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Edgeworth Series for Collision Energy Loss and

Multiple Scattering

A. Van Ginneken ∗

Fermi National Accelerator Laboratory†

P. O. Box 500, Batavia, IL 60510

February 11, 1999

Abstract

The Edgeworth expansion is used to go beyond the usual Gaussian
approximation for collision energy loss and multiple scattering. Monte
Carlo algorithms based on the expansion are presented. Comparisons
of the Edgeworth expansion with exact results of Vavilov and Moliere
are shown. A simple model which attempts to include correlations be-
tween energy loss and angular distribution is proposed and illustrated
with an example.

1 Introduction

This note investigates the Edgeworth expansion of the Gaussian approxi-
mation for collision energy loss and multiple scattering of charged particles
along with their implementation into Monte Carlo subroutines. The main
motivation is the demand for realistic simulations of muon ionization cool-
ing [1]. This note therefore deals with muon projectiles although practi-
cally all of it readily translates to other charged particles. In an ionization
cooling channel a muon beam cools by repeatedly traversing absorbers and
re-accelerating cavities with net loss of transverse momentum. The muons
also undergo multiple scattering in the absorbers which heats the beam. In
the entire process a muon can lose and regain many times its original energy
making the need for realistic simulations obvious. Particular attention must
∗Tel.: +1 (630) 840 3464; e-mail: vangin@fnal.gov
†Fermi National Accelerator Laboratory is operated by Universities Research Associa-

tion under contract No. DE-AC02-76CH03000 with the US Department of Energy.
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be paid to the tails of both energy loss and angular distributions. Muons
which undergo a large deflection or energy loss have a high probability of
being lost from the beam. Another concern is that of correlations between
energy loss and angle which may have similar undesirable consequences.
Such correlations are introduced when muons interact with atomic electrons
which get ejected from the atom, a process that accounts for a significant
portion of the muon’s total energy loss and is approximated as free µe− scat-
tering in which energy loss and scattering angle are fully correlated. Since
the mean square angle for scattering off all atomic electrons is proportional
to Z while for scattering off the nucleus it goes as Z2, one expects the over-
all correlation with energy loss to be stronger for low-Z materials. Because
of smaller multiple scattering angles, low-Z materials are also more effec-
tive for ionization cooling, which makes the correlations more worrisome in
this application. By contrast, excitation of the atom—where an electron is
promoted to a higher orbit—results in atomic recoil which takes relatively
little of the energy lost by the muon and thus introduces very little corre-
lation. Below, a simple model is proposed which separates these processes
and which exploits the newly minted algorithms based on the Edgeworth
series.

For thick enough targets both energy loss and (projected) multiple scat-
tering distributions are well represented by a Gaussian. However, such thick-
nesses are too large to serve as a typical step in a Monte Carlo—particularly
for ionization cooling. When a cut-off energy or angle is introduced—which
leaves events with large angle scattering and energy loss to be treated indi-
vidually [2]—the Gaussian approximation gains in validity when it is used
to represent, collectively, all events below such a threshold. The number of
events to be simulated individually increases inversely with the restriction
threshold adopted. The strategy for energy loss in [3], e.g., is to simulate
some 10 individual events per step and add a random Gaussian energy loss
to account for the rest. This is no doubt fine for many applications but
should probably be refined for ionization cooling—particularly in the tails.
The gist of the present method is to replace the Gaussian with the Edge-
worth expansion [4] which is capable of representing the non-Gaussian tails
quite accurately. Most importantly, the Edgeworth series provides a frame-
work which allows new or improved physical models to be easily translated
into algorithms. The coefficients of the series relate directly to the moments
of the single scattering or energy loss law. A new or refined model will pro-
duce more accurate estimates of the moments which then produces a more
accurate algorithm. For thinner targets the deviations from a Gaussian are
larger and higher order terms of the series become more important.
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In sec. 2 what is needed about the Edgeworth expansion and how it re-
lates to the present problem is briefly stated. A simple model is proposed in
sec. 3 which aims at providing a first order approximation to study correla-
tions between energy loss and angle after traversing a target. Implementa-
tion of this model and of the Edgeworth series into Monte Carlo algorithms
is indicated in sec. 4. Sec. 5 contains a few results obtained with this method
including comparisons with analytic results of Vavilov and Molière. Con-
cluding remarks are in sec. 6. In some ways, this note is a continuation
of [2].

2 Edgeworth Expansion

The Edgeworth series is a well known method [4] to introduce corrections
to a Gaussian distribution, G(x),

F (x) = G(x) [ 1
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where the Hi are Hermite polynomials and κi are the cumulants of distri-
bution F (x). Note that the denominators appear exclusively as powers of
κ2(= σ2), the variance of F (x). The terms on each line of eq.(1) are of the
same order of approximation, where order here can be equated with inverse
power of κ1/2 with, e.g, the last line written out in (1) being of third order.
It is important when either continuing or abbreviating eq.(1) to do so by one
or more full orders [4, 5]. The number of terms grows linearly with order.
Likewise the Hi(x) grow in number of terms with i and the coefficients of
the xn belonging to each Hi(x) grow quickly in magnitude with i. These
combined growth processes limit the order to which one may reasonably
aspire, even with the aid of a computer. For both energy loss and multiple
scattering the κi are relatively easily obtained—an obvious necessity for the
method to succeed. The Landau-Vavilov [6, 7] derivation of the energy loss
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distribution starts from the differential equation:

∂F (t,∆E)
∂t

=
∫ (∆E,εc)min

0
ω(ε)F (t,∆E − ε) dε− F (t,∆E)

∫ εc

0
ω(ε) dε (2)

where ∆E = E0 −E is the energy loss over pathlength t of a particle, ω(ε)
is the probability to lose energy, ε, per unit length in an infinitesimally thin
target, and εc is either the maximum energy loss in a single collision, εmax,
or it may represent a restriction threshold above which collisions are to be
simulated as individual events. From eq.(2) Vavilov [7] obtains the Laplace
transform of F (t,∆E)

ρ(t, p) = e−t
∫ εc

0
ω(ε)(1−e−εp) dε. (3)

Alas, for the ω(ε) of interest here, the inverse transform of ρ(t, p) is not so
simple.

Recall that, in probability language, the Laplace transform, ρ(t, p), is
the moment generating function of F (t,∆) and that ln ρ(t, p) is its cumulant
generating function which, in the present case, may be expressed as

ln ρ(t, p) = −t
∫ εc

0
ω(ε)

(
1− e−εp

)
dε = κ1p− κ2

p2

2!
+ κ3

p3

3!
− . . . . (4)

Expanding the exponential under the integral sign of eq.(4) permits the
identifications

κi = t
∫ εc

0
εiω(ε) dε, (5)

i.e., for all i the cumulants are essentially the moments of ω(ε). Note that
no special restrictions are placed on ω(ε). For the present purpose the ω(ε)
of most interest is Bhabha’s formula describing J = 1/2 particles scattering
off electrons [8]

ω(ε) =
ξ

ε2

[
1− β2 ε

εmax
+

ε2

2E2
0

]
(6)

where ξ = 2πNAvZr
2
eme/(Aβ2) and NAv denotes Avogadro’s number, me

the electron mass, re its classical radius, Z and A the charge and mass
number of the atom, and β the velocity in units of the speed of light. In
eq.(6) ω(ε) expresses the energy loss distribution for an infinitesimal target
per unit ‘length’ expressed as unit mass per unit area. For J = 0 particles
(instead of muons) scattering off electrons the last term in the bracket of
eq.(6) is absent. In the Landau approximation the middle term is also
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absent. For all of these, the integrals of eq.(5) are easily carried out and
result in simple algebraic expressions.

For multiple scattering, a differential equation quite similar to eq.(2)
may be written with ε replaced by the projected scattering angle

∂S(t, θx)
∂t

=
∫ ∞
−∞

v(θ′x)S(t, θx − θ′x) dθ′x − S(t, θx)
∫ ∞
−∞

v(θ′x) dθ′x (7)

where v(θx) is the probability of scattering through projected angle θx per
unit length in an infinitesimally thin target. Eq.(7) is independent of θy
which has a distribution obeying the same equation. Since θx ranges over
negative as well as positive values one would proceed with the Fourier trans-
form of eq.(7), rather than the Laplace transform as done for eq.(2). An ex-
pression similar to eq.(3) is obtained which, in probability language, may be
identified as the characteristic function of S(t, θx). Its logarithm is likewise
called a cumulant generating function, related to but different from eq.(4),
which also leads to the same type of expression for the cumulants

κ′i = t

∫ ∞
−∞

θixv(θx) dθx. (8)

Again v(θx) has no special restriction placed on it and v(θx) could vanish
beyond some cut-off angle, either dictated by physical condiderations such
as finite nuclear size [9] or self-imposed to improve the approximation. At-
tention here is confined to Rutherford scattering and its variants. Since
v(θx) is symmetric about zero the κ′i vanish for odd i and many of the terms
of eq.(1) along with it. This improves convergence and allows, with an effort
comparable to the energy loss case, to pursue higher orders of approxima-
tions.

The Edgeworth series offers considerable convenience for simulations. A
different physical model means only that a new set of κi must be calculated
but eq.(1)—and the Monte Carlo algorithm—remain the same otherwise.

3 Physical Model

A physical model is proposed here which separates events with electron recoil
from those with atomic recoil in order to study correlations between energy
loss and angle in ionization cooling.

3.1 Energy Loss

For muons colliding with free electrons the scattering law is eq.(6). When ε is
large compared with the mean ionization potential, εi, eq.(6) can be expected
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to hold even when the target electron is bound to an atom. When ε � εi
the muon can only excite—not ionize—the atom and one expects a different
law to govern such events. The model here makes the simplest possible
assumption, viz., collisions with energy transfers below εi result in atomic
recoil. The recoil is neglected and the momentum transfer to the muon—
or its angle of deflection—is uncorrelated with energy loss and treated as
part of the nuclear scattering. Energy transfers above εi are assumed to
take place with free electrons with full correlation between energy loss and
angular deflection.

It remains to decide which energy loss law to adopt below εi. One could
ignore εi and assume eq.(6) to apply down to some εmin which is specified
by the condition ∫ εc

εmin

εω(ε) dε =
dErestr
dx

. (9)

This is equivalent to Vavilov’s approach (with a restriction threshold [2]).
However, εmin thus obtained is very small compared with typical separations
between energy levels available to the electron—yet the ε−2 law predicts the
largest number of collisions near εmin. Perhaps the next simplest assumption
is

ω<(ε) =
ξεi
ε3

(10)

which guarantees a higher εmin while leaving ω(ε) approximately continuous
at εi. The condition equivalent to eq.(9) now demands that∫ εi

εmin

εω<(ε) dε+
∫ εc

εi

εω>(ε) dε =
dErestr
dx

. (11)

where ω>(ε) is the same as ω(ε) of eq.(6). The second term of eq.(11) yields∫ εc

εi

εω>(ε) dε = ξ

[
ln(

εc
εi

)− β2 εc − εi
εmax

+
ε2c − ε2i

4E2
0

]
(12)

which may be compared with the Bethe-Bloch formula for restricted energy
loss [10]

dErestr
dx

= ξ

[
ln(

2meβ
2γ2εc
ε2i

)− β2(1 +
εc
εmax

)− δ
]

(13)

where γ is the muon energy in units of its mass, and δ is the density effect
correction [11]. Subtracting eq.(12) from eq.(13):∫ εi

εmin

εω<(ε) dε = ξ

(
εi
εmin

− 1
)

= ξ

[
ln(

2meβ
2γ2

εi
)− β2(1 +

εi
εmax

)− δ
]
(14)
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from which one determines εmin [12]. The εmin here are of order εi/10, with
a weak A-dependence, which physically appears more reasonable.

In summary, there are two energy loss regimes in this model: (i) εmin <
ε < εi where the energy loss law is given by eq.(10). The entire atom is
assumed to recoil which has negligible energy associated with it. Angular
deflection of the muons associated with these events is considered as part
of the multiple scattering off nuclei. (ii) ε > εi where the basic loss law
is eq.(6) and two body µe− kinematics is assumed. Angular deflection is
correlated with energy loss. In the simulations this region is further divided
into (εi < ε < εc), treated collectively, and (εc < ε < εmax) treated as
individual events.

3.2 Angular Distribution

The angular distribution of a charged particle-nucleus encounter, stated per
unit length in terms of projected angle, θx, is assumed to be [9, 13]

v(θx) =
π

2
NAv

A

(
2Ze2

pβ

)2
1(

θ2
x + θ2

0

) 3
2

=
K(

θ2
x + θ2

0

) 3
2

(15)

where p is the muon momentum, e is the electron charge, and θ0 is an angle
associated with screening of the nuclear charge by atomic electrons. Finite
nuclear size and limited binding energy of the constituent nucleons suppress
large angle scattering. This is modeled by applying a nuclear form factor to
eq.(15).

The angles associated with electron encounters in the low energy transfer
region (ε < εi) are included in the nuclear scattering. The standard treat-
ment includes the electrons by replacing Z2 by Z(Z + 1) in eq.(15). Since
the ε < εi regime is only part ot the total µe cross section, Z2 is replaced
here by Z(Z + k) where k = σ(ε < εi)/σtot < 1. Put differently, the regime
ε > εi, which is treated separately, must be excluded to avoid double count-
ing. In most cases here k will actually be very close to unity. For both
nuclear and low energy transfer electron scattering a restriction threshold,
θc, is introduced for reasons entirely similar to those motivating εc, viz., to
provide a better approximation below θc at the expense of treating some
events with θ > θc individually.

For the regime εi < ε < εc, which assumes free µe scattering, the 4-
momentum transfer to the muon equals that to the target electron:

q2 = −2meTe = (E0 − E)2 − (~p0 − ~p)2 '
−m2

µT
2
e

p2
0

− p2
0θ

2
µ (16)
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where Te is the kinetic energy acquired by the electron, which—in two body
kinematics—equals the muon’s energy loss, and θµ is the (polar) angle of the
muon. The quadratic term in Te in the last part of eq.(16) may be neglected:
only when Te approaches εmax ' 2mep

2
0/m

2
µ does it become comparable to

2meTe but this concerns, only a small portion of all events and the restriction
threshold, εc, is typically set well below εmax. Summing over all collisions
in a target ∑

θ2
µ =

2me
∑
Te

p2
0 − 2E0

∑
Te

(17)

where
∑
Te corresponds to the total energy loss (obtained—collectively

for many events—via the Edgeworth approximation). The denominator of
eq.(17) approximates the average of p2 when a µ starts at p0 and loses

∑
Te

in energy. Eq.(17) is assumed to specify a Gaussian in projected angle with
σ2 =

∑
θ2
µ/2. The Gaussian assumption is somewhat questionable, espe-

cially if εc is set high. Since µe scattering is assumed free in this regime
there is a minimum angle, associated with the minimum energy transfer εi,
for each event: θµ =

√
2meεi/p. This is of order of—but slightly larger

than—the screening angle for nuclear scattering. This may help to establish
the validity of the model at energy transfers near εi, where the assump-
tion of free µe scattering becomes doubtful, since some screening applies to
scattering off electrons as well.

Events with εc < ε < εmax are simulated individually using eq.(6) di-
rectly to find ε and two-body kinematics to determine the angle. Since both
µ end e− are assumed point-like, the maximum energy transfer follows en-
tirely from kinematics. Because of the light electron mass individual angles
are relatively small.

3.3 Restriction Thresholds

Choosing the restriction thresholds, εc and θc, involves a compromise be-
tween how many events need to be simulated individually (as few as possible:
high threshold) and how well the Edgeworth approximation holds (better at
low threshold).

The choice is most important for energy loss where the Gaussian distri-
bution is known to be less reliable. When εc � εmax the number of collisions
above εc is roughly

n> = ξt

∫ εmax

εc
ε−2 dε ' ξt/εc (18)
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or εc ' ξt/n>. For fixed n> note that εc ∝ t. For the Gaussian approx-
imation to hold εc should preferably be less than σ so that the Gaussian
dominates the single scattering. For εc � εmax, this means

σ2 = t
∫ εc

0
ε2ω(ε) dε ' ξtεc. (19)

Setting σ = εc in eq.(19) gives εc = ξt which corresponds to eq.(18) with
n> = 1. Therefore, at this very approximate level, the εc for which the
Gaussian holds is the same as the εc chosen such that only a few individual
simulations are required. As will be seen in sec. 5, even for quite small εc
the Gaussian fit is very approximate indeed and the Edgeworth series to
higher order is needed to correct major discrepancies. As a practical matter
one chooses εc as a fraction of ξt and, with εc ' ξt/n>, one may equate the
denominator roughly with the number of events above εc.

For the angular distributions, the average number of individual events,
in a target of thickness t, is determined by integrating eq.(15) above θc:
n> ' Kt/(2θ2

c). In practical situations one defines θc as a fraction of
√
Kt—

similar to what is done for εc. The denominator is then also related to n>.
If n> is of order unity, then θ2

c ' Kt/2 while σ2 ' Kt[ln (2θc/θ0)− 1], from
eq.(15), will typically be considerably larger which is why the Gaussian
works somewhat better for multiple scattering.

4 Monte Carlo Implementation

Monte Carlo implementation of the model is along familiar lines. Selection
from an Edgeworth series can be done quite efficiently. Eq.(1) has negative
as well positive terms. In some places, usually far out in the tails, it may well
predict ‘negative probabilities’. These do not pose a problem here. Eq.(1)
may be rewritten as

F (x) =
∑

cix
ie−

x2

2 , (20)

i.e., a sum over distributions of χ2 type, by collecting same-order terms from
among the Hermite polynomials. In eq.(20) x represents a standardized
variable: x = (∆E − ∆E)/σ∆E or x = θx/σθ. Whether a given term in
eq.(20) is positive or negative depends on the signs of ci, x, and on whether
i is even or odd. The basic strategy is to select a random x from the terms
of eq.(20) which are positive. Negative terms are taken into account by the
Monte Carlo rejection technique.

Energy loss selection below εc, which is divided into two brackets (εmin <
ε < εi and εi < ε < εc) as decribed in sec. 3.1, is treated collectively using

9



the Edgeworth series. It is first decided to choose from among positive
or negative x. Next, a specific term is selected from among the positive
ones (proportional to Pi =

∫∞
0 cix

i exp(−x2/2) dx) followed by selection of
x from that term in the usual manner (see, e.g, ref. [10]). This x is accepted
or rejected by testing a random number versus the ratio of eq.(1) to the sum
of its positive terms. For individual event selection the (random) number
of such events is first chosen from a Poisson distribution characterized by
the expected number of events. An energy (εc < ε < εmax), as per eq.(6),
is then selected from an ε−2 distribution with the square bracket taken into
account by rejection.

Angle selection below the cut-off θc—for combined scattering off nuclei
and off atomic electrons at low energy transfer—is also from an Edgeworth
series and proceeds similarly to energy loss. However, since positive and
negative x have the same distribution, one selects |x| first, then chooses
its sign with equal probability. For angle selection associated with energy
transfers εi < ε < εc off electrons, the mean square angle of the distribu-
tion

∑
θ2
µ is determined following selection of an energy loss as per eq.(17).

Random θx and θy are then chosen from a Gaussian with zero mean and
σ =

√∑
θ2
µ/2. For individual selection the number of events is again as-

signed from a Poisson distribution. For each event (if any) a θx (> θc) is
chosen from a probability distribution proportional to eq.(15). After choos-
ing a θx and θy the momentum transfer is tested for rejection versus a nuclear
form factor as in [2].

5 Results

A few results are shown here by way of illustration, including some instances
where the approximations described in this note can be checked directly
versus exact results. One such possibility is to compare the restricted Vavilov
(J = 1/2) distribution [2] with various orders of the Edgeworth expansion.
The physical model used for this comparison is not the one from sec. 3 but
one consistent with Vavilov’s (implicit) assumption that Bhabha’s formula
holds down to some low energy, see eq.(9). The comparison is made here for
0.2 GeV muons incident on a beryllium target, 1 g/cm2 thick. Maximum
energy transfer in a single µe collision is 3.59 MeV but a restriction threshold
at εc = ξt/2 =43.6 keV is adopted. This means that on average 1.89 µe
collisions are left to be treated as individual events. Incidentally, the low
energy limit, from eq.(9), is only about 0.006 eV in this case—much lower
than can be physically justified.
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Figure 1: Restricted (ε < 43.6 keV ) Vavilov distribution (dotted line) and
various orders of Edgeworth expansion (solid lines), including 0th order
(Gaussian) for 0.2 GeV muons on 1 g/cm2 beryllium target. (a) Overall
comparison over ±8σ, (b) detail of peak region (Vavilov curve coincides
with 3rd and 5th order results in this graph).

Fig. 1a shows the Vavilov distribution along with the 0th (Gaussian),
1st, 3rd, and 5th orders of the Edgeworth expansion (2nd and 4th orders
mostly interpolate their neighbors and are omitted merely for clarity of the
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plot). The ordinate ranges over ±8σ of the distribution. As can be seen
the highest order matches quite well to analytic result except at very low
∆E—although at that point one is several orders of magnitude below the
peak. It can be seen that the Gaussian badly overestimates at low ∆E and
underestimates at the high end. The same situation is depicted in fig. 1b but
with only the peak region shown. The higher orders here completely cover
the Vavilov curve while the discrepancy between them and the Gaussian is
clearly exhibited. The same comparison is repeated in figs. 2a and 2b but
with lower restriction threshold of εc = ξt/10 =8.72 keV at which point
about 10 collisions must be treated indiviually. As can be seen the Gaussian
is still not very accurate. Figs. 3a and 3b again represent the same case
but at a larger threshold of εc = 2.5ξt =218 keV above which about 0.32
collisions are expected to take place in the target. It can be seen that the
algorithm has deteriorated although it is much preferable over a Gaussian.
In fig. 4 shows how the energy loss Monte Carlo selection algorithm performs
when 107 muons strike the same beryllium target as for the case presented in
fig. 1. Perhaps the unphysical hump at low ∆E can be discriminated against
by comparing the sign of P(∆E) for successive orders of approximation. This
requires some care but, since for each selection P(∆E) must be evaluated
anyway, would not add significantly to computation time. It is also possible
that using incomplete orders in eq.(1) may suppress the hump though most
likely not without compromise elewhere. In most applications the hump will
make little difference: in fig. 4 it accounts for 11 out of the 107 events.

In sec. 3.1 an ε−3 energy dependence is assumed for energy losses below
the average ionization potential, εi, instead of the approximate ε−2 depen-
dence of eq.(6). This distinction is important only for low restriction thresh-
old, εc, i.e., when it becomes of the same order of magnitudes as εi or, since
εc is taken proportional to target thickness, for very thin targets. Fig. 5
pictures the case of 0.2 GeV/c muons incident on a 0.003 g/cm2 thick beryl-
lium target which places εc at 131 eV—or about twice the εi of 64 eV. The
model of sec. 3.1 produces a broader and more Gaussian like distribution
compared with the case where ε−2 holds troughout.

Since analytically derived restricted angular distributions are not readily
available, comparison with the approximations offered here is more round-
about. For the case of 0.3 GeV/c muons on a 1 g/cm2 beryllium target,
fig. 6 compares the Molière distribution [14], using Bethe’s formulation [15],
with Monte Carlo output of the model of sec. 3 for 107 muons. The Monte
Carlo combines the Edgeworth series below θc =

√
K =0.0112 radians, with

individual simulation above it (on average about 0.5 events). The Edge-
worth approximation is carried out to 10th order which requires about the
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Figure 2: Restricted (ε < 8.76 keV ) Vavilov distribution (dotted line) and
various orders of Edgeworth expansion (solid lines), including 0th order
(Gaussian) for 0.2 GeV muons on 1 g/cm2 beryllium target. (a) Overall
comparison over ±8σ, (b) detail of peak region (Vavilov curve coincides
with 3rd and 5th order results in this graph).

same amount of computation as a 5th order energy loss calculation, thanks
to vanishing of the odd cumulants. The same screening angle is used for the
Edgworth series as for the Molière distribution. However, the precise form of
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Figure 3: Restricted (ε < 218 keV ) Vavilov distribution (dotted line) and
various orders of Edgeworth expansion, including 0th order (Gaussian) for
0.2 GeV muons on 1 g/cm2 beryllium target (solid lines). (a) Overall com-
parison over ±8σ, (b) detail of peak region.

the single scattering distribution, eq.(15), in the Edgeworth series does not
correspond exactly to what is implicit in the Molière theory. Agreement is
good overall and some small discrepancies (at the level of a few percent and
invisible at the scale of fig. 6) are likely due to this lack of correspondence.
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Figure 4: Histogram generated by Monte Carlo selection routine for 107

muons on beryllium target (same case as fig. 1) vs directly calculated 5th
order Edgeworth expansion.

Fig. 7 shows scatter plots of the correlations between energy loss and
angle for 104 muons of 0.2 GeV/c incident on 1 g/cm2 of (liquid) hydrogen—
for which correlations are likely to be most important. Separate plots are
given for µe Bhabha scattering which is individually simulated for an average
of 1.79 events above εc(= ξt/2) of 97.4 keV . Careful scrutiny reveals a line
traversing the scatter plot which is comprised of those points corresponding
to single event selection from the Poisson distribution. This line starts at
∆E = εc while the diffuse scatter starts—as expected—at ∆E = 2εc, since
at least two events are needed to produce a spread in angle at a given ∆E.
Strong energy angle correlations remain even with multiple events although
the angles are quite small due to kinematics. Also shown is the correlation
for µe scattering in the energy loss regime εi < ε < εc which is much smaller
because one sums over many events after which the only effective correlation
which remains is between energy loss and the variance of a Gaussian. The
final plot of fig. 7 shows the correlations when all processes are included.
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Figure 5: Fifth order Edgeworth series for the model of sec. 3 (solid line) as
well as for the Vavilov distribution (dotted line) for 0.2 GeV/c muons inci-
dent on 0.003g/cm2 beryllium target with restriction threshold at 131 eV.
Effect is much less for thick targets.

In this last case the correlation coefficient, < ∆Eθ > /σ∆Eσθ, equals 0.038
which is perhaps not entirely negligible in ionization cooling. It is higher
for thinner targets, e.g., if the thickness in the present example is reduced
to 0.05 g/cm2 the correlation coefficient increases to 0.10.

6 Concluding Remarks

The Edgeworth expansion can play a useful role in describing distributions
of energy loss and multiple scattering angle. It builds on the (two parameter)
Gaussian by inclusion of the higher moments of the single event distribution
as parameters to generate successively better approximations. To sufficiently
high order, it can replicate quite well both the Vavilov distribution of en-
ergy loss and the Molière distribution of multiple scattering. Monte Carlo

16



Figure 6: Molière distribution (dotted line) compared with simulation of
10th order Edgeworth series plus individual events above 0.0112 radians for
107 muons of 0.3 GeV/c on 1 g/cm2 beryllium target (histogram).

selection algorithms based on the expansion are relatively easy to encode
and efficient in their execution. The Edgeworth expansion is especially ap-
pealing for simulations since it allows ready translation from physical model
(via the moments of the single event distribution) to selection algorithm. It
offers flexibility: order of expansion, step size, and restriction threshold may
all be tailored to a specific application or might be made adjustable within
the calculation for optimum performance. Details of implementing this will
depend heavily on the required accuracy and available computing resources.

Use of the Edgeworth expansion in the present applications is motivated
by its relation to the Gaussian—already well known to be a good approx-
imation for energy loss and projected angle distribution in thick targets.
Future investigations may explore expansions using other orthogonal poly-
nomials. These may work better for very thin targets or high restriction
thresholds. The physical model presented here obviously needs more work
to improve some of the oversimplifications. In particular treating atomic
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Figure 7: Scatter plots generated with model of sec. 3 to illustrate energy
loss vs angle correlations for 0.2 GeV/c muons incident on 1 g/cm2 of liquid
hydrogen (a) for individually simulated Bhabha scattering, (b) for εi < ε <
εc regime and (c) all processes combined.

electrons as free for modest energy transfers as well as the sharp demar-
cation between bound and free at the mean ionization potential may need
further refinement. For more precise work a general model may not suffice
and one would concentrate instead on the detailed atomic structure of each
material of interest. The Edgeworth series will still be able to provide good
approximations to the energy loss and angular distributions based on such
detailed models.

The entire approach may succeed in other applications as well—given the
ease with which it carries over from energy loss to multiple scattering. Thus,
whenever a distribution satisfies a general transport equation, as typified by
eqs.(2) and (7), the same type formulae for the κi result and eq.(1) provides
a successively improving approximation which is well suited for Monte Carlo
sampling. Taking advantage of restriction thresholds can greatly improve
the accuracy of the simulation.

My thanks to N. Mokhov for comments and discussion and to D. Neuffer for a
careful reading of the manuscript.
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