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ABSTRACT

Gravitational clustering is an intrinsically non-linear process that generates signifi-
cant non-Gaussian signatures in the density field. We consider how these affect power
spectrum determinations from galaxy and weak-lensing surveys. Non-Gaussian effects
not only increase the individual error bars compared to the Gaussian case but, most
importantly, lead to non-trivial cross-correlations between different band-powers, corre-
lating small-scale band-powers both among themselves and with those at large scales.
We calculate the power-spectrum covariance matrix in non-linear perturbation theory
(weakly non-linear regime), in the hierarchical model (strongly non-linear regime), and
from numerical simulations in real and redshift space. In particular, we show that the
hierarchical ansatz cannot be strictly valid for the configurations of the trispectrum in-
volved in the calculation of the power-spectrum covariance matrix.

We discuss the impact of these results on parameter estimation from power-spectrum
measurements and their dependence on the size of the survey and the choice of band-
powers. We show that the non-Gaussian terms in the covariance matrix become dominant
for scales smaller than the non-linear scale k,; ~ 0.2 h/Mpc, depending somewhat on
power normalization. Furthermore, we find that cross-correlations mostly deteriorate the
determination of the amplitude of a rescaled power spectrum, whereas its shape is less
affected. In weak lensing surveys the projection tends to reduce the importance of non-
Gaussian effects. Even so, for background galaxies at redshift z ~ 1, the non-Gaussian
contribution rises significantly around I ~ 1000, and could become comparable to the
Gaussian terms depending upon the power spectrum normalization and cosmology. The
projection has another interesting effect: the ratio between non-Gaussian and Gaussian
contributions saturates and can even decrease at small enough angular scales if the power
spectrum of the 3D field falls faster than k2.

Subject headings: large-scale structure of universe; methods: numerical; methods: sta-

tistical
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1. Introduction

Discussions in the literature on the measurement of the power spectrum P(k) (e.g. Feldman et
al. 1994), and the estimation of cosmological parameters from it (e.g. Tegmark 1997b, Eisenstein
et al. 1998, Hu & Tegmark 1998), have largely focused on the case of Gaussian random data.
While this is a reasonable assumption in the case of the cosmic microwave background for Gaussian
initial conditions (e.g. Tegmark 1997, Bond et al. 1998, Seljak 1998), it is probably not a good
approximation for galaxy and weak-lensing surveys except on sufficiently large scales (e.g. Feldman
et al. 1994, Vogeley & Szalay 1996, Hamilton 1997, Colombi et al. 1998, Seljak 1998b, Tegmark
et al. 1998, Dodelson et al. 1997). This is because of the non-Gaussianity inevitably induced by
gravitational clustering, which leads to increased error bars in individual band-power estimates and
introduces correlations between them. In this paper, we quantify the size of these effects and the

scales at which they become important.

Understanding the statistical properties of power-spectrum estimators beyond the Gaussian ap-
proximation requires at least a calculation of the power-spectrum covariance matrix, which involves
the four-point function of the density field in Fourier space, the trispectrum. In order to do this, we
use both analytic and numerical techniques. At weakly non-linear scales, non-linear perturbation
theory (PT) can be used to understand quantitatively how the non-Gaussian effects are generated
through mode-coupling. We provide a calculation of the relevant configurations of the trispectrum,

and use them to obtain the covariance matrix of band-powers.

Non-Gaussian effects are most significant at non-linear scales, where PT breaks down. To
investigate this regime, we resort to numerical simulations, which we use to evaluate the power-
spectrum covariance matrix by measuring the power spectrum in several realizations. At small
scales, where virialization is reached, stable clustering suggests a simple behavior of higher-order
correlation functions, known as the hierarchical ansatz. We use these arguments to understand
the power-spectrum covariance matrix in the non-linear regime, which in turn allows us to extend
in a simple way our results to the projected density field. Along the way, we provide new results

concerning the validity of the hierarchical ansatz for the trispectrum in the non-linear regime.

The outline of the paper is as follows. In §2, we introduce the notations and basic expressions
for the covariance matrix of the 3D (three-dimensional) power-spectrum estimates. Here, as in the
rest of the paper, we focus on the sample-variance dominated regime. In other words, shot-noise is
ignored - the emphasis here is on the effect of non-Gaussianity induced by gravitational clustering.
Shot-noise will be included in a separate treatment. We present estimates of the power-spectrum
covariance matrix using PT, numerical simulations and the hierarchical model in §3.1, 3.2 and 3.3,
respectively. An easy way to estimate the effects of interest is presented in §3.4. The impact of
non-Gaussianity on parameter determination is illustrated in §4 with a simple example, in which

the amplitude of the power spectrum is the only parameter of interest. We discuss the impact on
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the determination of the power spectrum shape as well.

In all of the discussions above, it is implicitly assumed one can measure the mass power spec-
trum directly. This is of course complicated by biasing in the case of galaxy surveys. In fact, as
we shall see, on scales where non-Gaussianity is non-negligible, galaxy-biasing is also likely to be
non-trivial. Weak gravitational lensing (e.g. Blandford et al. 1991, Miralda-Escudé 1991, Kaiser
1992, Bernardeau et al. 1997, Jain & Seljak 1997, Kaiser 1998, Seljak 1998b, van Waerbeke et al.
1998) promises to be a bias-free way to measure the mass power spectrum, but as we will show in
§5, weak-lensing surveys in the near future will likely cover small angular scales and thus receive
significant contributions from non-linear fluctuations to the expected signals. In §5, we derive the
appropriate expression for the covariance matrix of the projected mass power spectrum, and show
that the projection reduces the non-Gaussian effects of the matter distribution, but non-negligible
residuals remain. In fact, for low matter density models where the cluster normalization implies
larger rms density fluctuations, the non-Gaussian contribution to the covariance can dominate over

the Gaussian value (van Waerbeke et al. 1998). Finally, we conclude in §6 with a discussion.

2. Definitions

We shall be interested in the Fourier modes of the overdensity d(x) given by,

EP .
(5(’6) = / (;iﬂ)?’ e*lk-w (5(:13) (1)

Their statistical properties are described by the various connected moments,

(0(k1))e = 0
(6(k1)d(k2))e = On(k12) P(k1)
(6(k1)d(k2)d(k3))e = Op(ki23) B(k1, ko, k3)
(6(k1)0(k2)d(k3)d(ka))e = Op(ki23a) T'(k1, k2, k3, ka)
(0(k1)0(k2) -+~ 0(kn))e = On(k12..n) Tn(ki, ko, - kn), (2)

where k;_; = k; + --- + kj, with ép(z) denoting the Dirac delta distribution. In equation (2),
P(k), B(k1,ks,ks) and T(kq, ko, ks, ks) denote the power spectrum, bispectrum and trispectrum,
respectively. For the purpose of this paper we will need up to the fourth connected moment.

Let’s suppose we are given a survey with volume V', from which §(k) can be constructed. We
divide the Fourier space into shells (or bands) of width dk centered on k; =i x dk,i = 1,2, ..., and
then average the variance of the k modes within each shell to obtain the following estimate of the

power spectrum,
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where the integration extends over modes within the shell centered at k;, Vi(k;) = 47T]€Z~2(5k is the
volume of the shell, and V} is the volume of the fundamental cell in k space, Vy = (2m)3/V. For
the rest of this paper, we will also use P; interchangeably with P(k;) wherever confusion will not
arise. It is straightforward to calculate the covariance matrix of the power spectrum estimators.
Combining equations (2) and (3), we get

2 _
Cy = (P(k)P(k;) — (P(k:)(B(k;) =V [%wmi,kj)] 4)

where §;; is the Kronecker delta and T is the bin-averaged trispectrum

Pk k) = APk, ko
P e Vaki) Sk Vi(kj)

T(k1, —ki, ko, —ko). (5)

The first term in equation (4) is the Gaussian contribution. In the Gaussian limit, each Fourier mode
is an independent Gaussian random variable. The power estimates of different bands are therefore
uncorrelated, and the covariance is simply given by 2/Nj. where Ni, is the number of independent
Gaussian variables, i.e. Ny, = V(k;)/Vy. The second term in equation (4) arises because of non-
Gaussianity, which generally introduces correlations between different Fourier modes, and hence it

is not diagonal in general.

Both terms in the covariance matrix in equation (4) are proportional to V}, or inversely pro-
portional to V', the volume of the survey. But the Gaussian and non-Gaussian contributions scale
in a different way with V;: while the Gaussian contribution decreases with the size of the shell, the
non-Gaussian term remains constant. Therefore, when the covariance matrix is dominated by the
non-Gaussian contribution the only way to reduce the variance of the power spectrum is to increase

the volume of the survey instead of averaging over more Fourier modes.

It is worth emphasizing here that we have ignored the effect of the survey window in the above
expressions. We have implicitly assumed the modes of interest have wavelengths much smaller than
the size of the survey, which is likely to be a good approximation as we are interested in the non-
Gaussianity induced by gravity on small scales (how small is small is a question we will address).
Note also that while §(k) is not restricted to be the mass overdensity in the above expressions, we
will assume so in the rest of the paper. Galaxy surveys of course only probe directly the galaxy
rather than the mass overdensity. For the most part, we ignore galaxy biasing in this paper. We
will come back to this issue in the final section.
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3. Covariance Matrix of the Band-Power Estimates in 3D

In structure formation scenarios where the initial conditions are Gaussian, the power-spectrum
covariance matrix is expected to be diagonal on sufficiently large scales, with amplitude given by the
first term in equation (4). Gravitational clustering, however, inevitably generates a non-vanishing
trispectrum through non-linear mode-coupling. It is thus expected that at small enough scales, the
non-Gaussian contribution to the power-spectrum covariance matrix (second term in equation [4])

will dominate over the Gaussian term.

To demonstrate this, we use non-linear perturbation theory (PT) to calculate at what scales
significant non-Gaussian contributions first appear. We then use numerical simulations to measure
their effects on smaller, non-linear scales, where PT breaks down. In the highly non-linear regime
we study the validity of the hierarchical model for the trispectrum, and calibrate it using N-body
simulations and Hyperextended PT (Scoccimarro & Frieman 1998). Finally in §3.4, we introduce a
simple way to estimate the size of the non-Gaussian covariance using the kurtosis of the smoothed
density field, S4(R).

3.1. The Power-Spectrum Covariance Matrix in PT

In tree-level (leading-order) PT, the trispectrum is given by (see e.g. Fry 1984):

T(ki,ko, k3, k) = 4[Fo(ki2, —k1) Fo(ki2,k3) PiPioPs + cyc.] + 6[F3(k1, ko, k3) PiP>P3 + cyc(h)

where P; = P(k;), with k12 = k1 + ko as defined before, “cyc.” denotes cyclic permutation of the
arguments (12 terms in total in the first contribution, and 4 terms in the second contribution),
and the kernels F), are obtained from solving the equations of motion of gravitational instability
to ntt order in PT (Goroff et al. 1986). Equation (5) tells us that only a particular class of
trispectrum configurations (parallelogram) contributes to the non-Gaussian covariance of the band-

power estimates. Substituting the above expression into equation (5), we have

_ d3ky A3k,
Tk k;) = 12F5(ky, —ky, ko) P2 Py + 8F2 (k1 — ko, ko) P (k1 — ko|) P2
(K, g) /ki‘/s(ki) /kj Vs(kj) [ 3(k1, —k1, ko) P; Py + 8F5 (ky 2, ko) P(|k1 o)) Ps

+ 16F5 (k1 — ko, ko) Fo(ky — k1, k1) PLPyP(|ky — ka|) + (k1 <> k2)] (7)

Using the facts that [Fy(ky — ko, ko)|k—k, = (3 + 102)/28, where = = k; - ko, and that the
angular average ( F3(ki,—Fk1,k2) ), _p, = —11/378, plus the approximate angular-averaged result

[ (e =i 2 ron, o

-1
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a simple approximate expression for the diagonal components of the band-averaged trispectrum

follows

Tk k) ~ o0 PP (9
where we have further assumed that the power spectrum is approximately constant within the shell.
Note that the non-Gaussian terms scale as the power spectrum cubed, therefore, to be consistent
within PT, one-loop corrections to the power spectrum in the diagonal Gaussian term must be

included.

Figure 1 shows the diagonal elements of the covariance matrix, divided by the Gaussian contri-
bution, calculated using perturbation theory for a survey with V' = 1(Gpc/h)? . The cosmological
model we assume throughout the paper is standard cold dark matter (SCDM) with og = 0.60. The
increase in the diagonal variance relative to the Gaussian variance is very small, less than 1% for
k < 0.2, which in part reflects the small bin-size considered, dk = 27 h/Gpc. The non-linear scale,
where 47k®P(k) = 1, is given by k,; = 0.33. Tt is important to emphasize that figure 1 depends
on the binning adopted. In other words, the relative importance of the Gaussian and non-Gaussian

variances for each band is dependent upon the size of the band.

In figure 2 we show some of the off-diagonal elements, in terms of the cross-correlation coefficient
rij = Cij/+/CiiCj;. Each curve in figure 2 corresponds to r;; as a function of k; for a fixed k;. The
corresponding k; can be inferred from where r;; = 1. By definition each r;; is independent of the
volume of the survey but it does depend on the k-space binning. In this case, the binning has
been chosen to be constant with the smallest possible value, §k = 27 h/Gpc, which maximizes
the Gaussian contribution. The correlation coeflicients r;;, for ¢ # j, are therefore quite small. A
logarithmic binning would change the appearance of the figures. It is important to emphasize that
although the correlation coefficients are small, there are also many of them. In fact because the
size of the correlation coefficients depends on the choice of band-powers, they do not have a direct
physical meaning. In the limit we are considering in this section, where the diagonal terms of the
covariance are dominated by the Gaussian contributions we have in fact r;; oc 6k. In §4 we will

address the importance of the non-Gaussian terms in a way independent of the binning procedure.

In order to understand the origin of power spectrum cross-correlations, let us consider the

integrand in equation (7), T'(k1, —k1, ko, —ko) = Ty(k1, k2), and normalize it according to

_ 1 1 Vg(kl)%(kg) . 1T4(k1,k2) 0k16ks
Braks, ko) = Talks k2) \/zpf 2P} A(k)A(ks) 2 (PR32 \| Thiky (10)

where A(k) = 4nk3P(k). We then obtain
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Cij =Vs W [51] + Bij A(k’t)A(kJ)]ﬂ (11)

with E'ij the bin-averaged version of £19. Figure 3 shows the coefficient (12 as a function of con-
figuration angle 6 between ki and ko for different scales, assuming constant bin size as a function
of scale 0k; = dko = 27/100 h/Mpc. This figure illustrates how modes get correlated, the max-
imum amplitude of correlation results for co-linear configurations (f = 0), and the least amount
of correlation corresponds to perpendicular modes (f = 7/2). This is exactly what is expected for
structures formed by gravitational instability (Scoccimarro 1997, Scoccimarro et al. 1998). It would
be interesting to take advantage of this pattern of correlations to build a power spectrum estimator

that minimizes the amount of cross-correlations.

3.2. The Power-Spectrum Covariance Matrix in Numerical Simulations

We measured the power spectrum from 20 different PM simulations of the SCDM model with
og = 0.60 and a box-size of 100 Mpc/h with 1283 particles. Figure 4a shows the diagonal elements
of the covariance matrix normalized by the Gaussian variance, obtained by computing the power
spectra in the 20 PM simulations and performing the ensemble average. The dashed line at weakly
non-linear scales shows the predictions of PT, equation (9). As predicted by PT, the increase in
the diagonal covariance due to non-Gaussian effects is quite small, even at the non-linear scale
A(kp;) = 1 (shown in the plot as a vertical line). We see that the diagonal terms of the covariance
matrix increase rapidly relative to the the Gaussian contributions, once the non-linear regime is

reached.

In the bottom panel we show the same diagonal components but normalized by P, which yields
the fractional errors in the power spectrum estimates: op/P. The fractional error decreases with
increasing k; as k; 2 for linear scales but does so much more slowly once we enter the non-linear
regime. It should be stressed that the quantities shown depend both on the assumed binning in
k-space and on the volume of the simulation box. Unless otherwise stated, all our measurements
in numerical simulations are done using a constant bin size, 6k = 27/100 h/Mpc, the fundamental
mode of the simulation box. On the other hand, at sufficiently non-linear scales the covariance
matrix becomes independent of the binning (but it is still inversely proportional to the simulation

volume).

In figure 5 we show the correlation coefficients r;; for different scales. Note that when both k; and
k; fall well within the non-linear regime, the correlation coefficient is close to one, which implies that
the power estimates at the two k-shells are highly correlated. The correlation coefficient decreases as
the shells become further apart, but it does so very slowly. This implies that the information-gain as

more modes beyond the linear regime are considered increases very slowly compared to the Gaussian



expectations.

Figure 6 shows a comparison between the correlation coefficients obtained using PT and N-Body
simulations. The comparison is made at og = 0.375 (2 = 0.6), as opposed to og = 0.60 (z = 0) in
figure 5, so that more wave-modes are in the weakly non-linear regime. As one can see, there are
large dispersions in the measurements of r;; due to the limited number of N-body simulations, but

the measured values agree with the prediction of PT within the errors.

As mentioned before, the relative importance of the Gaussian versus non-Gaussian contributions
to the covariance matrix depends upon the choice of binning in k-space. We have tested its effect
with N-body simulations and the behavior is as expected from equation (4). Note that even the
distinction between diagonal and off-diagonal covariances is somewhat arbitrary: by choosing a
coarser binning of Fourier space, what originally appears as correlations between two nearby shells
now becomes part of the diagonal variance. As is clear from equation (4), the dependence with

binning becomes less important as we enter the non-linear regime.

Finally, figure 7 shows correlation coefficients in redshift space. These are calculated in the
plane-parallel approximation, for the same realizations shown before, in the z = 0 output, og = 0.60.
The top panel shows r;; for the monopole of the power spectrum, whereas the bottom panel shows r;;
for the quadrupole moment of the power spectrum. Comparison with figure 5 shows that the effect of
correlations in redshift space is somewhat suppressed with respect to the real-space clustering. That
is indeed expected, since the velocity dispersion at small scales washes out clustering and therefore

non-Gaussian effects.

3.3. The Power-Spectrum Covariance Matrix in the Non-Linear Regime: The
Hierarchical Model

The hierarchical form for the trispectrum reads,

T(k1, k2, k3, ks) = Rq [P1P2P13 + cyc.] + Ry [P1PoP3 + cyc.], (12)

which has been proposed to explain the scaling properties of galaxy clustering in the highly non-linear
regime (Fry & Peebles 1978). In terms of the four-point function, n(r), and the two-point function,
&(r), the hierarchical model assumes 7(r) o< £€3(r), which implies T' o< P3. Basically, the hierarchical
model represents the trispectrum as sums of products of three power spectra, introducing only as
many parameters as there are distinct topologies. The R} contributions (total of 4 terms) are the
“star” tree-diagrams where one vertex is connected to the other three, whereas the R, contributions
are “snake” diagrams (total of 12 terms). It is usually assumed that R, and R} saturate to constants
independent of scale and configuration in the highly non-linear regime. On the other hand, at large

scales, PT predicts a hierarchical form for the trispectrum (equation [6]), but with R, and R,
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strongly dependent on configuration, as illustrated in figure 3 and figure 9 below. In our case we are
interested in the configurations relevant for the power spectrum covariance matrix, equation (5), so
4 out of the 12 R, terms vanish (because they give P(0) = 0). This can be potentially a problem,
since in the limit that we approach these particular configurations some scales are in the linear
regime, and we do not expect saturation (constant R, and Rp) to hold. As we shall see, this is

indeed the case.

In order to get the bin-averaged trispectrum, equation (5), we need to integrate over the angle
between the two wave-vectors in the two shells under consideration. It is clear that if, say, ko > k1,
then f_ll(da:/ 2) P(|kg — k1|) =~ P(kz). It turns out, however, that in practice this approximation
works quite well in the non-linear regime even for k; = kg. Thus, we get simple approximate

expressions for the diagonal and off-diagonal contributions of the bin-averaged trispectrum

T(kz, k;) ~ 4(2R, + Rp) Pi3. (13)

T(ki, kj) = 2(Rqa + Ry) PiP} +2(2R, + Ry) P} P;j + 2R, P}, (14)

where we have assumed that k; > k;, and that R, and R} are constants independent of configuration.
These expressions turn out to agree with results of numerical integrations over shells to about 3%
for the whole range of k; and k. Note that equation (14) reduces to equation (13) in the limit
that k; — k;. These expressions imply that in the limit where the non-Gaussian contribution to the

covariance matrix dominates (k; > k;)

R,+ R P;
rij ~ (Ra+ Ry) x ] =L (15)
2(2R, + Ry) P;
This result implies that, unless B, = —Rp, eventually as k; > k; the cross-correlation coefficient

ri; becomes larger than unity, which is unphysical. It turns out, however, that a constant relation
R, = — R} is inconsistent with the numerical results presented in Section 3.2, since it predicts that
ri; decays much faster with shell separation than what is observed in the numerical simulations.
We therefore conclude that a hierarchical model with amplitudes R, and Ry independent of scale
and configuration is actually not a good description of the power-spectrum covariance matriz in the

non-linear regime.

To confirm this, one could directly measure the trispectrum in the numerical simulations and
check whether the hierarchical ansatz holds. However, for the type of configurations we are interested
in, this type of measurement is non-trivial since one has to subtract the Gaussian contribution
accurately. On the other hand, given our measurements of the power spectrum covariance matrix
presented in Section 3.2, we can obtain estimates for R, and R} from equations (13-14). However,

since the largest contribution is due to the first term in equation (14), the best constraint is on the
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average value, (R, + Rp)/2. This is shown in figure 8, for the particular case of k; = 0.98 h/Mpc as

a function of k;. We see that the average value shows a systematic decrease with shell separation.$

In order to understand this behavior, we resort to PT, which predicts a specific relation between
R, and Ry as a function of shell separation. In figure 9 we show the ratio R, /R, predicted by PT as
a function of configuration angle 6 between ki and ko for different scales. We see that for shells close
to each other, although the ratio R,/ R, varies, on average R, ~ Ry (in fact, for k1 = ky = 1 h/Mpc,
the angular average yields R, ~ 1.5R;). However, as the shells become more separated, the averaged
relation between R, and R changes, reaching R, = —R} in the limit of large separation, just what
is needed in a hierarchical model to preserve the condition that the cross-correlation coefficient
ri; < 1. Given this insight, one is motivated to postulate that something similar must happen in the
non-linear regime to satisfy r;; < 1 in the limit of large shell separation. In figure 8, the solid line
shows the prediction for (R, + Rp)/2 as a function of shell separation assuming that the averaged
relation between R, and Ry in the non-linear regime is the same as that given by PT. The overall
amplitude has been chosen to fit the diagonal values, at k; = k; = 0.98 h/Mpc. We see that this
prediction works quite well, which further supports our conclusion above that a hierarchical model
with amplitudes R, and R} independent of scale and configuration is not a very good approximation

for the configurations relevant to the power spectrum covariance matrix.

Given these results, one might ask what is their relation to more general trispectrum con-
figurations, in terms of amplitude and dependence on configuration. We have thus measured the
trispectrum directly in the numerical simulations for configurations of four wave-vectors that form
a triangle, that is, k1 = ko, and k3 at an angle 6 with respect to them, for different ratios ks/k;
(kg = —k123). In figure 10 we present two representative results, for k3/k; = 1.5 and scales k; = 1.26
h/Mpc (top) and k1 = 1.57 h/Mpc (bottom). The results are given in terms of the hierarchical am-
plitude Q4 defined as

Tu(ky, ko, k3, —k123)

= . 16
Q4 [P(kl)P(kg)P(klg) + CyC.] + [P(kl)P(kQ)P(kg,) + CyC.] ( )
The solid lines are the predictions of hyperextended perturbation theory (HEPT),
54— 272" +2 3" 46"
Q3 (n) = (1/2) (17)

(1+627+33"466")

which gives the saturation value of the hierarchical amplitude @4 in the highly non-linear regime

$Once we give up the hypothesis that R, and R, are strictly constants, we should distinguish between two kinds
of R, and Ry: the R, and R in equation (12) which depend on both configuration and scale, and the effective R,
and Ry in equations (13-14) which have the configuration dependence integrated out. We will rely on the context to
differentiate between the two meanings here.
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in terms of the spectral index n = n(k) of the underlying linear power spectrum (Scoccimarro &
Frieman 1998). The spectral index has been chosen as that of the average wave-vector at each
particular configuration. HEPT only predicts the overall amplitude of ()4; in other words, it does
not attempt to model R, and Ry separately. However, given the excellent agreement of equation (17)
with the numerical simulations, we can conclude that at least for these type of configurations, the

trispectrum behaves like a degenerate hierarchical model, where Q4 = R, = Rp.

Figure 11 shows a more detailed comparison of HEPT predictions with the cross-correlation
coefficients r;; measured in the N-body simulations. In this calculation, we have assumed R, =
Ry = Q%(n) as given by HEPT. Note the very good agreement, especially around k; = k;. As
k; gets much larger than k; we see that the predicted r;; start to increase, a signature that the

condition R, = R} is breaking down, as discussed above.

Although we have been able to explain most of the observed behavior of the covariance matrix
in the numerical simulations in terms of simple arguments, there are some puzzles that remain. In
particular, the diagonal components of the covariance matrix in the non-linear regime have an over-
all amplitude which is a factor of five times smaller than that predicted by equation (17), together
with equation (13). This does not affect the calculations in figure 11 because the overall amplitude
cancels out in the expression of r;; at non-linear scales. Therefore, the trispectrum configurations
corresponding to the power-spectrum covariance matrix, not only show special behavior regarding
the configuration and scale dependence of the hierarchical amplitudes (a consequence of the con-
straint r;; < 1), but also are suppressed by an overall factor of five compared to the more general
trispectrum configurations, such as those shown in figure 10 and correctly described by a simple

hierarchical with amplitudes given by HEPT.

3.4. A Simple Estimate: Connection with the Kurtosis Parameter S,

It is interesting to relate non-Gaussianity in the power spectrum estimates to the better studied
non-Gaussianity in the one-point probability function of the density. The kurtosis Sy is defined as
<R >,
< 6(R)? >3

It is usually studied as a function of scale R over which the data have been smoothed. In other

S4(R) (18)

words,

_ [ Bk dPkod3 ks WiWoWaWiag Ta(ky, ke, k3, —k123)

[] d°k W2(kR) P(k)]? ’
where W; = W (k;R), with W being the Fourier transform of the smoothing window. Equation (19)
implies that

S4(R)

(19)

S40% ~ (k;)*Ta/ P* ~ 5(k;)*T4/ P?, (20)
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where k; ~ 1/R and Ty is the typical value of the trispectrum for configurations relevant for Sy.
As we discussed in §3.3 the typical value of the trispectrum in the configurations relevant for T are
smaller by a factor ~ 5 relative to those relevant for T'. Recall from equation (4) that k37 /P? is the
ratio of the non-Gaussian to Gaussian contributions to the diagonal covariance, for Vy(k;) ~ k3 (i.e.
use logarithmic binning with dk/k; ~ 1). This implies we can use Syo2/5 for the field smoothed on
the scale R = 1/k to estimate when non-Gaussianity becomes important as far as the measurement

of the power spectrum is concerned.

Of course, as we have emphasized before, this is a binning-dependent statement: one could
choose a smaller 0k/k; to decrease the ratio of non-Gaussian to Gaussian variances of each k bin.
But as one decreases the width of each k-shell, the total number of shells increase, and the non-
Gaussianity “accumulates”. As we will show in the next section, the two effects roughly cancel out
when one is considering the error-bars on parameters such as the amplitude of the power spectrum.
One can think of equation (20), divided by a factor of 5, as giving the error estimate for a very
wide k-band which extends from the fundamental mode all the way up to some k;, in a sense using
all the information up to k; to determine the amplitude of the power spectrum. This gives us a
crude estimate of the relative importance of the non-Gaussian variance and allows us to determine

on what scales it becomes dominant.

4. Impact on Cosmological Parameter Determination

To assess the importance of the non-Gaussian terms in the covariance matrix, suppose we are
interested in only one parameter: the amplitude of the power spectrum over a range of scales. Let
us assume that the shape, P(k;), is known and let us estimate the amplitude = = P(k;)/P(k;). If
only the Gaussian terms of the covariance were important, the minimum variance estimator for the

amplitude would be,

_ Dk <hma Ny, P(k)/P(k;)
Zki<kmax Nki ’

where we simply weigh the power in each bin by its inverse variance, and all bins are used up to

>

(21)

some kmax. In the same Gaussian limit the variance of £ would be
oy = (&%) — (&)* = N (22)
where N; = ) Nj, is the total number of k modes used.

Figure 12 shows the ratio 02/(2/N;) obtained using perturbation theory for the 1 Gpc/h box.
On large scales, kmax 0.1 h/Mpc, PT shows that the non-Gaussian contributions do not have a
significant impact on the determination of x, the error-bar starts increasing rapidly thereafter (for
this cosmological model k,; = 0.33 h/Mpc, and at the smoothing scale of R ~ 1/ky;, Sya?/5 is of
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order 1). In figure 13a, we show the corresponding results from N-body simulations. In figure 13b
we show the effective number of modes, defined as Neg = 2/02. As we can see, Neg varies much

more slowly once we enter the non-linear regime.

In the non-linear regime, different band-power estimates become highly correlated. To under-

stand what this means in practice, consider the following covariance matrix:
3
Cij = BIPiPj]2 (1 — &) (23)

which follows from equation (4), ignoring the Gaussian term, and from equation (13). The parameter
3 is some simple constant proportional to V. The symmetric matrix ¢;; has vanishing diagonal
elements, €¢; = 0, and the off-diagonal elements determine the cross-correlations between different
band-powers. We will consider the limit in which €;; is small (see figure 11), in other words all modes
are highly correlated and Cj; is nearly singular. Furthermore, as is clear from figure 11, ¢;; is slowly

varying, and we will treat €;; = € as a constant.

Let us consider the following rescaling of the power spectrum estimate:

A~

B
Yi = 7\/3[3]3/2-

where the true power spectrum P(k;) is of course unknown a priori, but one can think of it instead

(24)

as a fiducial power spectrum and we are trying to measure deviations from it. (It is actually not
necessary to make this change of variable at all, but it will simplify some of our expressions below.)

The corresponding covariance matrix is then
C = (@idly) — (@) = 1 — € (1= by5) (25)

We can diagonalize this matrix and ask which combinations of the band powers are better de-
termined. There are two types of eigenvalues. The first is Ay = N — (N — 1)¢, associated
with the eigenvector e; = (1,1,1,....,1)/v/N, where N is the number of bands. This eigenvec-
tor corresponds to the overall amplitude of the rescaled power spectrum. In addition, there are
N — 1 degenerate eigenvectors, each with an eigenvalue A = €. The corresponding eigenvectors are
em = (0,0,..1,—1,0...,0)/+/2, where the 1 is in the m — 1-th position (m = 2, ..., N). Each of these
eigenvectors provides a measure of the local derivative of the rescaled power spectrum. Note that
the above set of eigenvectors are linearly independent but do not form an orthogonal basis. In the
case where ¢ (or more precisely ¢;;) actually varies slowly with the band, but still remains small, the
above conclusions remain largely unchanged: A\; = N +O(¢;;), and the rest of the eigenvalues satisfy

A ~ € (€ ~ € plus small variations) except that the degeneracy is lifted by the slowly varying €;;.

Clearly, A1 is much larger than any other eigenvalues. Hence, the combination corresponding

to ey is the most poorly determined. To be more precise, the fractional error in the quantity ¥ - ey



— 15—

18

-1

¢@«n—@emaza+0@) (26)

(g - 61)2

1 1

N2 73
To the extent that /P(k;) is slowly varying with k;, the fractional error is approximately inde-
pendent of NV, which means increasing the number of bands does not help reduce the error in this

estimate of the amplitude of the rescaled power spectrum. The only way to reduce the error is to

make § smaller, i.e. having a larger survey volume.

On the other hand, the local spectral index of the rescaled power spectrum can be defined as
Y- em/{Gm) (m # 1), and its error is given by (we use error instead of fractional error here because
the local spectral index could vanish):

\/<[g “em— (7" em>]2>

(m)

= /6P, (27)

which is O(4/€) smaller than the error in the rescaled amplitude. It is intriguing that even though
only two neighboring bands are required to estimate the shape while all bands are used to estimate
the amplitude, it is the former that is better determined. This is a result of the high correlation

limit that we have taken, which makes averaging over band-powers nearly useless.

5. Covariance Matrix of the Projected Power Spectrum: Application to Weak
Lensing

We shall now consider the statistics of the (2D) projected density field. Suppose one observes a
small patch of the sky covering a solid angle Q). The patch is taken to be small enough that we can
use the flat sky approximation and expand the projected mass density in Fourier modes instead of

spherical harmonics. We will consider

mszmquwvm@mw%m» (28)

where w(y) is a slowly varying function of the radial comoving distance to the observer x. We in-
troduce the angular-diameter distance 7(x), 7(x) = K~/2sin K—/2y, x, (=K)~"/2sinh(—K)~'/2y
for models with positive, zero and negative curvature respectively, and K = (Qy — 1)HZ with Hj

the present value of the Hubble constant. For weak-lensing the relevant weight function w(y) is

wly) = gHngQ(XO, X)
' r(x') r(x — x')
906 X) ) (29)

in which case k is the weak-lensing convergence for background galaxies located at xy = xo. Note

that our definition of k here is a factor of 2 larger than the one commonly used (see e.g. Jain et al.
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1997). We are interested in the Fourier components of the projected field, from equation (28) we
obtain

k() = / (;l:; e il (g) = /dx% /_Z dk 5(7j—x)k) eikx (30)

which gives the two-point correlator

(R()R(I)) = / dxi w_/ D 13 i+ 1) / "k o) pLfEp 1R (3)

1 T2 —oo

where w; = w(y;) and similarly r; = r(x;). The integral over the line-of-sight wave-vector is
dominated by k(x1 —x2) = kAx < 1, where Ay must be the typical scale of variation of w(x)/r(x)?
(otherwise the total integration vanishes). In the small angle approximation, it is reasonable to
assume that over the scales of interest w(x)/r(x)? is approximately constant, that is, I/r > 1/Ax.
Therefore, 12 /r? > k?, i.e. only perpendicular Fourier modes contribute to the projected field, then
P(\/12/r? + k2) ~ P(l/r1) and the integral over k gives a delta function in Ay. Thus, we obtain

(rM)r(l)) = (2m) dp(L +1) /dx Q:QT(XX)) PlL/r(x)]; (32)

which is nothing but Limber’s equation (Peebles 1980, Kaiser 1992, Kaiser 1998). The power spec-
trum estimator for the projected density field is accordingly

2
Bty = Ay [ s mORD), (33

where Ay = (2m)? /() is the area of the fundamental cell in ! space, and we have assumed an average
over a ring in l-space with area A,(l;) and centered at I; = i x §l. Equations (32) and (33) lead to

w?(x)
r2(x)

Bul)) = (2n) / a2 piisr(y]. (34)

In figure 14a we show the power spectrum for the weak-lensing convergence assuming that the
background galaxies are at a redshift of z = 1. Following Jain & Seljak (1997), we use a model of
the non-linear power spectrum proposed by Hamilton et al. (1991), and later extended by Peacock
& Dodds (1994,1996) and Jain et al. (1995). In panel b we show the integrand of equation (34) as
a function of redshift for / = 1000 and ! = 10000. The area under the curve is proportional to P.
We conclude that the peak contribution comes from z = 0.3 — 0.4 depending on the [ of interest,
but that the integrand is a very broad function of redshift.
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The previous calculation can be easily extended to higher moments of the projected field. We
obtain

w”(x)

Equations (33) and (35) can be used to calculate the covariance matrix of the power spectrum

(5(l1) - (ln))e = 2m)" oty + -+ + 1) /dx Tolly/r(x), - In/r(X)]- (35)

estimator,

2P2() . -
Cij = Ay [ﬁ(liz)%-l-Tn(li,lj)]

Tty = o [aniget [T [T 00, /0.0, o/ )

Before presenting the results of the numerical evaluation of the different terms in equation (36),
we will make an order of magnitude estimate of the size of the different terms. In the process, we
hope to gain some physical insight and understand how the different terms scale with the parameters

of the problem. The ratio of the non-Gaussian to Gaussian terms is (for 7 = j)

R—&ﬂ (37)
- 2p2’
We then make the following crude approximations:
w?(x*)
P.(l) ~ (2m)Ax* Pll/r(x")],
)~ CrAY 25 PU/O)
_ wt xX*) -
T~ @A L0 TGO/ (39)

where we have assumed that the line of sight integral is dominated by contributions from x*+Ax* /2,
and that the integrand remains roughly constant over this interval. We neglect the configuration
dependence of the trispectrum and just use its typical value at the scale of interest. Note that both
the power spectrum and the trispectrum are a function of time so they should be evaluated at y*.
Under these simplifying assumptions the ratio becomes

(39)

It is interesting to compare these formulae with their analogues in 3D (equation [4]). If we make
the identification k = I/r(x*), Ak, = 2r/Ax* and 0k = 6l/r(x*), we can rewrite the prefactor
A, /12 (x*)Ax* as 2mkAk,0k/2. Let’s compare this with the relevant prefactor in the 3D case:

47k%5k/2. By assumption, k > Ak,, which means that the Gaussian variance is much larger, or
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the ratio of non-Gaussian to Gaussian terms is much smaller, in 2D compared to 3D. This is a
result of the fact that only the Fourier modes perpendicular to the line of sight contribute to the 2D
projection, by virtue of an otherwise rapidly oscillating integrand (see derivation above). This means
a far fewer number of non-linear modes are available in 2D compared to 3D, for a given k. While
in 3D all the modes in a shell of volume 47k?8§k are available, in 2D only those in a ring-shaped
region of area 2rkdk and height Ak, contribute to non-Gaussianity. Hence, projection raises the

significance of the Gaussian variance relative to the non-Gaussian term.

The projection has another interesting effect. As discussed in the context of the hierarchical
ansatz, the trispectrum scales as the third power of the power spectrum. Contrary to what happens
for the three-dimensional case, the number of modes only increases like k2 = 12/r?(x) as we go to
higher [ (we are assuming &/ ~ [ here as it gives the correct order of magnitude estimate of the true
significance of non-Gaussian terms; see §3.4). The ratio R scales as R o« k?P(k)/Ax* instead of
k3P(k) for the 3D case. As a consequence, if the 3D power spectrum decreases faster than k=2,
the relative importance of the non-Gaussian variance can actually decrease as one goes to smaller

angular scales.

As an example we consider the weak-lensing effect on background galaxies at a redshift of z ~ 1.
We then take x* corresponding to a redshift of z ~ 0.4, which means a distance of r(x*) = x* ~
1h~'Gpc. Because the integrand is a slowly varying function of y we will take Ay* ~ x*. We will
concentrate on scales [ > 1000 (§ < 1/l ~ 3’ in the correlation function) which at this distance
correspond to k& > 1 h/Mpc. Since these scales are all in the non-linear regime, to estimate the

magnitude of R we use the value of the trispectrum obtained in the simulations, T' ~ 17P3, to get

[ ) ( ol )(lh_leC)Q(lh_leC)(T/P?’ P(l/lh_lec)>

R ~0.2
(1000 1000 r(x) Ay 17 0.5h—3Mpc3

(40)
This is in contrast with the 3D case where the corresponding R is larger than 1 for £ > 1 h/Mpc.
As we said above, projection decreases the effective number of non-linear modes which makes the
Gaussian variance comparatively more important. As discussed in §3.4, the importance of non-
Gaussianity can also be roughly estimated by S40?/5 for the corresponding smoothing scale of
interest. Jain et al. (1998) computed the skewness and found Sz ~ 1.6 on a scale of 3', which we
can take to be a rough estimate of Syo? as well. Thus our simple estimate of R above is roughly

consistent with the alternative estimate of non-Gaussianity based on the one-point statistic Sy02/5.

Also note that the weight function w(y) cancels out in the ratio R, so the above conclusions
apply equally well to other types of projection, such as that in angular galaxy surveys. The non-
Gaussian contribution to the error is comparable but does not dominate over the Gaussian contribu-
tion for the cluster-normalized SCDM model, and for mass distributions projected over cosmological
distances (~ 1h~!Gpc). For angular surveys, however, the effects of non-Gaussianity are likely to be

larger than in the weak-lensing case, since the projection takes place over a smaller range of scales.
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In figure 15 we show the result of numerically integrating equation (36). We use here the
hierarchical form together with HEPT discussed in §3.3, but rescale the amplitude of R, (~ Rp)
to match the amplitude of the power spectrum variance measured in the simulations (7/P3 = 17
at k = 1hMpc~! for the SCDM model). The figure shows the ratio of the diagonal terms of the
covariance so this value is all that is needed to normalize the calculation. This should be a good
approximation for most of the scales shown, but would start to break down close to [ ~ 100, in
which case the PT result would begin to take over (see equation 9). We show the results for three
cosmological models, the SCDM model we have been considering so far (og = 0.60, I' = 0.5),
an open model with ©Q,, = 0.3, T' = 0.21 and o3 = 0.85, and a flat cosmological constant (A)
dominated model with Q,, = 0.3 and Q4 = 0.7. We have assumed the the hierarchical ratios R,
and Ry are independent of the cosmological model, which should hold to a very good approximation

(Scoccimarro et al. 1998).

The ratio R obtained in the numerical integration for SCDM is in agreement with our simple
estimate in equation (40). Furthermore we can see that the ratio has a maximum around [ = 8000,
which is a consequence of the fact that the 3D power spectrum decreases faster than k=2 therefater.
Even though we are probing scales that are more non-linear as we go to higher [, the projection
actually makes the estimates of the power spectrum of k more Gaussian, since the number of non-
linear modes does not increase as fast as to compensate for the decaying power spectrum. Therefore,
contrary to what happens in 3D, the non-Gaussian effects never dominate even at very small scales
for the SCDM model.

Figure 15 shows that the non-Gaussian effects can be more important in other models, however.
The main difference between models arises due to their different normalizations, parametrized by
og (in all cases, the normalization is chosen to yield the correct cluster abundance today). An
additional effect which enhances the signature in the open model is the difference in the fluctuation
growth rates. The parameter og specifies the normalization at the present time but the lensing effect
is sensitive to the amplitude of the fluctuations all the way up to the redshift of the background
galaxies. In the open model structure grows slower than in the flat one, so for a given normalization
today the average power up to a redshift z ~ 1 is significantly larger. The growth rate of the
cosmological constant model is intermediate between that of the open and flat models. Hence,
although the open and cosmological constant models have the same present normalization, the size
of the ratio in figure 15 differs for the two models. Finally, there is one more differentiating factor:
the angular-diameter distance to the relevant redshifts is largest in the A model, which tends to
further reduce R (equation [40]).

Our results for different cosmologies agree roughly with the numerical investigations carried out
by van Waerbeke et al. (1998). We generally find, however, a smaller (by a factor of order two) non-
Gaussian contribution than they do. The source of this discrepancy is likely the different treatment

of the dynamics of gravitational clustering. As described above, we use as an approximation the
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hierarchical model for the diagonal non-Gaussian contribution; on the other hand, van Waerbeke
et al. (1998) use the dynamics of second-order Lagrangian perturbation theory in 2D. It would be
necessary to explore the validity of the latter for projected fields from 3D numerical simulations to

resolve this issue.

In summary, we have shown that the non-Gaussian terms in the diagonal of the projected
power spectrum, which arise due to the non-linear nature of gravitational clustering, can be the
dominant source of error in some models, depending on the normalization and cosmology. These
terms should be included when analyzing future surveys or when trying to predict their capabilities
(van Waerbeke et al. 1998, Hu & Tegmark 1998). Perhaps more importantly, as in the three-
dimensional case, gravitational clustering induces correlations between different band-powers, in
addition to increasing their individual error-bars. Calculations similar to those performed for figure
11 are straightforward to carry out for weak-lensing, but will not be included here.

6. Discussion

We have analyzed the covariance matrix for band-power estimates, both for the three-dimensional
matter density and its angular projection. Three general statements can be made. First, the non-
linear nature of gravitational clustering tends to increase the diagonal variance over the Gaussian
error as well as induce correlations between different band-powers. Second, for scales k where
47k3P(k) < 1, the covariance matrix is reasonably well approximated by its Gaussian part; con-
versely, the Gaussian approximation rapidly breaks down on scales 47k3P(k) 2 1. Third, and inter-
estingly, band-powers on non-linear scales are actually significantly correlated with band-powers on
quasilinear scales (see e.g. figure 2); this is because the growth of wave modes on small scales is

significantly affected by the presence of long-wave modes.

We have also discussed how the relative importance of Gaussian and non-Gaussian terms is
somewhat dependent upon the choice of binning in k-space, because the binning affects the Gaussian
covariance but not the non-Gaussian one (equation [4]). Coarse graining in k-space lowers the
Gaussian variance, while increasing the survey size decreases the overall amplitude of the covariance
matrix. However, there are binning-independent ways to quantify the relative importance of non-
Gaussian versus Gaussian variances, such as by focusing on the estimation of the amplitude of the
power spectrum (see §4). In this particular case, one is essentially using a very coarse bin which
includes all wave-modes. This is the reason why simple estimates such as the one given in equation
(20) work as a rough guide as to the importance of non-Gaussianity. In the highly non-linear regime
where all wave modes are highly correlated, the amplitude of a rescaled power spectrum (equation
[24]) is more poorly determined compared to its shape. The key to decreasing error-bars in this case

is to increase the survey volume, rather than adding more wave-bands.
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Angular projection adds interesting new twists to the above general picture. We have studied
the projection relevant for weak lensing in more detail, but most of our conclusions should hold for
other projections as well since the relevant weight function w(y) (equation [28]) drops out of the non-
Gaussian-to-Gaussian ratio R (equation [39]). Projection tends to reduce the relative importance
of non-Gaussianity, as fewer non-linear modes contribute than in 3D. In particular, for the cluster-
normalized SCDM model, even though the non-Gaussian terms eventually dominate the covariance
of the 3D power spectrum on small enough scales, they never dominate for the 2D case, though
they are comparable to the Gaussian terms on certain angular scales. However, the amplitude of
the effects we study is very sensitive to the cosmological model, in particular to the normalization
og and the fluctuation growth rate. Cluster-normalized low matter density models tend to show
stronger signs of non-Gaussianity, and open models even more so than A models. We find that for
most reasonable models the non-Gaussian terms in the covariance grow significantly compared to
the Gaussian terms around [ ~ 1000 which corresponds to 8 ~ 3. They even dominate for the open

CDM model. This will have a significant impact on the analysis of future weak-lensing surveys.

To get a handle on the size of the various effects we are interested in, we have used perturbation
theory for the linear or quasilinear scales, and the hierarchical ansatz and numerical simulations for
the non-linear regime. As an outgrowth of this investigation, we have shown that the hierarchical
ansatz cannot be valid with R, and R} strictly constant, for the particular type of trispectrum
configurations relevant for the power-spectrum covariance. If this simple model were correct, then
the correlation coefficient 7;; (equation [2]) would become larger than one for two widely separated
shells, unless R, = —Rj. But it turns out that R, = —R} gives the wrong shape of r;; as a function
of shell separation. Hence, the hierarchical ansatz cannot be valid in its simplest form. However,
we have shown how simple modifications of the hierarchical ansatz can be made to give predictions

that match our numerical results.

There are at least two sets of issues we have left untouched here. First, we have ignored the
effect of biasing in our calculations. A simple linear biasing is of course trivial to include. In this case
the relevant ratio of Gaussian to non-Gaussian terms in the covariance is V;T,/2PZ = V,T/2P* «
k3P = k3Pg /b?, assuming the hierarchical ansatz, where P, and T, stand for the power spectrum
and trispectrum of the galaxies and b is the linear bias parameter. Clearly the non-Gaussian effects
we study are induced by gravity, so the relevant quantity that governs their amplitude is the size of
the matter, not galaxy, fluctuations. The value of k where the error-bars start to become larger than
what is expected for a Gaussian random field marks the non-linear scale. Thus if k3Pg is different
from one at this scale we can conclude that there is a significant bias between the mass and galaxy
fluctuations, and in the simple linear bias model we could in principle try to measure b through
this effect. In reality, however, the biasing relation is likely to be complicated by non-linearity and
stochasticity, especially on scales where the non-Gaussian covariance is not negligible (e.g. Dekel &
Lahav 1998).
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Lastly, we have focused throughout this paper on the sample-variance dominated regime. In
reality, shot-noise, either due to the discrete nature of galaxies or to their random orientations,
might be non-negligible. Moreover the survey window will be important for scales approaching the
size of the survey. It is relatively straightforward to generalize our expressions to include these
effects. An interesting question is how to obtain the optimal weighting of the data in the presence

of non-Gaussianity. This will be presented in a separate paper.
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Fig. 1.— Diagonal elements of the power spectrum covariance matrix normalized by the Gaussian
variance for SCDM with og = 0.60 (z = 0). The centers of the shells are given by k; = (27i) h/Gpc,
and width 0k = 27 h/Gpc. For this model the non-linear scale is ky; = 0.33 h/Mpc.
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Fig. 2.— Correlation coefficients r;; = C;;/[CiC;;]'/? as a function of k; for different fixed k;
obtained using PT for a 1 Gpc/h box, and the SCDM model. The k shells are the same as in figure
1. The values of k; can be inferred from the place where r;; = 1. In each panel we plot the results
for two different values of k;.
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Fig. 3.— The coefficient (12(k1, k2, 6) [equation (10)] as a function of 6 for different scales. From
top to bottom, (k1, k2) = (0.1,0.4) h/Mpc, (0.1,0.2) h/Mpc, (0.2,0.4) h/Mpc, and (0.4,0.8) h/Mpc.
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Fig. 4— The top panel shows the diagonal elements of the covariance matrix normalized by the
Gaussian variance, obtained by comparing 20 PM simulations. The dashed line shows the predictions
of PT, equation (9), and the solid line the hierarchical scaling, equation (13). The bottom panel
shows the fractional error in the band-power estimates. This fractional error scales with the size of
the survey or simulation box, the results in the figure correspond to a volume V; = (100 h~'Mpc)?3.
Results for other volumes can be obtained by scaling by (V5/V)'/2. The vertical line on the z axis
indicates the non-linear scale. The width of shells in k-space is §k = 27/100 h/Mpc.
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Fig. 5.— Correlation coefficients r;; from the N-body simulations as a function of k; for a fixed k;.
The two sets of points (triangles and squares) in each plot correspond to different k;’s. The different
values of k; can be deduced from the place where r;; = 1. The mark on the z axis indicates the
non-linear scale. The width of shells in k-space is dk = 47/100 h/Mpc.
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Fig. 6.— A comparison of r;; obtained from PT and N-body simulations, at og = 0.375 (2 = 0.6).
Note the noise level in the covariance matrix measured from the numerical simulations; this is due
to the low number (20) of realizations used to estimate the ensemble averages. The width of shells
in k-space is 6k = 27 /100 h/Mpc.
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Fig. 7.— Cross-correlation coefficients r;; obtained N-body simulations in redshift space, for og =
0.60. The top panel shows r;; for the monopole of the power spectrum, whereas the bottom panel
shows r;; for the quadrupole power spectrum. The width of shells in k-space is §k = 87/100 h/Mpc.
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Fig. 8.— Estimate of (R, + Rp)/2 from the measured power-spectrum covariance matrix, for k; =
0.98 h/Mpc, as a function of k;, using equations (13-14). The solid lines show the expected (R, +
Ry)/2 value assuming that the configuration dependence in the non-linear regime is the same as that
given by PT.
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Fig. 9.— The ratio Ry/R, given by PT as a function of configuration angle § between k; and ko
for different scales. From top to bottom, (k1, k) = (1,2) h/Mpc, (1,4) h/Mpc, (1,8) h/Mpc, and
(1,16) h/Mpc. Note how the relation R, = —R} eventually holds for most configurations as the
shells become very distant.
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Fig. 10.— The trispectrum hierarchical amplitude @4 for configurations k1 = ko and k3 = 1.5k as
a function of the angle cos(#) = k; - ks in the non-linear regime, for two different scales, ki = 1.26
h/Mpc (top) and k; = 1.57 h/Mpc (bottom). The solid lines show the predictions of HEPT (equation
17) whereas the numerical simulations results are denoted by symbols (with error bars determined
from 20 realizations).
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Fig. 11.— Correlation coefficients r;; in the non-linear regime predicted by HEPT (solid lines)
compared with those from numerical simulations (symbols). The width of shells in k-space is dk =
47 /100 h/Mpc.
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Fig. 12.— Variance in £ as a function of k.. Note that the signature of non-Gaussianity is much
larger here than what could be seen in the diagonal terms coefficients shown in figure 1. This is a
result of the cross-correlations between bins.
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Fig. 14— Panel (a) shows the power spectrum of the projected mass density for the cluster-
normalized SCDM model. The sources are assumed to be located at z = 1. The bottom panel
illustrates where the contribution is coming from in redshift. The area under the curve is proportional
to the projected power spectrum, the normalization is arbitrary.
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Fig. 15.— Ratio of the non-Gaussian to Gaussian terms in the covariance of the projected mass
density, for cluster-normalized SCDM (solid line), ACDM (dot-dashed line) and open CDM (dashed
line) models. The hierarchical ansatz was assumed in the calculation, with R, ~ Rj. See text for
details.



