

Z
‖
0 ∝ ωa . (2.3)

Here, Ib is the average beam current of the bunch. This scaling law was first derived by Chao and Gareyte
[4] and has been verified experimentally. Note that if the Keil-Schnell criterion is applied, we always have
στ ∝ ξ1/3 or a = 1, implying a long bunch seeing the inductive part of the impedance. However, for SPEAR,
measurement pointed to στ ∝ ξ0.76 or a = −0.68. This clearly demonstrates that the Keil-Schnell criterion
cannot be used in an electron machine where the synchrotron period is short. There is another big difference
between the microwave instability for coasting beam and the mode-mixing instability discussed here. Above
transition, which is true for nearly all electron rings, the tear-drop stability curve of the coasting-beam based
theory states that the beam will be unstable if it is driven by a capacitive impedance which is large enough.
However, it can be shown that pure reactive impedance cannot lead to mode-mixing instability. The modes
may cross each other due to frequency shifts but no instability will materialize.

This instability is not a devastating instability, because it results only in the blowup of the bunch area.
In fact, many storage rings, especially collider rings, operate above this threshold, because a much higher
beam intensity and therefore luminosity can be attained. However, this may not be the situation for a
light source, where we always want to shorter bunches so as to have smaller spot sizes for the synchrotron
light. In order to accomplish this the electron ring must be carefully designed so that the impedance is as
small as possible. On the other hand, it is very difficult to reduce the impedance in a ring already built. For
example, some capacitive structures had been placed in the SLAC damping ring, so as to reduce the inductive
impedance of the ring. The threshold of the mixing of the m = 2 and m = 1 mode has been actually pushed
higher. However, the beam particles are now seeing mostly the real part of the impedance, which distorts
the bunch asymmetrically bringing out the importance of other radial excitation modes. These radial modes
actually collide at a threshold much lower than the previously threshold before the modification. However,
this instability due to the mixing of radial modes are much weaker than the instability due to the mixing of
azimuthal modes.

2.3 SAWTOOTH INSTABILITY

Before the modification of the vacuum chamber SLAC damping ring, a new form of longitudinal insta-
bility coupling with synchrotron radiation damping was observed. Upon the injection of a bunch, the bunch
length decreased rapidly with a longitudinal damping time of the order of 2 ms. When the bunch length
passed below a threshold, a sudden blowup in bunch length occurred in a time span comparable to or shorter
than the 10 µs synchrotron period, as illustrated in Fig. 7. This process was self limiting because of the
nonlinear nature of the short range wake fields responsible for blowing up the bunch. Since the blowup is
faster than a synchrotron period, this might have been the type of coasting-beam based microwave instability
governed by the Boussard-modified Keil-Schnell criterion. Once the blowup ceased, the bunch damped down
until the threshold was reached again in about a synchrotron damping time of ∼ 1.3 ms. Thus, a cyclical
repetition of the instability was observed and termed according to its shape saw-tooth instability [5].

The time dependent nature was seen in the bunch-length signal from the Beam Position Monitor
(BPM) electrodes and the bunch-phase signal from the synchronous phase monitor. The bunch phase can
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Figure 7: Plot of bunch length versus time at the injection of the SLAC Damping ring with
an intensity of 3 × 1010 particles per bunch. The bunchlength was damped rapidly in the
first 2 ms after injection to a point where it was unstable against microwave instability.
Rapid growth took place until the bunch was self-stabilized. After that it was damped by
synchrotron radiation to below the instability threshold. This repetition has the shape of
sawteeth.

be referenced to either the 714 MHz rf of the damping ring or to the 2856 MHz S-band rf of the linac. The
synchronous beam phase angle is given by φs = sin−1(U0/Vrf), where U0 is the energy loss per turn as a
result of synchrotron radiation. The higher-order mode losses of a bunch is a function of the line charge
density and so are inversely proportional to the bunch length. As the bunch blew up, the higher-order losses
decreased and the beam phase shifted by about 0.5◦ at 714 MHz during a saw-tooth. This translated into a
2◦ jump at the S-band in the linac. This magnitude of phase error caused a problem with the rf bunch length
compressor in the ring-to-linac beam line. When this instability took place, the bunch would be incorrectly
launched into the linac and might eventually be lost on the downstream collimators, causing the linac to
trip the machine protection circuits.

This instability can also be observed in the frequency domain. As the beam was damped down to
the instability threshold, strong signal appeared at the 3νs sideband, corresponding to a sextupole mode of
oscillation in the bunch length. Although this sideband was referred to as 3νs, its frequency was depressed
from 3 times to ∼ 2.6 times.

There is a threshold for this instability, which occurred at around 3 × 1010 particles per bunch for a
nominal rf voltage of 1 MV. At higher intensity, the sawteeth appeared closer together in time. The process
could be viewed as a relaxation oscillator where the period is a function of the bunch length damping time
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Figure 8: The rf voltage was lowered in the SLAC damping ring after injection and before
extraction, thus lengthening the bunch and reducing the local charge density. This raised
the microwave instability threshold and prevented the sawtooth instability.

and the trigger threshold. The damping time is constant but the bunch length at which the bunch went
unstable increased at higher intensities. When the bunch intensity was increased to 4 × 1010 particles, a
transition occurred to a second regime with “continuous sawteeth”.

Lowering the rf voltage is a means of increasing the equilibrium bunch length and extending the intensity
threshold. This is because the Landau damping from the energy spread, which is determined by synchrotron
radiation, is unchanged, but lengthening the bunch reduces the local peak current and brings the bunch
below the Keil-Schnell threshold according to Eq. (2.5). A low rf voltage, however, is not suitable for
efficient injection and extraction for the damping ring. Therefore, the rf voltage was ramped down from
1 MV to 0.25 MV approximately 1 ms after injection, as illustrated in Fig. 8. It was ramped up back to
1 MV 0.5 ms before extraction. In this way the onset of saw-tooth instability had been suppressed up to an
intensity of 3.5× 1010 per bunch.

3 ROBINSON INSTABILITY

When an off-momentum particle executes synchrotron oscillation in the longitudinal τ -∆E plane, its
energy oscillates. In the upper half plane, its instantaneous revolution frequency is ω0(1−ηδ) which is smaller
than ω0, whereas in the lower half plane, it revolution frequency is larger than ω0. Consider the Re Z‖0 near
a revolution harmonic qω0. If Re Z‖0 is smaller at qω0 + ωs than at qω0 − ωs, the particle will be losing
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Figure 9: (a) If the resonant frequency ωr is slightly above a revolution harmonic qω0, Re Z‖0
at the upper synchrotron sideband is larger than at the lower synchrotron sideband. The
system is unstable. (b) If ωr is slightly below a harmonic line, ReZ‖0 at the upper sideband
is smaller than at the lower sideband, and the system is stable. It is the other way around
if the operation is below transition.

energy in the upper half plane when δ > 0 and gaining energy in the lower half plane when δ < 0. Thus, the
synchrotron oscillation amplitude will be reduced, and the oscillation will be damped. This is illustrated in
Fig. 9(b). On the other hand, if Re Z‖0 is larger at qω0 + ωs than at qω0 − ωs, as indicated in Fig. 9(a), the
oscillation will be unstable because the amplitude will become larger and larger. This instability criterion
was first analyzed by Robinson [6].

Since we require a rapid change ofRe Z‖0 as a function of frequency in order to exhibit Robinson damping
or Robinson anti-damping, thisRe Z‖0 is usually a sharp resonance, for example the fundamental rf resonance.
Thus, in order that synchrotron oscillation is stable, the resonant rf frequency ωr must be tuned so that it
is slightly below a revolution harmonic. For proton machines below transition where the slip factor η < 0,
the opposite is necessary to ensure stability or ωr must be slightly above a revolution harmonic.

Narrow resonant impedance peak implies long wake function, so long that the particle will see its own
wake left in previous turns. Including the contribution of the wake due to previous turns in the energy-change
equation of motion [Eq. (1.4)], one can derive the growth rate as the imaginary part of the synchrotron tune
shift:

1
τm

= Im∆ωs =
ηeIb

2E0T0ωs

+∞∑
q=−∞

(qω0+mωs)ReZ‖0 (qω0+mωs)Fm(qω0+mωs) , (3.1)

where Ib is the average bunch current, m = 1 is the dipole mode, m = 2 is the quadrupole mode, etc. In
above, Fm is a form factor depending on the linear distribution of the bunch. Take the simple case of a
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single bunch of length 2τ̂ and uniform distribution in the longitudinal phase space, or

g0(r) =
1
πτ̂2

θ(τ̂ − r) , (3.2)

where θ(x) = 1 when x > 0 and zero otherwise. The form factor becomes

Fm(ω) =
1
πτ̂2

J2
m(ωτ̂) ≈ ω2

4π
1

(m!)2

(
ωτ̂

2

)2m−2

, (3.3)

where the assumption of a short bunch has been made in the last step. Therefore for the dipole mode
(m = 1), F ≈ 1 and is independent of the bunch length if the bunch is short. In other words, the dipole
mode of a short bunch is essentially a point-bunch theory. It is worthwhile to point out that the form factor
Fm is in fact another way to express the power spectrum hm of the mth azimuthal excitation illustrated in
Fig. 5.

When the driving impedance is a resonance centered at frequency ωr/(2π) and is so narrow that there
is only one q > 0 that satisfies

ωr ≈ qω0 ± ωs , (3.4)

only two terms of the above summation survive. The growth rate becomes, for the dipole mode,

1
τ1

=
ηeIbωr

2E0T0ωs
[ReZ‖0 (qω0+ωs)−ReZ‖0 (qω0−ωs)] . (3.5)

The result agrees with the illustration in Fig. 9. From Fig. 3 where we have upper and lower synchrotron
sidebands in the language of positive frequencies, it is now easy to explain the different contributions of
the upper and lower synchrotron sidebands to collective stability of the beam particles. In the situation
of electron rings where the slip factor η > 0, we can therefore identify, according to Eq. (3.5), the upper
sidebands as the growing sidebands and the lower sidebands the damping sidebands.

Experimental observation of Robinson instability is easy, because one can identify a growing amplitude
of the synchrotron oscillation amplitude in the time domain. In the frequency domain, one can observe the
upper synchrotron sideband of the rf harmonic growing in strength. As was discussed above, detuning the
rf frequency to slightly below a revolution harmonic will achieve Robinson damping. In addition, there is
also Landau damping coming from the spread of the synchrotron frequency inside the bunch resulting from,
for example, the nonlinearity of the rf wave. As a rule of thumb, the stability criterion reads

1
τ1
<

1√
3

∆ω1/2 . (3.6)

where ∆ω1/2 is the half spread of the synchrotron frequency at half maximum.

4 LONGITUDINAL COUPLED-BUNCH INSTABILITY

4.1 COUPLED MODES AND GROWTH RATES

When the wake does not decay within the bunch spacing, bunches talk to each other. Assuming M
bunches of equal intensity equally spaced in the ring, there are µ = 0, 1, · · · , M−1 modes of oscillations in
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Figure 10: Top plot shows the synchrotron lines for both positive and negative revolution
harmonics for the situation of M = 6 identical equally-spaced bunches. The coupled-bunch
modes µ = 0, 1, 2, 3, 4, 5 are listed at the top of the synchrotron lines. Lower plot shows
the negative-harmonic side folded onto the positive-harmonic side. We see upper and lower
sideband for each harmonic line.

which the center-of-mass of a bunch leads† its predecessor by the phase 2πµ/M . In addition, an individual
bunch in the µ-th coupled-bunch mode can oscillate in the synchrotron phase space about its center-of-mass
in such a away that there are m = 1, 2, · · · azimuthal nodes in the perturbed longitudinal phase-space
distribution. Of course, there will be in addition radial modes of oscillation in the perturbed distribution.
The long-range wake can drive the coupled bunches to instability.

For M equal bunches, Eq. (3.5) becomes, for coupled-bunch mode µ,

1
τ1µ

=
ηeIbMωr

2β2E0T0ωs
[ReZ‖0 (qMω0+µω0+ωs) −Re Z‖0 (q′Mω0−µω0−ωs)] , (4.1)

where Ib is the average current for one bunch. When µ = 0, both terms will contribute with q′ = q

and we have exactly the same Robinson’s stability or instability as for the single bunch situation. This is
illustrated in Fig. 10. When µ = M/2 if M is even, both terms will contribute with q′ = q, and the same
Robinson’s stability or instability will apply. For the other M−2 modes, only one term will be at or close
to the resonant frequency and only one term will contribute. If the positive-frequency term contributes,
we have instability. If the negative-frequency term contributes, we have damping instead. If one choose to
speak in the language of only positive frequencies, there will be an upper and lower synchrotron sideband
surrounding each revolution harmonic. Above transition, the coupled-bunch system will be unstable if the
driving resonance leans towards the upper sideband and stable if it leans towards the lower sideband.

For the higher azimuthal modes (m > 1) driven by a narrow resonance, we have the same Robinson
instability. The growth rates are

1
τmµ

=
ηe2NMωr
2β2E0T 2

0ωs

m

(m!)2

(
ωrτ̂

2

)2m−2

[ReZ‖0 (qMω0+µω0 +ωs)−ReZ‖0 (q′Mω0−µω0−ωs)] , (4.2)

†We can also formulate the problem by having the bunch lags its predecessor by the phase 2πµ′/M in the µ′-th coupling

mode. Then mode µ′ will be exactly the same as mode M−µ discussed in the text.
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Figure 11: (color) Mountain-range plot showing coupled-bunch instability in the Fermilab
Main Injector just after injection at 8 GeV.

which depend on the bunch length as τ̂2m−2, where the form factor F in Eq. (3.3) for a short but uniform
distributed bunch has been used. As a result, higher azimuthal instabilities for short bunches will be much
more difficult to excite.

The easiest way to observe longitudinal coupled-bunch instability is in mountain-range plot, where
bunches oscillate in a particular pattern as time advances. Examples are shown in Figs. 11 and 12. Streak
camera can also be used to capture the phases of adjacent bunches as a function of time. From the pattern
of coupling, the coupled-mode µ can be determined. From the frequency of oscillation, the azimuthal mode
m can also be determined. Then we can pin down the frequency ωr/(2π) of the offending resonance driving
the instability.

Observation can also be made in the frequency domain by zooming in the region between two rf
harmonics in the way illustrated in Fig. 10. The coupled-bunch mode excited will be shown as a strong
spectral line in between.

Longitudinal coupled-bunch instability will lead to an increase in bunch length and an increase in energy
spread. For a light source, this translates into an increase in the spot size of the synchrotron light.

There are many way to cure longitudinal coupled bunch instability. The driving resonances are often
the higher order modes inside the rf cavities. When the particular resonance is identified and if it is much
narrower than the revolution frequency of the ring, we can try to shift its frequency so that it resides
in between two revolution harmonics and becomes invisible to the beam particles. We can also study the
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Figure 12: (color) Mountain range plot showing bunches in a batch executing coupled-bunch
instability in the Fermilab Main Injector just after injection at 8 GeV

electromagnetic field pattern of this resonance mode inside the cavity and install passive resistors and antenna
to damp this particular mode. This method has been used widely in the Fermilab Booster, where longitudinal
coupled-bunch instability had been very severe after the beam passed the transition energy. At that time,
the bunch area increased almost linearly with bunch intensity. Passive damping of several offending modes
cured this instability to such a point that the bunch area does not increase with bunch intensity anymore.

Longitudinal coupled-bunch instability had also been observed in the former Fermilab Main Ring.
Besides passive damping of the cavity resonant modes, the instability was also reduced by lowering the rf
voltage. Lowering the rf voltage will lengthen the bunch and reduce the form factor F . This is only possible
for a proton machine where the bunches are long. It will not work for the short electron bunches for the
m = 1 dipole mode. This is because, as mentioned before, the form factor for the dipole mode is not sensitive
to the bunch length for short bunches. Even for a proton machine, the rf voltage cannot be reduced by a large
amount because, proton bunches are usually rather tight inside the rf bucket, especially during ramping.

If the growth turns out to be harmful, a fast bunch-by-bunch damper may be necessary to damp the
dipole mode (m = 1). A damper for the quadrupole mode (m = 2) may also be necessary. This consists
essentially of a wall-gap pickup monitoring the changes in bunch length and the corresponding excitation of
a modulation of the rf waveform with roughly twice the synchrotron frequency. A feed-back correction is
then made to the rf voltage. Another way to damp the longitudinal coupled-bunch instability is to break
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the symmetry between the M bunches. For example, a 5% to 10% variation in the intensity of the bunches
will help. Also the bunches are usually not placed symmetrically in the ring. Some analysis shows that the
stability will be improved if some bunches in the symmetric configuration are missing.

There can also be Landau damping, which comes from the spread of the synchrotron frequency. The
spread due to the nonlinear sinusoidal rf wave form can be written as

∆ωs
ωs

=
2
3

(
1 + sin2 φs

1− sin2 φs

)(
hτ

L
ω0

4π

)2

, (4.3)

where τL is the total length of the bunch and φs is the synchronous angle. The mode will be stable if

1
τ
.

√
m

4
∆ωs . (4.4)

Electron bunches are usually much smaller in size than the rf bucket. As a result the spread in synchrotron
frequency will be very minimal, and does not help much in Landau damping.

4.2 HIGHER-HARMONIC CAVITIES

In order to Landau damp longitudinal coupled-bunch instability, a large spread in synchrotron frequency
inside the bunch must be required. One way to do this is to install a higher-harmonic cavity, sometime known
as Landau cavity [7]. For example, the higher-harmonic cavity has resonant frequency mωrf , where ωrf is the
resonant frequency of the fundamental rf cavity. The total rf voltage seen by the beam particles becomes

V (τ) = Vrf [sin(φs − ωrfτ) + k sin(φm −mωrfτ)] (4.1)

We would like the bottom of the potential well, which is the integral of V (τ), to be as flat as possible. The rf
voltage seen by the synchronous particle is compensated to zero by the energy lost to synchrotron radiation.
Therefore, if we further require

∂V

∂τ

∣∣∣∣
τ=0

= 0 , and
∂2V

∂τ2

∣∣∣∣
τ=0

= 0 . (4.2)

so that the potential will become quartic instead. The above translates into

cos φs = −km cos φm and sinφs = −km2 sinφm , (4.3)

from which φm and k can be solved easily. For small amplitude oscillation, the potential becomes

−
∫
V (τ)d(ωrfτ) −→ m2 − 1

24
(ωrfτ)4Vrf cos φs , (4.4)

and the synchrotron frequency
ωs(τ)
ωs0

=
π

2

(
m2 − 1

6

)1/2
ωrfτ

K0
. (4.5)

where ωs0 is the synchrotron frequency at zero amplitude when the higher-harmonic cavity voltage is turned
off, and K0 = 1.854 is the complete elliptic integral of the first kind with argument 1/2. The synchrotron
frequency is zero at zero amplitude and increases linearly with amplitude. This large spread in synchrotron
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frequency may be able to supply ample landau damping to the longitudinal coupled-bunch instability, A
third-harmonic harmonic cavity has been used in the SOLEIL ring in France to give a relative frequency
spread of about 200%. However, since the center frequency has been dramatically decreased (not exactly to
zero), the net result is a poor improvement in the stabilization. The gain in the stability threshold has been
only 30% [8].[13

4.3 RF VOLTAGE MODULATION

The modulation of the rf system will create nonlinear parametric resonances, which redistribute particles
in the longitudinal phase plane. The formulation of islands within an rf bucket reduces the density in the
bunch core. As a result, beam dynamics property related to the bunch density, such as beam life time, beam
collective instabilities, etc, can be improved.

Here we try to modulate the rf voltage with a frequency νmω0/(2π) and amplitude ε, so that the energy
equation becomes [9]

d∆E
dn

= eVrf [1 + ε sin(2πνmn+ ξ)][sin(φs − hω0τ)− sinφs]− [U(δ)− Us] , (4.1)

where ξ is a randomly chosen phase and νm the modulating tune. This modulation will introduce resonant
island structure in the longitudinal phase plane. There are two critical tunes:{

ν1 = 2νs + 1
2
ενs ,

ν2 = 2νs − 1
2
ενs .

(4.2)

If we start the modulation by gradually increasing the modulating tune νm towards ν2 from below, two
islands appear inside the bucket from both sides, as shown in the second plot of Fig. 13. The phase space
showing the islands is depicted in Fig. 14. As νm is increased, these two islands come closer and closer to
the center of the bucket and the particles in the bunch core gradually spill into these two islands, forming
3 beamlets. When νm reaches ν2, the central core disappears and all the particles are shared by the two
beamlets in the two islands. Further increase of νm above ν2 moves the two beamlets closer together. When
νm equals ν1, the two beamlets merge into one. Under all these situations, the two outer islands rotate
around the center of the rf bucket with frequency equal to one half the modulation frequency.

Rf voltage modulation has been introduced into the light source SRRC at Taiwan to cope with longitu-
dinal coupled-bunch instability [10]. A modulation frequency slightly below twice the synchrotron frequency
with 10% voltage modulation was applied to the rf system. The beam spectrum measured from the BPM
sum from a HP4396A network analyzer before and after the modulation is shown in Fig. 15. It is evident
that the intensity of the beam spectrum has been largely reduced after the application of the modulation.
The sidebands around the harmonics of 587.106 Hz and 911.888 MHz are magnified in Fig. 16. We see
that the synchrotron sidebands have been suppressed by very much. The multibunch beam motion under
rf voltage modulation was also recorded by streak camera, which did not reveal any coupled motion of the
bunches.
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Figure 13: (color) Simulation results of rf voltage modulation. The modulation frequency
is increased from top to bottom and left to right. The modulation amplitude is 10% of the
cavity voltage. The 4th plot is right at critical frequency ν2f0 = 49.6275 kHz and the 7th
plot right at critical frequency ν1f0 = 52.1725 kHz.
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Figure 14: Top figures show separatrices and tori of the time-independent Hamiltonian with
voltage modulation in multiparticle simulation for an experiment at IUCF. The modulation
tune is below ν2 with the formation of 3 islands on the left, while the modulation tune is
above ν2 with the formation of 2 islands on the right. The lower-left plot shows the final
beam distribution when there are 3 islands, a damping rate of 2.5 s−1 has been assumed.
The lower-right plot shows the longitudinal beam distribution from a BPM sum signal
accumulated over many synchrotron periods. Note that the outer two beamlets rotate
around the center beamlet at frequency equal to one-half the modulation frequency.
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Figure 15: (color) Beam spectrum from BPM sum signal before and after applying rf voltage
modulation. The modulation frequency was 50.155 kHz and the voltage modulation was
10%. The frequency span of the spectrum is 500 MHz.

Figure 16: (color) Beam spectrum zoom in from Fig. 15. The revolution harmonic frequency
of the left is 587.106 MHz and the right is 911.888 MHz. The frequency span of the spectrum
is 200 kHz.
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5 TRANSVERSE FOCUSING AND TRANSVERSE WAKE

Transverse focusing of the particle beam is necessary. If not the beam will diverge hitting the vacuum
chamber and get lost. The alternating gradient focusing scheme employing F-quadrupoles and D-quadrupoles
suggested by Courant and Synder [11] give very strong focusing of the beam in both the horizontal and vertical
planes. For this reason, the transverse beam size can be made very small and so is the size of the vacuum
chamber and the aperture of the magnets. In light sources, usually the Chasman-Green lattices are used.
They consist of double achromats or triple achromats, which are strong focusing and give zero dispersion at
both ends. Another merit of the achromats is that they can provide much smaller transverse emittances for
the electron beam than the alternating gradient scheme of Courant and Synder.

Because quadrupoles can focus in only one transverse plane and defocus in the other, transverse oscilla-
tions develop in both transverse planes. These are called betatron oscillations, and the oscillation frequencies,
ωβ/(2π), are called betatron frequencies, which are usually different in the two transverse plane. The number
of betatron oscillations made in a revolution turn of the beam, νβ = ωβ/ω0, is called the betatron tune. The
equation of motion of a beam particle in, for example, the vertical plane, is given by

d2y

dn2
+ (2πνβ)2y =

C2
0〈F⊥1 〉
E0

, (5.1)

where the right side is the contribution due to the transverse electromagnetic wake W1(τ). The transverse
force averaged over the circumference of the ring, 〈F⊥1 〉 acting on the test particle with time advance τ is
defined as

〈F⊥1 (τ)〉 =
e2D

C0

∫ ∞
−∞

dτ ′ρ(τ ′)W1(τ ′ − τ) , (5.2)

where ρ is the linear distribution of the beam which has a transverse offset D from the designed orbit.
Correspondingly, one can define a transverse impedance Z⊥1 (ω) in the frequency domain:

Z⊥1 (ω) = −i
∫ ∞
−∞

eiωτW1(τ)dτ , (5.3)

which has the dimension Ohms/m. In the definition, the −i takes into account the fact that the force lags
the displacement by 1

2π.

There is a direct parallel between the transverse dynamics and the longitudinal dynamics, as is illus-
trated in the equations of motion in the longitudinal phase plane and the transverse phase plane. However,
there is a big difference that the betatron tune νβ � 1 while the synchrotron tune νs � 1.

6 TRANSVERSE COLLECTIVE INSTABILITIES

6.1 SEPARATION OF TRANSVERSE AND LONGITUDINAL MOTIONS

For bunched beam, longitudinal motion has to be included. Just as for synchrotron oscillations, it is
more convenient to change from (y, py) to the circular coordinates (rβ, θ) in the transverse betatron phase
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space. Following Eq. (2.1), we have {
y = rβ cos θ
py = rβ sin θ ,

(6.1)

and Eq. (5.1) is transformed into 
dy

ds
= −ωβ

v
py

dpy
ds

=
ωβ
v
y − c

E0ωββ
〈F⊥1 (τ ; s)〉 ,

(6.2)

where instead of turn number, the continuous variable s, denoting the distance along the designed orbit, has
been used as the independent variable.

For time period much less than the synchrotron damping time, Hamiltonian theory can be used. The
Hamiltonian for motions in both the longitudinal phase space and transverse phase space can be written as

H = H‖ +H⊥ , (6.3)

where H‖ is the same Hamiltonian describing the longitudinal motion:

H‖ = − η

2cE0
(∆E)2 +

ehω2
0Vrf cosφs

4πc
τ2 + V (τ)|wake , (6.4)

while H⊥ is the additional term coming from the equations of motion in the transverse phase space as given
by Eq. (6.2). We note that the transverse force 〈F⊥1 (τ ; s)〉 in Eq. (6.2) depends on the longitudinal variable
τ ; therefore

[H‖, H⊥] 6= 0 . (6.5)

We assume that the perturbation is small and synchro-betatron coupling is avoided. Then

[H‖, H⊥] ≈ 0 . (6.6)

This implies that in the transverse phase space, the azimuthal modes m⊥ = 1, 2, · · · , and the radial modes
k⊥ = 1, 2, · · · are good eigen-modes. In fact, this is very reasonable because at small perturbation, the
transverse azimuthal modes m⊥ correspond to frequencies m⊥ωβ with separation ωβ. Since

ωβ � ω0 � ωs , (6.7)

the possibility for different transverse azimuthals to couple is remote. A direct result of Eq. (6.6) is the
factorization of the bunch distribution Ψ in the combined longitudinal-transverse phase space; i.e.,

Ψ(r, φ; rβ, θ) = ψ(r, φ)f(rβ, θ) , (6.8)

where ψ(r, φ) is the distribution in the longitudinal phase space and f(rβ , θ) the distribution in the transverse
phase space. Now decomposed ψ and f into the unperturbed parts and the perturbed parts:

ψ(r, φ) = ψ0(r) + ψ1(r, φ) ,

f(rβ , θ) = f0(rβ) + f1(rβ, θ) . (6.9)
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mode m = 0 m = ±1 m = ±2 m = 0 m = ±1 m = ±2 m = 0 m = ±1 m = ±2

(a) χ = 0 rad (b) χ = 5 rad (c) χ = 9 rad

Figure 17: Head-tail modes of transverse oscillation. The plots show the contortions of a
single bunch on separate revolutions, and with six revolution superimposed (denoted by
k). Vertical axis is difference signal from position monitor, horizontal axis is time, and
νβ = 4.833. The chromaticity phase are (a) χ = 0 rad, (b) χ = 5 rad, and (c) χ = 9 rad.

When substituted into Eq. (6.8), there are four terms. The term ψ1f0 implies only the longitudinal-mode
excitations driven by the longitudinal impedance without any transverse excitations. This is what we have
discussed in the previous sections and we do not want to include it again in the present discussion. The
term ψ0f1 describes the transverse excitations driven by the transverse impedance only. This term will be
included in the ψ1f1 term if we retain the azimuthal m = 0 longitudinal mode. For this reason, the bunch
distribution Ψ in the combined longitudinal-transverse phase space contains only two terms

Ψ(r, φ; rβ, θ) = ψ0(r)f0(rβ) + ψ1(r, φ)f1(rβ , θ)e−iΩs/v , (6.10)

where we have separated out the collective angular frequency from ψ1f1.

The next approximation is to consider only the rigid dipole mode in the transverse phase space; i.e., the
bunch is displaced by an infinitesimal amount D from the center of the transverse phase space and executes
betatron oscillations by revolving at frequency ωβ/(2π). Then we must have

f1(rβ, θ) = −Df ′0(rβ)eiθ . (6.11)

This implies that all the modes that we are going to study are again synchrotron modes; but they are now
sidebands of the betatron lines. Some of the transverse modes are shown in Fig. 17

Similar to Eq. (3.1) in the longitudinal dynamics, one can derive the growth rate of the imaginary part
of the betatron tune shift or the shift of the synchrotron sideband:

1
τm

= Im∆ωβ = − eIbc

4πνβE0

+∞∑
q=−∞

ReZ⊥1 (ωq)Fm(ωq) , (6.12)

where ωq = qω0+ωβ+mωs. Notice that the coefficient of ωβ in the argument of ReZ⊥0 is always unity, which
reflects the fact that only the transverse rigid-dipole mode has been considered. The subscript ‘m’ denotes
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the azimuthal synchrotron modes adjacent to the betatron line. Unlike the case of pure longitudinal motion,
the presence of ωβ in ωq leaves the bunch spectrum with out any symmetry between positive and negative
frequencies. For this reason, we need to consider here synchrotron modes with both positive and negative
frequencies; or m from −∞ to ∞. Writing the form factor Fm in terms of the power spectrum hm of the
mth azimuthal excitation illustrated in Fig. 5, we obtain from Eq. (6.12),

1
τm

= − 1
1+m

eIbc

4πνβE0

∑
qRe Z⊥1 (ωq)hm(ωq)
B
∑
q hm(ωq)

, (6.13)

where B = Ib/Ipk is the bunching factor. For a uniformly distributed bunch or the water-bag model,
B = f0τL , where f0 is the revolution frequency and τL the total length of the bunch. For the sake of
convenience, one may normalize hm in such a way that

B
∑
q

hm(ωq) = 1 . (6.14)

From the definition of the transverse impedance in Eq. (5.3), we see that ReZ⊥0 (ω) is antisymmetric in
ω, being positive when ω > 0 and negative when ω < 0. Therefore, the formula for the growth in Eq. (6.13)
shows that ReZ⊥0 for negative frequency drives instability while ReZ⊥0 for positive frequency stabilizes the
beam.

6.2 CHROMATICITY FREQUENCY SHIFT

The betatron tune νβ of a beam particle depends on its momentum offset δ through the chromaticity
ξ, which is a property of the lattice of the accelerator and is defined as‡

∆νβ = ξδ , (6.15)

Because the beam particle makes synchrotron oscillation, the betatron phase is continuously slipping. We
would like to compute the phase slip for a particle that has a time advance τ relative to the synchronous
particle. This is illustrated in Fig. 18.

The momentum offset in Eq. (6.15) can be eliminated using the equation of motion of the phase

∆τ = −ηT0δ , (6.16)

where η is the slip factor and ∆τ is the change in time advance of the particle in a turn. The phase lag in a
turn is then ∫

2π∆νβ = −2π
ξ

η

∫
∆τ
T0

= −ξω0

η
τ . (6.17)

This means that the phase lag increases linearly along the bunch and is independent of the momentum offset.
For a bunch of half length τ̂ , the tail of the bunch, τ = −τ̂ , lags the head of the bunch, τ = +τ̂ , by the
phase 2τ̂ωξ, where

ωξ =
ξω0

η
(6.18)

‡Sometimes, especially in Europe, the chromaticity ξ is also defined by ∆νβ = ξνβδ.
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Figure 18: Schematic drawing showing the lagging of the betatron phase from the head
(right) to the tail (left) of the bunch when the chromaticity ξ and slip factor η have the
same signs.

is called the betatron angular frequency shift due to chromaticity. For this reason, ωξ should be subtracted
from ωq in the arguments of the power spectrum hm and Re Z⊥1 in Eq. (6.13). The total betatron tune shift
from head to tail is represented by χ = ωξτL , where τ

L
is the total length of the bunch from head to tail.

The head-tail modes for various values of χ are shown in Fig. 17.

For positive chromaticity above transition, ωξ > 0. The modes of excitation in Fig. 5 are therefore
shifted to the right by the angular frequency ωξ. As shown in Fig. 19, mode m = 0 sees more impedance in
positive frequency than negative frequency and is therefore stable. However, it is possible that mode m = 1,
as in Fig. 19, samples more the highly negativeReZ⊥1 at negative frequencies than positiveRe Z⊥1 at positive
frequencies and becomes unstable.

If the transverse impedance is sufficiently smooth, it can be removed from the summation in Eq. (6.13).
The growth rate for the m = 0 mode becomes

1
τ0

= − eIbc

2ωβE0τL
Re Z⊥1 (ωξ) . (6.19)

The transverse impedance of the CERN PS had been measured in this way by recording the growth rates of
a bunch at different chromaticities.
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Figure 19: Positive chromaticity above transition shifts the all modes of excitation towards
the positive frequency side by ωξ. Mode m = 0 becomes stable, but mode m = 1 may be
unstable because it samples more negative ReZ⊥1 than positive Re Z⊥1 .

7 TRANSVERSE COUPLED-BUNCH INSTABILITIES

7.1 RESISTIVE WALL

If there are M identical equally spaced bunches in the ring, there are µ = 0, · · · , M−1 transverse
coupled modes when the centers-of-mass of one bunch leads its predecessor by the betatron phase of 2πµ/M .
The transverse growth rate for the µ-th coupled-bunch mode is exactly the same as the formula in Eq. (6.13)
except for the replacement of ωp by ωq = (qM+µ)ω0 + ωβ +mωs; i.e.,

1
τmµ

= − 1
1+m

eMIbc

4πνβE0

∑
q ReZ⊥1 (ωq)hm(ωq−χ/τL)
B
∑
q hm(ωq−χ/τL )

, (7.1)

where the bunching factor B = ML/C has been used and χ = ωξτL is the chromaticity phase shift across
the bunch of full length τL .

A most serious transverse coupled-bunch instability that occurs in nearly all storage rings is the one
driven by the resistive wall. Since Re Z⊥1 ∝ ω−1/2 and is positive (negative) when ω is positive (nega-
tive), a small negative frequency betatron line, which acts like a narrow resonance, can cause coupled-
bunch instability. Take, for example, the Tevatron in the fixed target mode, where there are M = 1113
equally spaced bunches. The betatron tune is νβ = 19.6. The lowest negative betatron frequency line is at
(qM+µ)ω0 + ωβ = −0.4ω0, for mode µ = 1093 and q = −1. The closet damped betatron line (q = 0) is
at (1113−0.4)ω0, but ReZ⊥1 is only −

√
0.4/1112.6 the value at −0.4ω0. The next anti-damped betatron

line (q = −2) is at −1113.4ω0, with ReZ⊥1 equal to
√

0.4/1113.4 the value at −0.4ω0. This is illustrated in
Fig. 20. Thus it is only the −0.4ω0 betatron line that dominates. From Eq. (7.1), the growth rate for this
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Figure 20: The −0.4ω0 betatron line in the Tevatron dominates over all other betatron lines
for µ = 1093 mode coupled-bunch instability driven by the resistive wall impedance.

Figure 21: Plot of form factor F ′m(ωτ
L
−χ) for modes m = 0 to 5. With the normalization

in Eq. (6.14), these are exactly the power spectra hm.
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mode can therefore be simplified to

1
τmµ

≈ − 1
1+m

eMIbc

4πνβE0
ReZ⊥1 (ωq)F ′m(ωqτL − χ) , (7.2)

where χ = ωξτL and the form factor is

F ′m(ωτ
L

) =
2πhm(ω)

τL

∫ ∞
−∞

hm(ω)dω

, (7.3)

and is plotted in Fig. 21. For zero chromaticity, only the m = 0 mode can be unstable because the power
spectra for all the m 6= 0 modes are nearly zero near zero frequency. Since the perturbing betatron line is
at extremely low frequency, we can evaluate the form factor at zero frequency. For the sinusoidal modes,
we get F ′(0) = 8/π2 = 0.811. On method to make this mode less unstable or even stable is by introducing
positive chromaticity when the machine is above transition. For the Tevatron, η = 0.0028, total bunch
length τ

L
= 5 ns, revolution frequency f0 = 47.7 kHz, a chromaticity of ξ = +10 will shift the spectra by

the amount ωξτL = 2πf0ξτL/η = 5.4. The form factor and thus the growth rate is reduced by more than 4
times. However, from Figs. 5 and 19, we see that the spectra are shifted by ωξτL/π = 1.7 and the m = 1
mode becomes unstable. Another method for damping is to introduce a betatron angular frequency spread
using octapoles, with the spread larger than the growth rate.

A third method is to employ a damper. Let us derive the displacements of consecutive bunches at a
BPM. Suppose the first bunch is at the BPM with betatron phase φβ0 = 0; its displacement registered at
the BPM is proportional to cosφβ0 = 1. At that moment, the next bunch has phase 2πµ̄/M in advance,
where µ̄ = qM + µ = −20. When this bunch arrives at the BPM, the time elapsed is T0/M and the change
in betatron phase is ωβT0/M = 2πνβ/M . The total betatron phase on arrival at the BPM is therefore
φβ1 = 2πµ̄/M + 2πνβ/M = 2π(µ̄− νβ)/M = (−0.4)2π/M , and the displacement registered is cos φβ1 When
the nth consecutive bunch arrives at the BPM, its phase will be φβn = n(−0.4)2π/M . This is illustrated in
Fig. 22 when the BPM is registering every 20th bunch. What we see at the BPM is a wave of frequency −0.4
harmonic or about 19.1 kHz. Because we know that the bunches follow the pattern of such a slow wave,
we only require a very narrow-band feedback system will damp the instability. Usually the adjacent modes
µ = 1092, 1091, · · · will also be unstable at the −1.4ω0, −2.4ω0, · · · betatron line; but the growth rates
will be smaller.

7.2 NARROW RESONANCES

The narrow higher-order transverse resonant modes of the rf cavities will also drive transverse coupled-
bunch instabilities. The growths rate are described by the general growth formula of Eq. (7.1). When the
resonance is narrow enough, only the betatron lines closest to the resonant frequency ωr/(2π) contribute in
the summation. The growth rate is therefore given by Eq. (7.2), where two betatron lines are included.

1
τmµ

≈ − 1
1+m

eMIbc

4πνβE0
[ReZ⊥1 (ωq)F ′m(ωqτL − χ) −Re Z⊥1 (ωq′)F ′m(ωq′τL − χ)] , (7.4)

where q and q′ satisfy {
−ωr ≈ ωq = (qM + µ+ νβ +mνs)ω0

ωr ≈ ωq′ = (q′M + µ+ νβ +mνs)ω0 .
(7.5)
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Figure 22: Difference signal at a BPM displaying the displacement of every 20th bunch, when
the µ = 1093 mode of transverse coupled-bunch is excited by the resistive wall impedance.

Similar to the situation of longitudinal coupled-bunch instabilities, mode µ = 0 and mode µ = M/2 if M is
even receive contributions from both the positive-frequency side and negative-frequency side. In the language
of only positive frequencies, there are the upper and lower betatron side-bands flanking each revolution
harmonic line. The lower side-band originates from negative frequency and is therefore anti-damped. For
these two modes, both the upper and lower side-bands correspond to the same coupled-bunch mode. If the
resonant frequency of the resonance leans more towards the lower sideband, there will be a growth. If the
resonant frequency leans more towards the upper side band, there will be damping. This is the Robinson’s
stability analog in the transverse phase plane. However, sometimes it is not so easy to identify which is
the lower sideband and which is the upper sideband. This is because the residual betatron tune [νβ] or
the noninteger part of the betatron tune can assume any value between 0 and 1. If [νβ] > 0.5, the upper
betatron sidenband of a harmonic will have a higher frequency than the lower betatron sideband of the next
harmonic.

There is one important difference between transverse coupled-bunch instabilities driven by the resistive-
wall impedance and by the higher-order resonant modes. The former is at very low frequency and therefore
the form factor F1 is close to 1 when the chromaticity is zero. The latter, however, is at the high frequency
of the resonances. The form factor usually assumes a much smaller value unless than bunch is very short
and we sometimes refer this to “damping” from the spread of the bunch.

This instability can be observed easily in the frequency domain at the lower betatron sidebands flanking
the harmonic lines. If a particular lower betatron sideband grows strongly, we subtract the betatron tune
νβ (not [νβ]) to find out which harmonic line it is associated with. Then from Eq. (7.5), we can determine
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which coupled-bunch mode µ it is. To damp this transverse coupled-bunch instability, one can identify the
offending resonant modes in the cavities and damp them passively using an antenna. A tune spread due to
the slip factor η or from an octupole can also contribute to the damping. When the above are not efficient
enough, a transverse bunch-to-bunch damper will be required. Unlike the situation of the resistive wall, here
the damper must be of wide-band.

8 HEAD-TAIL INSTABILITIES

Let us now consider the short-range field of the transverse impedance; i.e., Z⊥1 (ω) when ω is large.
This is equivalent to replacing the discrete line spectrum by a continuous spectrum. Since ReZ⊥(ω) is
antisymmetric, the summation in Eq. (6.13) when transformed into an integration will vanish identically at
zero chromaticity. There can only be instability when the chromaticity is nonzero. The growth rate for the
m-th azimuthal mode is therefore

1
τm

= − 1
1+m

πecIb
E0ωβω

2
0τ

2
L

∫ ∞
−∞

dω ReZ⊥1 (ω)hm(ω − ωξ) . (8.1)

Note that the factor of M , the number of bunches, in the numerator and denominator cancel. This is to
be expected because the growth mechanism is driven by the short-range wake field and the instability is
therefore a single-bunch effect. This explains why the growth rate τ−1

m does not contain the the subscript µ
describing phase relationship of consecutive bunches.

Let us demonstrate this by using only the resistive wall impedance. The resistive wall impedance of
the vacuum chamber is

Z⊥1 (ω) = [1− i sgn(ω)]
C0c

πωb3σcδskin
, (8.2)

where b is the beam-pipe radius, σc the wall conductivity, and δskin the wall skin depth. When this is
substituted into Eq. (6.13), the result of the integration over ω gives [12]

1
τm

= − 1
1+m

eIbc

4νβE

(
2

ω0τL

)1/2 ∣∣Z⊥1 (ω0)
∣∣Fm(χ) , (8.3)

where
∣∣Z⊥1 (ω0)

∣∣ is the magnitude of the resistive wall impedance at the revolution frequency. The form
factor is given by

Fm(χ) =

√
2
π

∫ ∞
0

dy
√
y

[hm(y−yξ)− hm(y+yξ)] , (8.4)

where hm are power spectra of the m-th excitation mode in Fig. 5 written as functions of y = ωτL/π and
yξ = χ/π = ξω0τL/(πη). The first term in the integrand comes from contributions by positive frequencies
while the second term by negative frequencies. The form factors for m = 0 to 5 are plotted in Fig. 23.

This single-bunch instability will occur in nearly all machines. The m = 0 mode is the rigid-bunch
mode when the whole bunch oscillates transversely as a rigid unit. For the m = 1 mode, the head of the
bunch moves transversely in one direction while the tail moves transversely in the opposite direction with
the center-of-mass stationary, and is called the dipole head-tail mode. This is the head-tail instability first
analyzed by Pellegrini and Sands [13, 14].
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Figure 23: Form factor Fm(χ) for head-tail instability for modes m = 0 to 5.

For small chromaticity ξ . 4, χ . 2.3 the integrand in Eq. (8.4) can be expanded and the growth rate
becomes proportional to chromaticity. The form factor has been computed listed in Table I, where negative
sign implies damping. We see from Table I that mode m = 0 is stable for positive chromaticity. This is
expected because the excitation spectrum for this mode has been pushed towards the positive-frequency
side. All other modes (m>0) should be unstable because their spectra see relatively more negative ReZ⊥1 .
Looking into the form factors in Fig. 23, however, the growth rate for m=4 is tiny and mode m=2 is even
stable. This can be clarified by looking closely into the excitation spectra in Fig. 5. We find that while mode
m= 0 has a large maximum at zero frequency, all the other higher even m modes also have small maxima
at zero frequency. As these even m spectra are pushed to the right, these small central maxima see more
impedance from positive frequency than negative frequency. Since these small central maxima are near zero
frequency where | ReZ⊥1 | is large, their effect may cancel out the opposite effect from the larger maxima
which interact with the impedance at much higher frequency where | ReZ⊥1 | is smaller. This anomalous
effect does not exist in the Legendre modes or the Hermite modes, because the corresponding power spectra
vanish at zero frequency when m > 0.

Although the head-tail instabilities can be damped by the incoherent spread in betatron frequency, it is
advisable to run the machine at a negative chromaticity above transition. In this case, all the higher modes
with m 6= 0 will be stable, and the unstable m = 0 mode can be damped with a damper.

Head-tail modes of oscillations can be excited shifting the chromaticity to the unstable direction and
observed using a wide-band pickup. These modes were first observed in the CERN PS Booster [15] and
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Table I: Linearized form factor of transverse head-
tail modes driven by the resistive wall impedance
when χ . 2.3.

Mode Form Factor
m Fm

0 −0.1495χ
1 +0.0600χ
2 −0.0053χ
3 +0.0191χ
4 +0.0003χ
5 +0.0098χ

depicted in Fig. 24. They have also been measured in the Fermilab Rings.

The head-tail instability comes about because of nonzero chromaticity or the betatron tune is a function
of energy spread. There is also such an analog in the longitudinal phase space, where the slip factor η is
energy-spread dependent. The longitudinal beam distribution then picks up a head-tail phase and instability
may arise [16]. In fact, longitudinal head-tail instability had been observed at the CERN SPS [17] and it
was also seen at the Fermilab Tevatron.

9 STRONG HEAD-TAIL INSTABILITY

In the growth rate formula of Eq. (6.13), we consider each individual mode separately. As the beam
intensity increases, the shift of each azimuthal mode becomes so big that two adjacent modes overlap each
other. The azimuthal mode number is no longer a good eigen-number, and we can no longer represent the
perturbation distribution ψ1 as a single azimuthal mode; instead it should be a linear combination of all
azimuthal modes. This phenomenon has been referred to as strong head-tail or transverse turbulence in
parallel with the longitudinal mode-mixing or longitudinal microwave instability studied earlier.

Let us consider transverse instability driven by a broad-band impedance. This implies a single bunch
mechanism. Also we set the chromaticity to zero. For the m-th azimuthal mode and k-th radial mode,
Eq. (6.13) or (7.1) becomes

(Ω−mωs)δmm′ δkk′ = Mmm′kk′ (9.1)

where, with the aid of Eq. (6.13), the matrix M is defined as

Mmm′kk′ = − ieIbc

2ωβE0τL

∫
dωZ⊥1 (ω)λ̃m′k′(ω)λ̃∗mk(ω)∫

dωλ̃mk(ω)λ̃∗mk(ω)
. (9.2)

The summations have been converted to integrations because the impedance is so broad-band that there is
no need to distinguish the individual betatron lines. A further simplification is to keep only the first most
easily excited radial modes. Then, the problem becomes coupling in the azimuthal modes.
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m = 0 m = 0
ξ = 0 rad ξ = 2.3 rad

m = 1 m = 2
ξ = 6.9 rad ξ = 6.9 rad

Figure 24: A single bunch in the CERN PS Booster seen on about 20 consecutive revolutions
with a wide-band pickup (bandwidth ∼ 150 MHz). Vertical axis: difference pickup signal.
Horizontal axis: time (50 ns per division). The azimuthal mode number and chromaticity
in each plot are as labeled.

Since Re Z⊥1 (ω) is odd in ω and ImZ⊥1 (ω) is even in ω, only ImZ⊥1 (ω) will contribute to the diagonal
terms of the matrixM giving only real frequency shifts which will not lead to instability. As the beam current
becomes larger, two modes will collide and merge together, resulting in two complex eigen-frequencies, one is
the complex conjugate of the other, thus introducing instability. Therefore, coupling should originate from
the off-diagonal elements closest to the diagonal. It can be easily shown that the m-th mode of excitation
λ̃m(ω) is even in ω when m is even, and odd in ω when m is odd. Thus, it is ReZ⊥1 (ω) that gives the
coupling.

The eigen-angular-frequencies are solved by

det[(Ω− ωβ −mωs)I −M ] = 0 . (9.3)
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η1 =
πeIbcW1

4E0ωβωs

Figure 25: Transverse mode frequencies (Ω−ωβ)/ωs versus the current intensity parameter
η1 for an air-bag bunch distribution perturbed by a constant wake potential W1. The
instability occurs at η1 ≈ 1.8, when the m = 0 and m = 1 modes collide. The dashed curves
are the imaginary part of the mode frequencies or growth/damping rate for the two colliding
modes.

As an example, an airbag model is perturbed by the impedance

Z⊥1 (ω) =
W1

ω + iε
= ℘

(
W1

ω

)
− iπW1δ(ω) , (9.4)

which corresponds to a constant wake function W1. The infinite matrix is truncated and the eigenvalues
solved numerically. The solution is shown in Fig. 25 [18]. This impedance corresponds to a real part that
falls off as frequency increases. The imaginary part is a δ-function at zero frequency, and therefore interacts
with the m = 0 mode only. This explains why all other modes remain almost unshifted with the exception
of m = 0. The downward frequency shift of the m = 0 mode as the beam intensity increases from zero
is a general behavior for short bunches. The transverse wake force produced by an off-axis beam has the
polarity that deflects the beam further away from the pipe axis. This force acts as a defocusing force for the
rigid beam mode, and therefore the frequency shifts downward. Such a down shift of the betatron frequency
is routinely observed in electron accelerators and serves as an important tool of probing the impedance.
Eventually the m = 0 shifts downwards and meets with the m = −1 mode, thus exciting an instability. The
threshold is at

η1 =
πeIbcW1

4E0ωβωs
≈ 1.8 , (9.5)
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and is bunch-length independent. We can also obtain an approximate threshold from Eqs. (9.1) and (9.2)
by equating the frequency shift to ωs, and get

eIbc Z
⊥
1

∣∣
eff

2E0ωβωsτL
≈ 1 , (9.6)

where

Z⊥1
∣∣
eff

=

∫
dωZ⊥1 (ω)hm(ω)∫

dωhm(ω)
(9.7)

is called the effective transverse impedance for mode m. Comparing Eqs. (9.5) and (9.6), we find the two
thresholds are almost the same except for the bunch-length dependency, which we think should be understood
as follows. Since the imaginary part of the impedance in Eq. (9.4) is a δ-function at zero frequency which
interacts only with the m = 0 mode. As the bunch length becomes shorter, the spectrum spreads out
wider, so that the spectrum at zero frequency becomes smaller. In fact, from the power spectrum and its
normalization in Eq. (6.14), it is clear that Z⊥1

∣∣
eff
∝ τ

L
, thus explaining why η1 in Eq. (9.5) is bunch-length

independent.

Now consider the situation when the impedance is a broad-band resonance. For a very short bunch, the
m = 0 mode extends to very high frequencies and will cover part of the high-frequency capacitive part of the
resonance. Thus the effective impedance Z⊥1 |eff

can become small due to the cancellation of the inductive
and capacitive parts. At the same time, the peak of Re Z⊥1 is far from the peak of the m = 1 mode, thus
making the coupling between the m = 0 and m = 1 mode very weak. Since the frequency shift is small and
the coupling is weak, it will take a much higher beam current for the m = 0 mode to meet with the m = 1
mode, thus pushing up the threshold current. For a long bunch, the m = 0 mode has a small frequency
spread. If it stays inside the inductive region where ImZ⊥1 is almost constant, Z⊥1

∣∣
eff

will be almost constant
and the threshold current increase linearly with the bunch length. When the bunch is very long, the m = ±1
and even m = ±2 and m = ±3 modes may stay inside the constant inductive region of the impedance. This
implies that the higher azimuthal modes also interact strongly with the impedance and these mode will have
large shifts so that the threshold can become much smaller. Several collisions may occur around a small
beam-current interval and the bunch can become very unstable suddenly.

The transverse mode-coupling instability was first observed at PETRA and later also at PEP and LEP.
The strong head-tail instability is one of the cleanest instabilities to observe in electron storage rings [19].
In particular, one may measure the threshold beam intensity when the beam becomes unstable transversely.
Another approach is to measure the betatron frequency as the beam intensity is varied. From the shift of the
betatron frequency per unit intensity increase, the transverse wake can be inferred. The transverse motion
of the bunch across its length can also be observed easily using a streak camera.

In the longitudinal mode-mixing instability, the bunch lengthens as the beam becomes unstable es-
sentially without losing beam particles. This does not happen in the transverse case. The instability is
devastating; as soon as the threshold is reached, the bunch disappears. However, so far no strong head-tail
instabilities have ever been observed in hadron machines.

Radiation damping is too slow to damp the strong head-tail instability. A damper significantly faster
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than ωs is required. As shown in Fig. 25, it is mode m = 0 that is shifted downward to collide with mode
m = −1 so as to start the instability. But mode m = 0 is the pure rigid dipole betatron oscillation with
synchrotron motion. Therefore if we can introduce a positive coherent betatron tune shift, it will slow this
mode from coming down and therefore push the threshold to a higher value. A conventional feedback system
is resistive; i.e., the kicker is located at an odd multiple of 90◦ from the pickup. Here, a reactive feedback
system is preferred [20]. The kicker is located at an even multiple of 90◦ from the pickup. In a two-particle
model, where the bunch is represented by two macroparticles, the equations of motion are, in the first half
of the synchrotron period,

d2y1

dn2
+ (2πνβ)2y1 = σ(y1 + y2) ,

d2y2

dn2
+ (2πνβ)2y2 = σ(y1 + y2) + αy1 , (9.8)

where y1 and y2 are, respectively, the transverse displacements of the head and tail macroparticles, σ is the
gain of the reactive feed back, and α represents the effect of the transverse wake from head to tail. Notice
that the reactive feedback acts on the center of the bunch and is in phase with the particle displacements.
It therefore modifies νβ by introducing a tuneshift. The instability threshold can then be raised by properly
choosing the feedback strength σ. In low-energy hadron machines, the space-charge tune shift constitutes a
natural reactive feedback system which tends to shift the m = 0 mode upwards.

This instability can also be damped by BNS damping [21], which delivers a betatron tune spread from
the head of the bunch to the tail. This can be achieved by tilting the longitudinal phase space distribution
of the bunch so that the tail has a lower energy relative to the head through chromaticity. Another method
to implement BNS damping is to introduce a radio-frequency quadrupole magnet system, so that particle
along the bunch will see a graduate shift in betatron tune.
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