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Abstract

We study electroweak symmetry breaking involving the seesaw mechanism
of quark condensation. These models produce a composite Higgs hoson in-
volving the left-handed top quark. yvet the top mass arises naturally at the
observed scale. \We describe a schematic model which illustrates the general
dynamical ideas. We also consider a generic low-energy effective theory which
includes several composite scalars. and we use the effective potential formal-
ism to compute their spectrum. We develop a more detailed model in which
certain features of the schematic model are replaced by additional dynamics.
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1 Introduction

The Higgs doublet of the standard model. used to break the electroweak symmetry and
generate all observed quark, lepton and gauge boson masses. does not have to be a funda-
mental field. In fact, the fermions observed so far have the appropriate quantum numbers
to provide the constituents of a composite Higgs field. Therefore. it is interesting to con-
sider the existence of some new. non-confining strong interactions which bind the quarks
and/or leptons within a composite Higgs field. giving rise to a condensate (associated
with a Higgs VEV) and to Higgs-Yukawa couplings.

Due to its large mass. the top quark is a natural candidate for providing a constituent
to a composite Higes boson and an electroweak symmetry breaking (F2\WSB) condensate
[1. 2]. However. the computation of the W and Z masses to leading order in 1/N, (V. is
the number of colors) shows that the quark whose condensate gives the bulk of electroweak
symmetry breaking must have a mass of order 0.6 TeV (in the absence of an excessively
fine-tuned version of the model in which the new strong dynamics is placed at the GUT
scale). Such a heavy quark may. in principle. be part of a fourth generation. but in
that case one would have to worry about the proliferation of weak-doublet fermions that
contribute to the electroweak radiative parameter S. and the top would not be directly

involved in the electroweak symmetry breaking mechanism.

In a previous letter [3] two of us introduced the idea of a dynamical top quark seesaw
mechanism. Here the EWSB occurs via the condensation of the left-handed top quark
with a new, right-handed weak-singlet quark. which we refer to as a \-quark. The \p
quark has hypercharge Y = 4/3 and thus is indistinguishable from the ¢z. The dynamics
which leads to this condensate is essentially topcolor (4, 5]. The fermionic mass scale
of this weak-isospin I = 1/2 condensate is large, of order 0.6 TeV. This corresponds to
the formation of a dynamical boundstate weak-doublet Higgs field. ~ (Xrtr,Xrb0L). To
leading order in 1/.N. this yields a VEV for the Higgs boson of the appropriate electroweak
scale, v/\/‘z = 175 GeV. However, the model also incorporates a new left-handed weak-
singlet y-quark. with ¥ = 4/3. The \-quarks condense amongst themselves through
additional new dynamics at still larger mass scales. Moreover, the left-handed y-quark
has a weak-singlet condensate with the right-handed top quark. There is ab inttio no
direct left-handed top condensate with the right-handed anti-top in this scheme (or else

this condensate is highly suppressed).

Upon diagonalization of the fermionic mass matrix this admits a conventional seesaw



mechanism. yielding the physical top quark mass as an eigenvalue that is less than the
600 GeV matrix element.  Thus. the top quark mass can be adjusted naturally to its
experimental value. The diagonalization of the fermiouic mass matrix in no way affects
the fact that the model has a composite Higgs doublet. with a VEV of v//2 = 175
GeV. The mechanism incorporates t;, which provides the source of the weak [ = 1/2
quantum number of the composite Higgs boson. and thus the origin of the EWSB vacuum
condensate. Topcolor and any additional strong dynamics is occurring at a multi-TeV
scale, and the observed top quark mass arises naturally, being suppressed by a ratio of
~TeV scales. Indeed. if a mechanism like this operates in nature, then we have already

observed the key [ = 1/2 element of EWSB at the Tevatron !

There are several attractive features of this mechanism. First. while there are the
additional \ quarks involved in the strong dvnamics. these do not carry weak-isospin
quantum numbers. This is a remarkable advantage from the point of view of model
building. The counting constraints of technicolor. ¢.g.. on the number of techniquarks
from the 5 parameter. are essentially irrelevant for us. since we have only a top quark
condensate in the EWSB channels. The constraints on custodial symmetry violation, i.e.,
the value of the Np or equivalently, T parameter. are easily satisfied. being principally
the usual m, contribution. plus corrections suppressed by the seesaw mechanism [3].

Second. the models make a robust prediction about the nature of the electroweak
condensate: the left-handed top quark is unambiguously identified as the electroweak-
gauged condensate fermion. The scheme demands the presence of some kind of topcolor
interactions. new strong interactions associated with the formation of the top condensate.
This implies that QCD itself will change character at the multi-TeV scale as it is embedded
into the larger topcolor containing gauge group. However, beyond the / = 1/2 component
of the EWSB, the remainder of the structure, e.g., the \-quarks and the additional strong

forces which they feel. is somewhat arbitrary at this point.

Third. the scheme implies that in the absence of the seesaw. the top quark should
have a larger mass. of order 600 GeV. This in turn leads to a relaxation of the constraints
on the masses of topcolor colorons and anyv additional heavy gauge hosons. permitting
the full topcolor structure to be moved to somewhat higher mass scales. This gives more

model-building elbow room, and may reflect the reality of new strong dynamics.

We believe the top quark seesaw is a significant new idea in dvnamical models of
EWSB and opens up a large range of new model building possibilities. For that reason

we will give a detailed discussion of the seesaw mechanism in this paper.
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We begin in Section 2 with the presentation of a schematic model. Here the electroweak
condensate involving {; and \ is driven by topcolor interactions. but the weak-singlet
condensates are simply mass terms that we implement by hand. This naturally separates
the problem of EWSB from the weak-singlet physics in the v g and tr sector, which
is the key advantage of the seesaw mechanism. We derive the effective Lagrangian for
the dynamical Higgs and its interactions with matter using the renormalization group
approach in the large-N. fermion-bubble approximation. The schematic model shows
the emergence of the Higgs boundstate and the formation of the Ygtr condensate. The
schematic model provides a point of departure for the construction of more elaborate
models, and the problem of generating light fermion Higgs-Yukawa couplings, which we
will not address in detail. We will briefly summarize options for addressing the problem of
the b-quark mass in the schematic model. The Higgs boson mass is large in the schematic

model. given by 2m, ~ O(1 TeV) in the large- V. fermion-bubble approximation.

In Section 3 we proceed with a more ambitious attempt to replace the weak-singlet
mass terms of the schematic model with a dvnamical mechanism. This is a somewhat
general construction. and it leads to additional composite scalars. We give a full effective
potential analysis of this scheme. Some weak-singlet mass terms are required to trigger
the desired tilting of the vacuum. though they may be much smaller than in the schematic
model. In the more ambitious scheme the Higgs boson can be as light as ~ 100 GeV pro-
vided there is a partial degeneracy between the weak-doublet and weak-singlet composite
scalars. In the decoupling limit the theory looks like the standard model with a light
Higgs boson.

In Section 4, we construct a class of models incorporating the top quark seesaw mech-
anism in which topcolor symmetry breaking is dynamically generated. The model also
allows for the generation of masses for the light quarks and accommodates intergenera-
tional mixing. While the model does not provide a complete explanation of flavor and
electroweak symmetry breaking, we regard it as an existence proof and a guide to future

theoretical investigation.

Section 5 summarizes our conclusions. In Appendix A we apply the effective potential
formalism of Section 3 to the top quark seesaw model of ref. [3]. In Appendix B we
prove that the coupled gap equations used in ref. [3] are equivalent with the stationarity

conditions of the effective potential derived in Section 3.



2 A Schematic Model

In the present section we will study a schematic model of the top guark scesaw. This
model will be a minimal version of the top seesaw and is intended primarily to exhibit
the essential physics. The schematic model contains the elements of the third generation,
the left-handed top-bottom doublet. vy = (¢;,b.), the right-handed top quark. tz, (we
will postpone discussing the right-handed 6-quark and associated fields for the moment;
indeed. the present model will not be anomaly free without the inclusion of bz and asso-
ciated fields. so we return to consider it below). We further introduce two weak-singlet
fermions. \ g and \ r, cach having the quantum numbers of tz. The schematic model ex-
hibits the dvnamical formation. via topcolor. of the Higgs doublet as a composite field of
the form:
\rliL

f

(2.1)

hS

\rbL

We proceed by introducing an embedding of QCD into the gauge groups SU(3), x
SU(3),, with coupling constants hy-and h, respectively. These symmetry groups are
broken down to S{'(3)gcp at a high mass scale V. The assignment of the elementary
fermions to representations under the full set of gauge groups ST (3); x NU(3), x SU(2)w x

U(1)y is as follows:
v (3,1,2. +1/3) , \r: (3,1.1, +4/3) . tryxe o (1.3.1, +4/3) . (22)

This set of fermions is incomplete: the representation specified has [SU(3),]?, [SU(3).]>,
and U(1)y[SU(3),.)* gauge anomalies. These anomalies will be canceled by fermions
associated with either the dynamical breaking of SU(3), x SU(3),, or with producing the
b-quark mass (a specific example of the latter case is given at the end of this section).
The dynamics of EWSB and top-quark mass generation will not depend on the details of

these additional fermions.

We further introduce a scalar field. ®. transforming as (3.3,1,0). with negative M3
and an associated quartic potential such that ¢ develops a diagonal VEV.
(03) = Vé:, (2.3)
and topcolor is broken to QCD.

SUBY % SU3): — SUB)ocn (2.4)



vielding massless gluons and an octet of degenerate colorons with mass 1/ given by
2 _ 2 2 L2 5
M= (h{+ 1) Ve, (2.5)

In more complete models this symmetry breaking mayv arise dynamically, but we describe
it in terms of a VEV of a fundamental scalar field in the present model for the sake of
simplicity.

We now introduce a Yukawa coupling of the fermions \1 g to ® of the form:
—EXrR® L +hc. — = VX (2.6)

[n this scheme € is a perturbative coupling constant so V > g, . Finally. since both tp
and Y carry identical topcolor and U'(1)y quantum numbers we are free to include an
explicit mass term of the form

— e \Llr + hic. (2.7)

We emphasize that the mass terms of X A r and Y7 (g will arise dynamically in subsequent
schemes. and are introduced by hand into the schematic model for purposes of illustration.

With these terms. the Lagrangian of the model at scales below the coloron mass becomes:
Lo = Liinetic — (- NL\R + e Nz tr + hoc) + L (2.8)

and L;, contains the residual topcolor interactions from the exchange of the massive

colorons:
4 4

- gtz(‘ - ;;A‘ e A 5
Line = =V \ VLY F L) \NR W5 XR| + LL+ R (2.9)

where LL ( RR) refers to left-handed (right-handed) current-current interactions, and g, is
the topcolor gauge coupling. Since the topcolor interactions are strongly coupled, forming
boundstates, higher dimensional operators might have a significant effect on the low energy
theory. However, if the full topcolor dynamics induces chiral symmetry breaking through
a second order (or weakly first order) phase transition, then one can analyze the theory
using the fundamental degrees of freedom. namely the quarks. at scales significantly lower
than the topcolor scale. We will assume that this is the case. which implies that the effects
of the higher dimensional operators are suppressed by powers of the topcolor scale, and
it is sufficient to keep in the low energy theory only the effects of the operators shown
in eq. (2.9). Furthermore, the LL and (RR) interactions do not affect the low-energy
effective potential in the large V. limit [6], so we will ignore them (oue should keep in

mind that these interactions may have other effects. such as contributions to the custodial



symmetry violation parameter 1" [7. 6]. but these effects are negligible if the topcolor scale
is 1n the multi-TeV range).
To leading order in 1/.V, the LR interaction iu (2.9) can be rearranged into the

following form
Yoo ——

Line = ﬁ(cm \r) (NREL) - (2.10)

This is the Nambu-Jona-Lasinio (NJL) interaction {3]. which provides the binding of the
composite Higgs multiplet. We will analvze the physics of (2.8) by using the coloron mass

M as a momentum space cut-off on the loop integrals of the theory.

[t is convenient to pass to a mass eigenbasis with the following redefinitions:

\r=cosd \p+sind ir; 5 =rcosttg—sinb \p (2.11)
where:
It 57
tanf = — (2.12)
Fxn

In this basis, the NJL Lagrangian takes the form:

EO = L"kinezic - -TTYI—[;\L + h.c.

g
e

+ ¢y, (cos @ \'R——sin0tln)] [(COS()TZ—Sin0 7’,:) L'L] (2.13)

where
M = Vi +ui, (2.14)

We now proceed with the NJL analysis. factoring the interaction term in (2.13) by in-
troducing a static auxiliary color-singlet field, o (which will become the composite Higgs
doublet), to obtain

Lo = Liinetic ~ [TI—E L+ gtcE(COSO \r —sind tg) » + h.c.] — M7 T',:' . (2.15)

Let us now derive the low energy effective Lagrangian by means of the block-spin
renormalization group. We view eq. (2.13) as the effective Lagrangian of the theory at a
distance scale ~ 1/M. To derive the effective Lagrangian at a larger distance scale, ~ 1/pu,
where M > u, we integrate out the modes of momenta M > |k| > x. For M > M > pu

the field v decouples. and we obtain:

) ~ ~ 2
Dol = Mu)e'e = A(phe)" (216)

£ﬁ>ﬂ = L:kineti(t — fthe sin ¢ (;T,t’;;w? + ll.C.) + Zo



In the limit M > M > j. we obtain by integrating the fermion loops:

_ AN, o
M) = ME =2 (A ot 0 3T —sint 0 1)

v STe
2ar [ 2 572 372 2
) geN. [ TN S (3T
Zy = =] In | - | sin®0 — £
’ 167 _D(M >+ n(/ﬂ Y O\ P
]

tN[ \& 1 AV
gtf - In <:7) +1In — sin*8] + O 3720 ﬁ_—f
st |\ M H ] M2

These relationships are true for M > y in the large .V, approximation. and illustrate the

N———

>l
I

decoupling of the \ field at the scale 37. In the limit sing < | we sce that the induced
couplings are those of the usual NJL model. However, in this limit the Higgs doublet is
predominantly a boundstate of YZzy'r, and the corresponding loop, with loop-momentum
ranging over M > |k| > V. controls most of the renormalization group evolution of the
effective Lagrangian.

Cousider, therefore. the limit sin® 0 < 1, hence cos? =~ |. In order for the composite
Higgs doublet to develop a VEV. the SU(3); interaction must be supercritical. The

criticality condition corresponds to demanding a negative M?2(y) as ¢ — 0:

: ~1
Jt(‘ \, l /Lf\\
8rz M?

This condition is equivalent to the NJL criticality condition for y2 /M? <« 1. Once

(2.18)

we take g to be supercritical. we are free to tune the renormalized Higgs boson mass,
MZE(p) = Mf,(p)/Zq,, to any desired value. This implies that we are free to adjust the
renormalized VEV of the Higgs doublet to the electroweak value, (/°) = v/v2 ~ 175

GeV. The renormalized effective Lagrangian at low energies takes the form:
Lo = Luinetic — gesin @ (vpthp +1 Del? — M2 fo = MpTo)? 2.19
L_\]>” kinetic g sin Uplp @ + h.c.) + | ‘rgl - ;(,u) Y (‘rj ?9) ("" )

where:

| \VE:
Jee_ M:i(p) = '(M); A=

B\
9‘:\/5;’ A= z:

The resulting top quark mass can be read off from the renormalized Lagrangian:

(2.20)

m; = ¢; sin o— (2.21)

V2



which corresponds to a Pagels-Stokar formula of the form:

,  GiN. M*
voo= — In fw—
872 sin” 0 Mo

I~
| S
6%
—

) + O(sin" 0). (2.

The Pagels-Stokar formula differs from that obtained (in large N, approximation) for top
uark condensation models by the large enhancement factor 1/sin®0. This is a direct

consequence of the seesaw mechanism.

We note that. in principle, using the freedom to adjust sinf we could accommodate
any fermion mass lighter than 600 GeV. This freedom may be useful in constructing more
complete models involving all three generations. The top quark 1s unique. however, in
that it is very difficult to accommodate such a heavy quark in any other wayv. We therefore
believe it is generic. in any model of this kind. that the top quark receives the bulk of its

mass through this seesaw mechanism.

To better understand the connection to the seesaw mechanism we can view the dy-
namics of the top quark mass from the mixing with the \ field. The mass matrix for the

heavy charge 2/3 quarks takes the form:

_— 0 My tR
(7 o) ( ()
e e/ Wn

where my, is dynamically generated by the VEV of the composite Higgs, . thus satisfying

(2.23)

the Pagels-Stokar relationship (g is the weak gauge coupling):

2 A7 2
g*N. . M

v? = J\ - mf\ In (—2—>
ST H{y

If the logarithm is not very large, then we obtain the advertised value m,, ~ 600 GeV.

(2.24)

Diagonalizing the fermionic mass matrix of (2.23) for p,, > m,, leads to the physical
top mass:
my X Mok me tan@ . (2.25)
Hx
and substitution of (2.25) into (2.24) reproduces (2.22) for small tan § ~ sin 6.

The minimization of the Higgs potential gives the usual NJL result, that the Higgs
hoson has a mass twice as large as the dynamically generated fermion mass, which is
my, in the present case. Thus. the schematic model includes only one composite Higgs
boson. which is heavv. of order 1 TeV. In Section 3.3 we will show that in a more general
theorv that includes the seesaw mechanism there are more composite scalars. and one of

the neutral Higgs bosons may be as light as O(100 GeV').



We note that the inclusion of the b-quark is straightforward. and the schematic model
affords a simple way to suppress the formation of a b-quark mass comparable to the top
quark mass. We include additional fermionic fields of the form wy . wp. and bg with the
assignments:

brywr : (1.3.1.—2/3) . wg:(3,1.1.-2/3). (2.26)

These fermion gauge assignments cancel the anomalies noted above. \We further allow

Wpwr and Trbr mass terms. in direct analogy to the \ and ¢ mass terms:
LoD —(fuu@Lwr + ptp@rbr + h.c.) (2.27)

We can suppress the formation of the ©7bp condensate altogether by choosing M, =
Vit + pd, ~ M. I this limit we do not produce a b-quark mass. Ilowever, by allowing
fow < M and pp/p,. < 1 we can form an acceptable b-quark mass in the presence of
a small T70p condensate. Yet another possibility arises within this model. though it will
not be a general feature of these schemes. i.c.. to exploit instantons [5]. If we suppress the
formation of the Z7bgr condensate by choosing M, ~ M, there will be a Trbp condensate
induced via the 't Hoolt determinant when the ¢ and \ are integrated out. We then
estimate the scale of the induced 7 bg mass term to be about ~ 20 GeV. and the b-quark
mass then emerges as ~ 20p /1o, GeV. We will not further elaborate the b-quark mass
in the present discussion. since its precise origin depends critically upon the structure of

the complete theory including all light quarks and leptons.

3 The Effective Potential Formalism

While we believe that the NJL approximation illustrated in section 2 in connection with
the schematic seesaw model is probably a reasonable guide to the physics of topcolor, there
are important issues for which it is useful to have a more general and detailed description.
In particular. the vacuum structure of the topcolor theory is crucial to the success of the
enterprise, and it is important to study it with all the tools at our disposal. One of the
most useful tools is the effective potential [9]. This has been used in [1] to analyze simple
topcolor models. 1n this section we illustrate its use in the seesaw scheme.

We consider a low energy effective theory, valid up to a scale M > O(10 TeV), consist-
ing of the standard model gauge group and fermions, and a new vectorlike quark, v, which
transforms under the SU(3)¢ x SU(2)w x [7(1)y gauge group exactly as the right-handed

top. {z. We assume that at the scale M the following four-fermion interactions. involving



the top. bottom and vectorlike quarks. are induced:

3 )
NTE

Lin = AVE A’BZ;;_“ 4B <_\_[ [)’[g) (E}g. \[) . (3.1)

where V. = 3 is the numbers of colors, and =45 (A, B = b, ¢, \ ) are coefficients determined
by the high energy theory. At the scale M the electroweak symmetry is unbroken. implying
zb4 = 4. Hence there are six independent =g coefficients. We imagine that the four-
fermion operators (3.1) arise from topcolor {1] like interactions. and therefore z g are
functions of gauge couplings and charges. For example. in the schematic model presented
in Section 2, =, = N.g2/(87*) and all other z,5 coefficients are zero. In the model
introduced in ref. [3] all z4p ~ 1. and their dependence upon the charges is given in
Appendix A [see eq. (A.1)].

In addition to the four-fermion operators (3.1). small electroweak preserving mass

terms are allowed 1 the Lagrangian:

Linass = =N YR — i ptn + hoc (3.2)

The model presented in Section 4 is an example of high energy physics that generates

dynamically these four-fermion operators and masses.

3.1 The Effective Potential

Below the scale A/. the four-fermion interactions give rise to composite scalars, ¢ a5

BrAp (A.B = b,t,\), which are described by the following effective Lagrangian

— N.A?
Leg = Z [(ALBRQMB + h.C.) + S ¢LB¢AB
A.B=bt.\ ~4B
— (U NLXR T e Nptr + hoc) . (3.3)

At the scale M. ¢4p are auxiliary fields without kinetic terms. At scales below M the
Yukawa interactions induce kinetic terms which then can be renormalized. and we find at

a scale p:

Cha=g Y (ABrdlp +he) - 17(8) (3.4)

A.B=b.t,x

where we redefined the scalar fields,

_ HAB -
oy = oap — 1B (3.5)
e

10



with ag = 0 except for g and gy In the large V. limit. the one-loop elfective potential
is given by

Vo) = gfr ((DTO)—) + Z

AB=bt

Migohgoas + —= (0an +0l\p) (3.6)

~A4AB

and includes quartic terms which are S{’(3) invariant. The renormalized quartic and

Yukawa coupling constants depend logarithmically on the physical cut-off.

A 47
gt = \/j = i . (3.7)
2 \/Ncln(z\lz/,uz)

while the scalar squared-masses and tadpole coefficients depend quadratically on M:

, 207 l
"‘[iB = l 5 " <~ —_ 1)
n (M) Nzan
,UABA\[Z / \Y

Cag = 0. (3.8)

- >
2m \/ln(A\IZ//t’Z)

In order to determine the vacuum properties, we have to minimize the effective po-
tential. Note that a global {7(1),, symmetry forbids tadpole terms for the ¢4, scalars,

independent of the VEVs of the other scalars. \We assume that
cap < Lo A=0bt,\, (3.9)

so that M3, > 0. As a result, the composite scalars having bgr as constituents do not
acquire VEVs: ($.4) = 0. An SU(2)y transformation allows us to set (<) = 0. We also
take z, < 1, such that A% > 0, which implies that oy and oy may acquire VEVs only
if they have tadpole terms induced by the VEVs of the other scalars. This implies that
the VEVs of the SU(2)w doublet scalars. ¥',tg and ¥/, yg, are aligned. so that (¢s) = 0.
Finally, it is obvious that a nonzero VEV for o, requires M2 < 0. while the signs and

sizes of M?, and M?, are not constrained so far.

The phases of the nonzero VEVs can be eliminated so that

<(,5u> = U <(D\\> = TU\\ » <C§(\> = =y - <O\t> = =\t s (310)

where vag have positive values which minimize the following function

A ‘ 5\ 2 2 ‘
V(vag) = 5 [(Uezt + ""tz\) + (UE\ + l’3¢> + 2 (v — ‘~’\\L't\)2
+ 3 <‘U.iBL':'tB - '—)CABUAB> : (3.11)
A.B=t,\

Il



Note that the electroweak svinmetry imposes (', = (', = 0. In eq. (3.11) we neglected
trilinear terms with coefficients ¢ 45, and mass terms with coelficients (5. This ap-
proximation is justified provided at the minimum vap 3 @aB/g:.
We would like to find a vacuum that satisfies a general seesaw condition.
Uit Uty abe ¢

= Uxx (3.12)

Uyt Uyy b 1
with0 < e <b< 1, 0<a < 1l/eand ¢ < I. The limit a,b < 1 corresponds to the
seesaw condition used in ref. [3]. One can easily check that the stationarity conditions,

121%
Jvap

—0, LB=t(\, (3.13)

have indeed a solution satisfving eq. (3.12). This solution is a stable minimum of the
effective potential if and only if all four eigenvalues of the second derivative of V7 are
positive at the stationary point. Before computing the eigenvalues. we note that the
equations dV/dv., = 0 and dV/dv,, = 0 give € and b in terms of C\,, C\, and M},

imposing the following restrictions:

| , L+b° ‘
172 2 72 2 .
Ml MY > M5 [1+0()] (3.14)
where we defined A
_ ML 0 (3.15)
PETE T -

The other two stationarity conditions, dV/dvy = 0 and dV/dvs = 0, yield

a = [)[1+0(62)]

vio = _:lf\__ 1 — €41 4 p*b?)
W AL — pb?)

1 — p(1 —2p)b?
(1 — pb?)?

+O(Y)] . (3.16)
These expressions allow us to write the second derivative of V(vapg) as

2B, + O(e! By + O(
PV(vap) = 2007 | TP () B+ O(c) (3.17)

A ¢ ’

eBy + O(e?) Ay + 2B, + O(e)

where A, ; and By .3 are 2x2 real matrices that depend only on b and ;\I,‘i.,\‘\,'\\. Note

that the rows and columns of 92V (v4p) are arranged in eq. (3.17) in the following order:
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Utty Uy - Uts Uyy - Using the explicit form of Ay,

1 —{ | — pb?
//) ) 7 A2 _ <—/)
—b  pb?

34+ b7 2b
A= ) +

) diag (A\/f\. A, | (3.18)
26 1+ 3b°

it is easy to compute to first order in €* the eigenvalues of 9*V(vip). Three of these are

positive [eq. (3.14) is important here]. while the fourth eigenvalue cancels to leading order

in €2. To ensure vacuum stability, the corrections of order ¢? to 9?}" must give a positive

contribution to this eigenvalue. We check this condition in Section 3.3, where we also

show that this eigenvalue corresponds to the mass of a light Higgs boson.

3.2 Parameter Space

The effective potential depends on six squared-masses M2, M2 (4 = b.t.\). two tadpole
coefficients (', C'\r. and on In(M/p). We will choose the renormalization point g to be
the mass of the \ fermion. In doing so. we will neglect the running of the coefficients in the
effective potential between the scale m and the scale m,. In practice. this approximation
is justified only if M/m, > m,/m, ~ 1/e. We emphasize that this condition is not needed

in a more developed computation of the renormalization group evolution.

We will proceed with deriving the constraints imposed on the parameters of the ef-
fective potential by the measured values of the 11", Z and ¢ masses. The elements of the

fermion mass matrix are proportional to the VEVs,
mag = —gi(©aB) - (3.19)

It is straightforward to compute the top and x quark masses [see eq. (B.2)]:
b(1+ p)

_ 2
my = My = [1-{—0(6)]
LT \/—‘2‘ 62 I — /)b2 2 4 29

The electroweak symmetry is broken ounly by the VEVs of o, and .,

v? 5 .

T = i + v}, (3.21)
which implies

v
My = Jr [l + 0 <62>}



VANREE
~ 890 GeV {<1+/f’bz)ln<'—” . (3.22)

Hl\

Using the expression for the top quark mass in eq. (3.20), we find a constraint on b and

P A
b2 (1 + p)?
(14 0%)(1 +p2b'2)

which shows that b* < O(0.1) (M is not larger by many orders of magnitude than m,

. \
~4x 107 %1n (i[—) : (3.23)

my

unless the coeflicients of the four-fermion operators are excessively fine-tuned to be close

to the critical value).

The \} mass eigenstate couples to 11" and Z so that there is a potentially large
custodial symmetry violation. llowever. in the decoupling limit (¢/b — 0) this effect
vanishes. To show this we consider the one-loop contribution of \ to the T parameter:

3 . ) m3m? m? X "
[ = ——— s}jnf + 255 (1 — si)—-—\——[— In > = Sp(2 = shymi (3.24)

167200 m? —mf m;

r~

where s, is the sine of the left-handed mixing angle. defined in eq. (B.4):

(L4 0)(3 = p)]*
= [14)2( _j(f)sz)”’} vol(d) . (3.25)

Because this mixing is small. the \ loop contribution to T is suppressed compared to the

top loop contribution by a factor of €2/b?:

N.m? €?

T Tonta(M2)o? 52 |1 = 46* In(eb)] [1 + O8%.€")] . (3.26)

In practice, the current experimental constraints on T are satisfied if 6 is larger than ¢

by a factor of 2 or so [3]. Thus, the upper bound on ¢ is about 0.1, confirming that the

2

expansion in € is a good approximation.

To summarize, for AM/m, ~ 10 the elements of the fermion mass matrix eq. (3.12)

have sizes

~

my 2 O(1 TeV)  my, = O(5 TeV)

~

(,n,, < O(100 GeV)  myy ~ O(600 GeV)) (3.27)

The effective potential analysis given is valid only for M > m,,. Smaller values of M
(with less fine-tuning) may be allowed, though we cannot demonstrate that fact. The
relations between ¢.b and C\\, C\; allow us to estimate the p,, and p,, mass coefficients
from the Lagrangian:

HA = My M In (—‘[—) {1 + O (bz.("’))] : (3.28)

2M? my
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Generically we expect | Mag| ~ O(m) < <M. so that p y/m 4 < O(e?). This shows
that it was correct to ignore the trilinear terms in the etfective potential. By contrast. in
Section 2 the schematic model does not lead to a o, or o bound state. and eq. (3.23)

1s replaced by g\ 4 = my4.

3.3 The Composite Scalar Spectrum

Next we compute the composite scalar spectrum. The 3x3 matrix ¢ contains a total
of 18 real scalar degrees of freedom, corresponding potentially to a Higgs sector which
includes three weak-doublets. o,y = gty with .\ = b.¢. \ and v = (t.0), and three
weak-singlets. o, 4 = EVINA

An unbroken global U/(1),, symmetry ensures that the oy and o, scalars do not
mix with ¢4, or ©4,. Therefore. the neutral complex scalar o, has a mass M, given by

eq. (3.3). and the complex scalars oy and o, with electric charge +1 have a mass matrix

‘ » ‘ €2(1 + a?b?) (1 — ab?)
diag (M3, M) + Aol (3.29)
(1 — ab?) 1 + b2

[n section 3.1 we imposed Mg, M?, > 0. which implies that the mixing between o and ¢y,
is suppressed by ¢. We will denote the mass eigenstates by HE and H3,. The magnitudes
of the masses that appear in the effective potential. |M4g], are expected to be roughly of

the same order in the absence of fine-tuning. Using the relation

-) )
Ml = c—sz‘ (3.30)
we can estimate | M, | from eq. (3.16):
—Mgzgm;@—wﬂp+ouﬂ (3.31)

Given that pb* < O(0.1). as can be seen from eq. (3.23). it follows that | M | 2 O(5 TeV).
If M, is indeed of the same order as |M;, |, then the two charged scalars have masses of
a few TeV or larger. On the other hand. if = and z,, are tuned sufficiently close to one
so that My, M., < b|M |, then the mass eigenstate which is predominantly ¢y has a

mass-squared
Mys = 2m) + My, . (3.32)

This sets a lower bound on the charged Higgs mass of about 250 Ge\'.
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The other two complex scalars with electric charges +1. on and on, have the following
mass matrix:
(1 + a?c®) b1 — «e?)
diag (M2 M2 ) + Aol (3.33)
b(l — ae?) 1 + ¢?

One of the eigenvalues vanishes. corresponding to the charged Nambu-Goldstone bosons
that become the longitudinal V. The other eigenvalue is the mass-squared of a charged
Higgs boson, H*. and can be computed without expanding in powers of € by using the
stationarity conditions:

‘me\

Mipe = —(1 + «*0%)(1 — a€?) . (3.34)

ae”

This mass is also large. most likely above a TeV.

There are four ('P-even neutral scalars. Re o, Re oy, Re o, and Reo,,. Their mass

matrix is given by
. . .
;(llag(l,—l.—1,—l)OZV(UAB)(hag(l,—1.—1,—l) , (3.35)

with 9%V indicated in eq. (3.17). It is possible to compute the eigenvalues of this mass
matrix as an expansion in €?. There are two mass eigenstates which. to lcading order in
¢, are linear combinations of only Re ¢;; and Re oy . Since the electroweak symmetry is
broken only by the VEVs of ¢y and &, it is appropriate to label these mass eigenstates
by A and H°, as in a two Higgs doublet model:

R = VE(1+p6") " (Regry +byBRedu) + Oe)

H = V(14 p2)""* (—by/BReon + Reau) + O(c) . (3.36)

Il

The electroweak symmetry is unbroken in the ¢ — 0 limit. so that the heavy neutral Higgs

boson is degenerate with H*:

. 2m? . . .
Mo = peg\ (1+ p%0?) [1 +0(ch)] = M. L+ o(eh)] . (3.37)

It is easier to compute the mass of the lightest neutral Higgs boson, Mo, as a power series

in 62, which is a reasonably small parameter due to the constraint (3.23). The result 1s

. . ME - ME
Mo = 4mj, —= A

2+ OV ) (3.38)
M2 — 3ME [ }
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For 12 ~ =17 the 1Y is heavy. with a mass of order v2m,, ~ 800 GeV. [n the
schematic model presented in Section 2. the o boundstate does not form. so that .\[f\ —
> and we recover the NJL result My = 2m,. On the other hand. il M < 0. the A°
can be significantly lighter. A composite neutral Higgs boson with mass of order 100
GeV would require a cancellation between M? and M7 at the level of 15%. Such a
cancellation does not necessarily require fine-tuning: for instance. if ¢, and \ have the
same charges under the broken gauge groups that induce the four-fermion operators, then
Iyx = i implying M = M. This shows that the existence of a light composite neutral
Higgs boson, with a mass of order 100 GeV is a possibility.

To leading order in ¢, the other two ('P-even neutral mass eigenstates are linear com-

binations of Re o, and Re oy, with a mixing of order b. Thelr squared-masses are given

by
2 2 2 A‘lft ’ 2 2
’\[H‘\J, = Z—;nl,\ (1 + ——\-H> [l + ()(b . C )}
2 2 0. "Uf\ 2 2
x‘\[”(\)\ = 6—2"1,\ (3 + —x”tz‘> [1 + O([) L€ )] . (339)

The HY is heavy. with a mass of at least O(5 TeV). while HY, can be light. with a mass
of order my, or lower. if A\[ft and A\]f\ are close to their lower bound (3.11). It is clear now
that for typical values of the parameters in the effective potential all four ('P-even neutral
mass eigenstates have positive squared-masses. which proves that the minimization of the
effective potential performed in Section 3.1 is correct. On the other hand, if the restriction
(3.14) on M2, and M? is saturated at order ¢*. then the masses of /17, or #° might vanish.

signaling a second order phase transition to an unacceptable vacuum.

The remaining four states are the CP-odd neutral scalars: Im ¢y, Im &y, Im ¢y, and
Im¢,,. In the e = 0 limit the masses of the ¢, and ¢, doublets are SU(2)w invariant,
so that the linear combination of Im ¢ and Im oy, analogous to H" in eq. (3.36), labeled
A% has a large mass given by eq. (3.37). The other linear combination is the Nambu-

Goldstone boson that becomes the longitudinal Z. At order e. the longitudinal Z includes

a mixture of moy, and Imo,,. The other two CP-odd mass cigenstates. A7, and AY,
are predominantly Im o, and Imo,,, respectively, and have large masses:
2 2 5 2, M3 2 2
Mig e, = Fmi |46+ 05 (1= pp?) +O(H)] . (3.40)
—~ M2

These two neutral mass cigenstates are the pseudo Nambu-Goldstone bosons discussed in

ref. [3]. and are light provided M?, and M? ave close to their bound (3.14).



To summarize. the composite scalar spectrum consists of the longitudinal W and Z

and the following states:

e hY%: a neutral Higgs boson of mass m;, times a factor of order one (or smaller if
2 Af2 ).
M2 = MY );

o HY H* 1Y% the heavy states of a two Higgs-doublet sector. roughly degenerate

with a mass (my /€)y/2/p;
o HY

%, A% one CP-even and one CP-odd state, which are light only if M?, =~ M};

tx?

o A1 aneutral ('P-odd state which is light only if M? =~ M2

e oy a neutral complex scalar. with a mass M :

e [[%: acharged scalar which can be as light as 230 GeV il My and M, ave sufficiently

small:
o HY . Hf:b: a ('P-even neutral state and a charged scalar. with large masses. > m,,/e.

Finally we note that. for a generic choice of parameters. one or more of these scalars may
have a mass of order the cutoff. M. If so, these particles are not part of the low-energy

effective theory.

4 Higher Energy Physics

We have shown in the previous section that the top quark seesaw mechanism leads to a
low-energy effective theory involving bound states of the \, ¢t and b quarks. There are
several questions that remain: What breaks the topcolor gauge group? What interactions
distinguish v, ¢ and b7 How is electroweak symmetry breaking communicated to the other
quarks and leptons? In this section we describe a class of models of electroweak flavor
symmetry breaking incorporating a top quark seesaw which illustrates some of the issues
involved in constructing more complete models.

In the prototype model. topcolor symmetry breaking will be dynamically generated
while flavor symmetry breaking will be assumed to arise from unspecified “extended top-
color™ interactions (analogous to extended technicolor interactions [10]) at higher ener-
gies. The model is most casily displayed in "moose notation™ [11]. in which lines stand

for fermion fields and circles for SU(n) gauge groups. An arrow emerging from a circle



with an n in it represents a left-handed fermion transforming like » or a right-handed
fermion transforming like 7. while an arrow coing n indicates a right-handed fermion
transforming like n or a left-handed fermion transforming hike 7.

Using this notation. the prototype model is shown in Fig. 1. The \. g fields and

Uy

or’

XL UR,CR-IR
dr,sr

Figure 1: The “moose” model of dynamical topcolor symmetry breaking.

right-handed quark fields are shown explicitly. while c',';m denote the three generations
left-handed weak-doublet quark fields. We will assume here that the two S{7(m) interac-
tions and the SU(m + 1) interactions become strong and produce £ condensates. The
(relatively) strong SU(3), interactions and the weaker SU(3), gauge group are as in the
schematic model of Section 2: SU(3); x SU(3); x SU(3), — SU(3)gcp due to the for-
mation of EIEE} and Ef:ff condensates driven by a strong ST7(m) gauge interactions. and

a £4&] condensate driven by a strong ST (m + 1) gauge interaction.
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The scale of SU(3), x SU(3); breaking (set by the £, &g condensates. i.e. the scales
at which the two SU(m) interactions and the S{7°(m + 1) interaction become strong)
is assumed to be close to the scale at which the S{7(3), interactions would break the
chiral symmetries associated with the yg and ¥’} fields. If that chiral phase transition is

second-order, this breaking gives rise to a Ygy; composite Higgs field.

The g\ and gy "mass” terms cannot be present at tree-level since the corresponding
mass operators are not gauge-invariant. Instead. they must arise from higher-dimensional
operators coming from higher-energy interactions. A Yz xr mass term can arise from an

operator of the form

NTVEL ERTuR - (4.1)
giving
fioy X (EYEY) (4.2)
while a YZ{g mass term can arise from a four-fermion operator of the form
IR Eitr (4.3)
giving
e X (£€7) (4.4)

As these "masses™ are proportional to different condensates. their sizes can naturally be
different even if the sizes and strengths of the corresponding higher-energy interactions
are similar. Furthermore, operators of the form shown in eq. (4.3) can involve all three
generations of charge 2/3’s quarks and is a potential source of mixing between the third

generation and the first two.

A crucial feature of the seesaw mechanism is that the y';tgr mass term must be sup-
pressed. This happens naturally in the model shown in Fig. 1: no gauge-invariant four-
fermion operator exists which could give rise to such a term. The largest contributions

come from six-fermion operators and are naturally small.

The masses and mixings of the first two generations can easily arise from higher-energy
interactions as well, since both the left-handed and right-handed quarks transform under

the SU(3); interactions. For example, a charm-quark mass can arise from an operator of

the form

]

”%X’R ﬁw% . (4.5)

The b mass. however. is guite different here than in the schematic model. Because

of the presence of the £}, and Ei fields which also transform under SU{/(3},, instanton
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effects vield high-dimension multifermion operators which are too small to account for
the bottom-quark mass. We believe this will remain true in any model of dyvnamical
topcolor symmetry breaking. Thus we have assumed. counter-intuitively. that the bp

shares topcolor interactions with ¥} and \ g so that we can allow for the operator
P U] \r vl sbr (4.6)

(the ¢*7 acts on the SU(2)y indices to make it a singlet). In addition to a b-quark mass,
this operator induces a tadpole term for oy in the effective potential. [owever, the shift
in the vacuum is small if My is large, and the analysis in Section 3 remains essentially

unaltered.

Having given the \p and the bp the same strong gauge interaction quantum numbers,
we must introduce additional interactions to “tilt” the vacuum and prevent the formation
of a potentially large by} condensate and a large hottom-quark mass. [n the spirit of

extended technicolor. we will assume that the etfective Lagrangian includes operators like

j;'[%r'*}i\n \RYL + %v_f,bn bRy - (4.7)
with ., > m. Such a pattern of interactions can tilt the vacuum. as required. The
presence of the operators in eq. (4.7) give rise to contributions to the T’ parameter [7],
beyond those in eq. (3.21) coming from fermion loops. However. due to the large scale
M ~ O(50 TeV). these contributions are negligible [3]. The same argument applies in the
case of other electroweak observables [12] or FCNC effects [13].

While we have vet to complete a full phenomenological analysis of this model, we
regard it as an existence proof that it is possible to construct a model incorporating a top
quark seesaw mechanism in which topcolor symmetry breaking is dynamical and which
allows for intergenerational mixing. This model also raises additional questions: What
gives rise to the necessary higher-energy interactions? [s there a natural explanation for
the near equality of the chiral symmetry breaking scales of the SU(in) and SU(m + 1)
interactions? Why are these chiral symmetry breaking scales close to the scale of SU(3);
chiral symmetry breaking?

Finally, we note that a variant of this model could be constructed by replacing the
br fermions transforming under SU(3); by the wgr fermions of eq. (2.26), adding the bg

-

to the fields transforming under SU(3),, and adding the wy to the fields transforming
under SU(3),. \nomaly cancellation will then also require that S{°(m + 1) is replaced
by SU(m + 2). Such a variant allows for additional sources of mixing between the third

generation and the first two.



5 Conclusions

In the dynamical top quark seesaw mechanism EWSB occurs via the condensation of the
left-handed top quark with a new, right-handed weak-singlet quark. The fermionic mass
scale of this weak [ = 1/2 condensate is large, of order 0.6 TeV, and it corresponds to
the formation of a dynamical boundstate Higgs scalar with a VEV v/\/2 ~ 175 GeV.
However, the new Y-quarks also condense amongst themselves at still larger scales, and
have condensates with the right-handed top quark as well. Upon diagonalization of the
fermionic mass matrix. the physical top quark mass is suppressed compared to the 0.6
TeV matrix element by a seesaw mechanism. s a result. this class of models allows for a
dynamical origin of EWSB and can accommodate a heavy top quark without introducing

extra fermions carrving weak-isospin quantum numbers.

[n this paper we presented a schematic model with a minimal version of the seesaw
which illustrates the essential features of the dynamics. We also presented a calculation
of the effective potential in a generic low energy theory that incorporates the dynamical
top quark seesaw mechanism. This effective potential allows one to understand the range
of parameters required for the seesaw mechanism to be successful. Furthermore. we have
computed the spectrum of composite scalars. which includes a potentially light Higgs
boson. Finally, we presented class of models of electroweak symmetry breaking which
incorporate the top quark seesaw mechanism and in which topcolor symmetry breaking
is dynamically generated.

Many issues remain to be explored. Among these are: What is the most elegant
method to incorporate the first two generations of quarks and intergenerational mixing,
as well as leptons? Is there a natural mechanism for topcolor to break close to its chiral
symmetry breaking scale? Are there generic experimental signatures of the top quark
seesaw? We believe that the top quark seesaw opens up a wide range of directions in

model building which may allow these questions to be answered.
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Appendix A: The (1) Tilting Model

We apply here the effective theory approach discussed in Section 3 to the original model
with a dvnamical scesaw mechanism [3]. The transformation properties of the third gen-
eration fermions under the gauge group are shown in Table 1. The breaking of the gauge
group down to the standard model one leaves a degenerate octet of massive “colorons”
and two heavy { (1) gauge bosons. It is assumed that all these gauge bosons have a mass

M ~ O(50 TeV).

The coefficients of the four-fermion operators are given by

2 N2 | e .-
tAB = T ( _‘) v K+ YiYgn + -\.-x-\B’\'B—L) . (A.l)

where Y are the (7(1); charges while X are the {(1)g_;, charges. shown in Table 1. and
w.Ki.-~pg-p are the ST(3) x (1) x ['(1)g-; coupling constants. defined as the gauge

couplings squared divided by 87.

SUE) | SUEB) | SUR)w | UL | U(L)2 (D=L
Ur 3 1 2 1/3 0 1/3
tr 3 1 1 1/3 0 -1/3 < <0
br 3 1 1 -2/3 0 1/3
lr, 1 1 2 -1 0 —1
TR 1 1 1 -2 0 —1
v 1 1 1 0 0 ~1
XL 3 1 1 4/3 0 -1/3<x <0
XR 3 1 1 4/3 0 1/3

Table 1: Third-generation and \ fermion representations

The charge assignment implies M2, < M2 < ME < M2 and ME < M§, < M2, The

scalars having by as constituent do not acquire VEV's provided M > 0. which gives

37
— 281+ Kkp < 12 ('—8——h:> . (A?)
The vacuum alignment condition 1\1,2\ < 0 < M} requires
3
Ay + 3ewgoy < 12 <T - H) < ARy + KRBy - (A3)
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Finally. the restriction M?, 2 M2 imposed by the minimization condition (3.14) gives
12k £ (1 — .().1'2) KB_L - (A.4)

The range of the {(1)p-1 charge of tg and \1, —1/3 < r < 0. allows the conditions
(A.2), (A.3) and (A.4) to be simultaneously satisfied.

The relation between the coefficients of the four-fermion operators and the fermion
charges leads to relations among the six M3%p parameters from the effective potential.
These relations are simplified by observing that the non-Abelian coupling constant ~
is assumed to be larger than the U(1) coupling constants. which implies the criticality
condition

Ir
N:;%-O(NI,NB_L) . (A.5)
To first order in ~y/~ and Kg-r /K one can write down three sum rules:

ME=ME o~ MY = MEa2 (M - ML)
M2~ M2 = =3x (MR- M) (A.6)

A consequence of the second sum rule is A/, > | M|, so that the /3 charged scalar
discussed in Section 3.3 is heavier than m, /e. Therefore. in addition to h°, the only
composite scalars that may be lighter than m /e are the neutral states AQ , A, HY,.
and (}5[,5.

The composite scalar spectrum is a function of the following parameters: «, k1, Kp-r,
r, € and In(M/m,). For example, the lightest Higgs boson has a mass

(1 - 3.1:)#:3_14 - 12#&1

2 __ 2
Mip = dmiy 97 (1 — 37 /(8k)] + 3(1 — z)kp-L — 4K1

[1+O(k1,kp-p. b2 H)] . (AT)

In this model, the Higgs boson would have a mass of order 100 GeV only if the ratio

rxy1/np_r is smaller than (1 — 3z)/12 by no more than a few percent.

Appendix B: Equivalence between the Gap Equations
and the Stationarity Conditions for the Effective Po-

tential

[n this Appendix we show that the set of coupled gap equations used in ref. {3] is identical
[in the large V. limit and for large ln(M'Z/WZ)] with the stationarity conditions for the

cffective potential (see Section 3.1).



The four-fermion operators discussed in Section 3 [see eq. (3.1)] lead to a dynamical
mass matrix for the £ and \ quarks. given in the weak eigenstate basis by

LUTINIITN tp

L=—(tL, ) + h.c. . (B.1)
My M \R

with all the elements real (this can be ensured by a phase redefinition of the fields). The

top and \ masses are the eigenvalues of this matrix.

2 _ 2 2 2 2
mi, = 3 [m\\ +my, + my, +my
2 2 2 2 )? 2 )
F o me A+ mi +mg, +m;\> —d(m e — myomn ) (B.2)
while the mass eigenstates are given by
tl Cr =S tr
! - .
\L SLooCr \ L
’ CR SR tr
R : -
= (B.3)
!
\ R —SROCR \R
where "
1 m2_—m% 4+ m?, — m?
t t
cLysL = —= |1 £ —= - 3 X (B.4)
V2 m? — m;

and cp, sp are obtained by substituting m, < m, in the above expressions for cr, st.

The one-loop gap equations can be easily computed by keeping the weak eigenstates
in the external lines. and the y and ¢ mass eigenstates running in the loop (see Fig. 2),

and are given by

m? At my \[2
My = Znud —CrLcpmy |l — F[ w7 + spspm |1 — e In \
m? Y& mf M?
Myx = Hyx T 3§ —Scsrme |1 — K In —f— + crepmy |1 — Tf;l[l r_nz
m? Mz mi M?
My, = = Scrspmye |l — —‘—[—:l + spermy |1 — .mln .m_i
2 2
m? m M 5
N N Y {s[,('mm [l - \—[%ln < ;,” + cpspm [ — —\[_\z In <1—n—2\—>}} (B.5)

[«
<t




m B HAB
—_——— X —m ’ - 4 —a -
Br Ag Br {

Figure 2: Coupled gap equations.

Using the relation between the mass matrices in the two basis, namely

My Mgy —CLCRIN: + SLSRM  CLSRM¢ + SLCRIM,
= , (B.6)
Myt My SLCRMy + CL.SRM\ —SLSRMy + CLCRM,
we can rewrite the gap eqs. as
L/ 1 M?
2 2 2 2
my M (T_ - 1) = - [m,, (m“ +my + m\,) + m,\m\,m\\] In —
it ms
, l , 1 M2
m,“‘\[z <~— —-1] - /t\\“lz:—— = [m\\ (mf\ + m + m ) + m,,m,\m\, —
“xx ~xX m?
oL 2 2 2
mp M| — =1 = — My (m,t +my + m\\) + m,,m\,m\\
:g\(
\ 2 1 \[ — 2 2 2 /v
maM* | — — 1] —peM*— = —imy (g, +m, +mi )+ m"m,\m“ —
Zxt Zxt mx
(B.7)

where we neglected m7} In(rn?/m}) compared with m] In(M?/m?), which is consistent

with the leading log approximation used in egs. (B.5).

One can see that the gap equations (B.7) are identical with the stationarity conditions

(3.13) for the effective potential derived in Section 3.
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