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We present results of a search for a neutral, six-quark, dibaryon state called the H0, a state
predicted to exist in several theoretical models. Observation of such a state would signal the dis-
covery of a new form of hadronic matter. Analyzing data collected by experiment E799-II, using
the KTeV detector at Fermilab, we searched for the decay H0

! �p�� and found no candidate
events. We exclude the region of lightly bound mass states just below the �� mass threshold,
2:194 GeV=c2 < MH < 2:231 GeV=c2, with lifetimes from �5� 10�10 sec to �1� 10�3 sec.

PACS numbers: 14.20.Pt, 13.85.Rm, 13.75.Ev, 21.80.+a, 12.39.Ba
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In 1977, Ja�e [1] proposed the existence of a metastable
dibaryon, the H0(hexa-quark), a bound six-quark state
(B = 2, S = �2), described as H0 = juuddssi. If it
exists, this hadron would be a new form of matter. The
observation of a bound dibaryon would enhance the un-
derstanding of strong interactions and would aid in the
search for additional exotic-multiquark states [2].
The two-
avor six-quark state is unbound [3], a re-

sult of the Pauli exclusion principle. The Pauli exclusion
principle can be circumvented through the addition of
strangeness as an extra degree of freedom. Ja�e esti-
mated that the color-hyper�ne interaction between the
six quarks of a juuddssi state would be strong enough to
cause the H0 to be a bound state. Di�erent theoretical
models have produced a multitude of predictions forMH ,
covering a broad mass range from deeply bound states to
unbound states [4]. Most of the predictions, however, are
clustered in the range of 2.1 GeV=c2 up to a few MeV=c2

above the M�� threshold of 2.231 GeV=c2. If MH is be-
tween theM�n (2.055 GeV=c

2) andM�� thresholds, it is
expected to be a metastable state and undergo a �S = 1
weak decay. Its lifetime is estimated to be less than
�2 � 10�7 sec [5], while baryonic �S = 1 weak decays
suggest a lower limit on the lifetime of �1� 10�10 sec.
Using a variety of techniques, experimentalists have

been trying for years to detect the H0, without con-
clusive results [6]. In recent years, production models
based on empirical data with few assumptions built into
them have allowed experimentalists to gauge the sensi-
tivity of their results. In particular, the combined results
from three recent experiments [6{8] rule out the mass
range for �S = 1 transitions below 2.21 GeV=c2. The
analysis presented here covers the mass range of lightly
bound H0's between the M�p�� and M�� thresholds,
2.194 GeV=c2and 2.231 GeV=c2, respectively. In addi-
tion, this search is sensitive to a large range of lifetimes,
from �5� 10�10 sec to �1� 10�3 sec, completely cover-
ing the range of lifetimes proposed in reference [5] yet to
be probed.
It is expected that an H0 can be produced in pN col-

lisions through hyperon production; where two strange
quarks are produced, followed by the coalescence of a
hyperon and a baryon to form a bound six-quark state.
Currently, the only model for H0 production at Teva-
tron beam energies is one proposed by Rotondo [9]. His
model is based on production of the doubly strange �0,
followed by the coalescence of the �0 with a n, predicting
a total cross-section of 1.2 �b. Our search for the H0 is
the �rst search to normalize to the doubly strange �0,
removing the strangeness production portion from the
H0 production process, making this analysis a sensitive
probe of hypernuclear coalescence. The H0 production
process at the Tevatron, through pN collisions, comple-
ments other current experimental e�orts that search for
H0's produced in heavy ion collisions.
The KTeV beam line and detector at Fermilab were

designed for high precision studies of direct CP violation
in the neutral kaon system (E832) and in rare KL decays
(E799-II). To reduce backgrounds from long lived neu-
tral states, the apparatus was situated far from the pro-
duction target. A clean neutral beam, powerful particle
identi�cation, and very good resolution for both charged
particles and photons made it a good facility to search for
and fully reconstruct both the signal mode, H0 ! �p��,
and the normalization mode, �0 ! ��0D, where �

0
D refers

to the Dalitz decay of the �0 to e+e�
. For both modes,
the �'s decay downstream of the parent particle's vertex
to a p��. The data presented here were collected during
two months of E799-II data-taking in 1997.
The KTeV detector and the trigger con�guration used

to select events with four charged particles have been de-
scribed elsewhere [10]. This article highlights aspects of
the detector directly relevant to this analysis. A neu-
tral beam, composed primarily of kaons and neutrons
was produced by focusing an 800 GeV/c proton beam at
a vertical angle of 4.8 mrad on a 1.1 interaction length
(30 cm) BeO target. Photons produced in the target
were converted in a 7.6 cm lead absorber located down-
stream of the target. Charged particles were removed
further downstream with magnetic sweeping. Collima-
tors, followed by sweeping magnets, de�ned two 0.25 �sr
neutral beams that entered the KTeV apparatus (Fig. 1)
94 m downstream from the target. The 65 m vacuum
(�10�6 Torr) decay region extended to the �rst drift
chamber.
The momenta of the charged particles were measured

with a charged particle spectrometer, consisting of four
planar drift chambers, two upstream and two down-
stream of a dipole analyzing magnet. The energies of
the particles were measured with a high resolution CsI
electromagnetic calorimeter. To distinguish electrons
from hadrons, the energy (E) measured by the calorime-
ter was compared to the momentum (p) measured by
the charged spectrometer. Electrons were identi�ed by
0:9 < E=p < 1:1, while pions and protons were identi�ed
by E=p < 0:9.
O�ine, events were required to have four reconstructed

charged particles. We searched for long lived H0's which
were produced at the target and decayed in the vacuum
decay region. A characteristic feature of the topology of
both the signal and normalization modes is that the par-
ent particle's true decay vertex is de�ned by a charged
track vertex; the p�� vertex for theH0 and the e+e� ver-
tex for the �0. The subsequent �'s decay downstream of
the parent particle's vertex to p��. Events were required
to have at least four reconstructed tracks, two tracks as-
sociated with positive particles and two with negative
particles. In the case of the H0, having identi�ed the p
and the �� by their E=p and their charge, there remains
a two-fold ambiguity in combining the p's with the ��'s
to form a vertex. To resolve that ambiguity, each pair of
positive and negative tracks was combined to form a ver-
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tex at the location of closest approach between the two
tracks. The distance of closest approach (DOCA) and
the resultant momentum vector of the combined charged
tracks for both the upstream p�� vertex and the down-
stream � vertex were calculated. The H0 vertex was
determined by calculating the DOCA of the downstream
� and the upstream p��. The DOCA's of the upstream,
downstream andH0 vertices were summed in quadrature,
and the permutation that gave the minimum quadrature
sum was selected.
Downstream �'s were identi�ed by requiring the ratio

of the lab momenta of the p to �� to be greater than
3, which accepted 99.8% of the simulated signal events.
Because the � decays to two particles, the transverse
momentum (PT ) distribution of the decay products rel-
ative to the direction of the � exhibits a Jacobian peak
at a maximum of 0.1 GeV/c. To enhance the selection of
� decays relative to background three body KL decays,
where the PT distribution is peaked at 0, we required
the PT of the p and the �� to be between 0.07 GeV/c
and 0.11 GeV/c, accepting �60% of the simulated signal
events. To select �'s further, we required the mass of
the reconstructed p�� to fall within �5 MeV=c2 of M�,
where the M� resolution is �1 MeV=c2. The charged
portion of the upstream vertex is made up of a p and ��

and has kinematics similar to a � decay. Thus, the same
constraint used for the � was applied, requiring the ratio
of the lab momenta of the p to �� to be greater than 3.
Interactions in the collimator, sweeping magnets, and

vacuum window produced background events with mul-
tiple vertices. Events where at least one decaying par-
ticle was short-lived were removed by requiring the re-
constructed H0 and � vertices to be between 100 m and
155 m from the target, �5 m away from those apparatus
elements.
The signal region for H0 candidates was de�ned

by requiring MH to be between 2.190 GeV=c2 and
2.235 GeV=c2 to account for resolution e�ects in measur-
ingMH ; the upper and lower limits onMH are 4 MeV=c2

(more than twice our estimatedMH resolution) above the
M�� threshold of 2.231 GeV=c2 and below the M�p��

threshold of 2.194 GeV=c2, respectively. In addition, the
transverse momentum of the reconstructedH0 (PT (H

0)),
measured relative to a vector connecting the H0 de-
cay vertex and the target was required to be less than
0.015 GeV/c (see Fig. 2). The cut on PT (H

0) accepted
90% of the remaining simulated signal events. None of
the events passed all the selection criteria.
To quantify the measurement sensitivity, we normal-

ized to �0 production, using data taken with the same
trigger con�guration as that for the H0 analysis, recon-
structing �0 ! ��0D decays. Except for the additional
photon coming from the �0D, the normalization mode's
decay topology is similar to that of the H0's. Applying
a series of cuts similar to those used for the H0 analysis
yields 17 160 �0 events, with negligible background. The

cleanliness of the normalization mode's signal is demon-
strated in Fig. 3 which shows the �0 invariant mass peak.
The accepted �0's have mean momentum of 270 GeV/c.
Distributions of variables from simulated decays, such as
the �0's momentum and the location of the �0's decay
vertex are consistant with the same for data.
The �0 and H0 are expected to have di�erent absorp-

tion lengths in the BeO target and the Pb absorber, lead-
ing to a di�erence in the transmission probability (T ) for
the two particles. We estimate the �0-nucleon (��N ) and
H0-nucleon (�HN ) cross-sections and thus the T 's based
on the assumption of isospin invariance. In addition, we
utilize measured np, �p and deuteron-proton (dp) cross-
sections [11], 40 mb, 35 mb and 75 mb, respectively, to ac-
count for the e�ect of replacing down quarks with strange
quarks; we assume that the scale factor S = ��p=�np can
be used to correct for the substitution of a single strange
quark for a down quark and S2 for a double substitu-
tion. We then estimate ��N to be ��pS = (31 � 4) mb
and �HN to be �dpS

2 = (57�18) mb, where the assigned
errors are taken to be equal to the magnitude of the cor-
rection itself. The measured absorption lengths for nu-
cleons in BeO and Pb are scaled by the factors �np=�HN
and �np=��N . The estimated T 's in the target are
TBe0� = 0:623�0:037 and TBe0H = 0:44�0:12. In the lead
absorber, the T 's are estimated to be TPb� = 0:562�0:043
and TPbH = 0:35� 0:14.
As no signal events passed all the selection criteria,

the �nal result is presented as a 90% C.L. upper limit on
the inclusive H0 production cross-section over the solid
angle de�ned by the collimators, expressed in terms of
the inclusive �0 production cross-section

d�H
d


<
�

N�

TBe0� TPb�

TBe0H TPbH

A�

AH

B(�0 ! ��0D)

B(H0 ! �p��)

d��
d


; (1)

where � is the factor which multiplies the single event
sensitivity (SES) to give the 90% C.L. upper limit, N�

is the number of reconstructed �0 ! ��0D decays, the
various T factors are the transmission probabilities de-
scribed previously, A� and AH are the acceptances for
�0 and H0 decays, respectively, and B(�0 ! ��0D) and
B(H0 ! �p��) are the respective branching ratios. Our
estimate of the SES su�ers from a large relative uncer-
tainty of �50%, predominantly due to the uncertainty in
determining the transmission factors. The uncertainty in
the SES gives rise to a factor of � = 3:06 in the determi-
nation of the 90% C.L. upper limit [12].
The acceptances were determined from a detailed de-

tector simulation. Because the trigger was the same for
both the signal and normalization modes and because
both the signal and normalization modes consist of four-
track events with largely similar topologies, trigger and
acceptance ine�ciencies mostly cancel. The �0 
ux was
measured using two separate triggers, each composed of
di�erent trigger elements. The discrepancy between the
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two 
ux measurements was converted into a systematic
uncertainty in determining A�. Other systematic uncer-
tainties were negligible relative to this uncertainty. A�

was determined to be (6:93� 0:94)� 10�6.
To determine AH , the detector simulation included

the H0 production spectrum proposed in Rotondo's phe-
nomenological model [9]. The dominant experimental
uncertainty in AH comes from the simulation of pro-
ton showers in the calorimeter, where the relative un-
certainty was determined to be 5.3%. For example, tak-
ing MH in the middle of the mass range we are sensitive
to, MH = 2:21 GeV=c2, and the lifetime correspond-
ing to the lifetime given in reference [5] for this mass,
�H = 5:28 � 10�9 sec, AH = 5:64 � 10�3. As a cross-
check of Rotondo's model, which incorporates a �0 pro-
duction spectrum, we applied our measured �0 produc-
tion spectrum in the detector simulation, replacing M�

and �� with MH and �H , respectively. This lowered AH
by �15%. The 90% C.L. upper limit on the product of
the H0 branching ratio and the production cross-section,
taking into account all the uncertainties, is

B(H0 ! �p��)
d�H
d


< 5:87� 10�9
d��
d


: (2)

In Fig. 4, we plot the 90% C.L. upper limit on the ratio
(B(H0 ! �p��)d�H=d
)=(d��=d
), studying the e�ect
on AH of varying �H over a large range of values. For
short lifetimes, the H0's decay before reaching the decay
region, while for long lived states, only a few decay while
passing through the detector. Both e�ects lower our sen-
sitivity to H0 decays. Varying MH across the full range
of masses to which we are sensitive leads to a relative
shift of approximately �60% from the central value of
the curve plotted in Fig. 4. Included in the �gure is a
line at ��=2 = 1:316� 10�10 sec, the expected lifetime of
system made up of two lightly bound �'s, which might be
a lower bound on �H . To interpret the sensitivity of this
result relative to the theoretical production model, we
integrate the theoretical predictions for both d�H=d
 [9]
and d��=d
 [13] over the solid angle covered by the col-
limators. The right ordinate axis of Fig. 4 shows the
sensitivity of this measurement. Thus our result rules
out lightly bound H0's, between the M�p�� and M��

thresholds of 2.194 GeV=c2 and 2.231 GeV=c2, respec-
tively, over a large range of lifetimes, from �5�10�10 sec
up to �1� 10�3 sec.
A model proposed in reference [5] associates MH with

both �H and B(H0 ! �p��). For example, for MH =
2:21 GeV=c2 they predict �H = 5:28 � 10�9 sec and a
branching ratio of 5:4 � 10�2. To test this model, we
vary MH between the M�p�� and M�� thresholds, de-
termining the dependence of the production cross-section
on the mass, lifetime and branching ratio. Figure 5 is a
plot of (d�H=d
)=(d��=d
) versus MH . In this �gure,
the factor in
uencing the sensitivity the most is the H0

branching ratio which decreases from a maximum of 14%

at theM�� threshold down to zero at theM�p�� thresh-
old. The right ordinate axis of Fig. 5 shows the sensitivity
of this measurement, based on Rotondo's model. Assum-
ing Rotondo's production model, this result clearly rules
out a long lived H0 state, as proposed in reference [5],
for MH between the M�p�� and M�� thresholds.
To conclude, our result rules out a lightly bound H0

dibaryon over a range of mass below the M�� thresh-
old not ruled out by previous experiments and for a wide
range of lifetimes, placing stringent limits on the H0 pro-
duction process. This result, in conjunction with the re-
sult from experiment BNL E888 [8], completely rules out
the model proposed in reference [5] for all �S = 1 tran-
sitions.
We thank D. Ashery, F.S. Rotondo and A. Schwartz

for their insightful comments. We gratefully acknowl-
edge the support and e�ort of the Fermilab sta� and the
technical sta�s of the participating institutions for their
vital contributions. This work was supported in part by
the U.S. Department of Energy, The National Science
Foundation and The Ministry of Education and Science
of Japan.

[1] R.L. Ja�e, Phys. Rev. Lett. 38, 195 (1977).
[2] H.J. Lipkin, Phys. Lett. B 195, 484 (1987); C. Gignoux

et al., Phys. Lett. B 193, 323 (1987); J. Leandri et al.,
Phys. Rev. D 51, 3628 (1995).

[3] H.J. Lipkin, Phys. Lett. B 198, 131 (1987).
[4] B. Quinn et al., in Proceedings of Baryons'92: Interna-

tional Conference on the Structure of Baryons and Re-

lated Mesons, New Haven, Connecticut, 1992, edited by
M. Gai, (World Scienti�c, River Edge, New Jersey, 1993),
p. 278. For a comprehensive listing of current theoretical
predictions see R.W. Stotzer, Ph.D. dissertation, Univer-
sity of New Mexico, 1997 (unpublished).

[5] J.F. Donoghue, E. Golowich, and B.R. Holstein, Phys.
Rev. D 34, 3434 (1986).

[6] D. Ashery, in Proceedings of Hadron Spectroscopy: Sev-

enth International Conference, Upton, New York, 1997,
edited by S.U. Chung and H.J. Willutzki (Amer. Inst.
Phys., Woodbury, New York, 1998), p. 293.

[7] J.K. Ahn et al., Phys. Lett. B 378, 53 (1996);
R.W. Stotzer et al., Phys. Rev. Lett. 78, 3646 (1997).

[8] J. Belz et al., Phys. Rev. Lett. 76, 3277 (1996). Adden-
dum in J. Belz et al., Phys. Rev. C 56, 1164 (1997).

[9] F.S. Rotondo, Phys. Rev. D 47, 3871 (1993).
[10] J. Adams et al., Phys. Rev. Lett. 80, 4123 (1998).
[11] Particle Data Group, C. Caso et al., Eur. Phys. J. C 3,

1 (1998).
[12] R.D. Cousins and V.L. Highland, Nucl. Instrum. and

Meth. A 320, 331 (1992).
[13] L.G. Pondrom, Phys. Rep. 122, 57 (1985).

4



20 cm

100 120 140 160 180
Distance from Target (m)

Trigger
Hodoscopes

2 KL beams

TRD

Vacuum Decay Region

Vacuum Window

Analysis Magnet

Drift
Chambers

Muon
Counters

Muon
Filter

Hadron Veto
with Lead Wall

CsI
Photon Veto Detectors

FIG. 1. Plan view of the KTeV spectrometer.
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