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First results from the asymmetric O(a) improved Fermilab action
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We present first results from calculations using an O(a) improved (FNAL) space-time asymmetric fermion
action on a 123

×24 quenched lattice at β = 5.7 and with cSW = 1.57. The mass dependent asymmetry parameter
ζ is determined non-perturbatively from the energy-momentum dispersion relation. Calculations have been made
in the charm and bottom quark mass sectors in order to test the ζ dependence of the spectrum, since it is at these
heavier masses that the asymmetry is expected to be most relevant.

1. The Fermilab improved action

For full details of this fermionic improvement
scheme the reader is referred to [1]; here we
merely note that it results in an action with
mass dependent coefficients which is asymmetric
in space and time.

The lattice dispersion relation may be written
in the form

E2(p2) = M2
1 +

M1

M2

p
2 + O(p4), (1)

defining the static mass M1 = E(0) and the

kinetic mass M2 =
(

∂2E
∂p2

i

)−1

p=0

.

Figure 1. The non-perturbatively tuned ζ com-
pared with tree-level perturbative predictions.

Lattice discretisation effects mean than in gen-
eral M1 6= M2 at O(amquark), and restoring the
relativistic dispertion relation to this order is the
first stage in the improvement program. This
is achieved by introducing an asymmetry in the
temporal and spatial quark propagation and ad-
justing it until M1 =M2, which then constitutes
the first improvement condition of this scheme.

To this end we define the action

S0 =
∑

x

{

ψ̄xψx

−κt [ ψ̄x(1−γ0)U0 xψx+0̂

+ψ̄x(1+γ0)U
†

0 x−0̂
ψx−0̂ ]

−κs

∑

i

[ ψ̄x(1−γi)Ui xψx+î

+ψ̄x(1+γi)U
†

i x−î
ψx−î ]

}

. (2)

It is helpful to parameterise this asymmetry by
defining ζ = κs/κt, in terms of which the quark
mass is

M0 =
1

2κt

− 3ζ − 1 −

(

1

2κcrit

− 4

)

. (3)

At some value ζ=ζNP, which we attempt here to
find at various quark masses, M1 =M2.

In order to remove O(a) artifacts from the ac-
tion the terms

SE = iκscE
∑

x,i

ψ̄xσ0iF0i(x)ψx (4)

and

SB = iκscB
∑

x,i<j

ψ̄xσijFij(x)ψx (5)
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Figure 2. M2 and M1 at ζNP compared with the
M1 =M2 line and the corresponding results from
the symmetric action.

are added to S0. Here F0i and Fij are the stan-
dard clover representations of chromo-electric and
chromo-magnetic parts of the field strength ten-
sor.

2. Non-perturbative tuning of ζ

The strategy employed here was to tune ζ by
requiring that M1 =M2 for the spin-averaged 1S
quarkonium state. The results obtained from this
non-perturbative tuning can be compared where
appropriate with tree-level perturbation theory
[1,2] and with results obtained using the symmet-
ric (ζ=1) action [3].

These calculations were performed on 100
quenched 123 × 24 configurations at β = 5.7 with
cE = cB = 1.57, the tree-level tadpole improved
perturbative value on this lattice.

To find M1 and M2, the ground state energy
E(p) was computed at five momenta using a two-
state fit to a matrix of smeared correlators (as
described in [4]). M1 is simply E(0) and M2 was
extracted from the coefficient a1 obtained by fit-
ting the dispersion relation to the function

E(p2) = a0 + a1p
2 + a2(p

2)2 + a3

∑

i

p4
i . (6)

We obtain a graph (figure 1) of the non-
perturbatively tuned ζNP as a function of M0

Figure 3. The variation of M2 with M0 for the
tuned action, compared with the symmetric ac-
tion and tree-level perturbation theory.

which we compare with tree level perturbation
theory. The extent to which ζNP satisfies the im-
provement condition can be judged from figure
2, where for comparison the corresponding points
previously obtained using the symmetric action
on the same lattice are also plotted.

While figure 1 presents the dependence of ζNP

upon M0, it is M2 that emerges as the physically
significant mass parameter in the heavy quark ex-
pansion. Therefore it is useful to know how M2

depends on M0 once ζ has been tuned, and this
is shown in figure 3.

3. Quarkonium spectrum

The values of aM2 that correspond on this lat-
tice to the cc̄ and bb̄ mesons are known from
the previous calculations with the symmetric ac-
tion [3], and parameters of the asymmetric action
yielding values of aM2 comparable to these were
found (see figures 3 and 1). To verify that the
asymmetric action reproduces the same physics a
spectral calculation was performed at these pa-
rameters on 300 configurations. 2S states were
obtained using a three-state fit to the full corre-
lator matrix. The scale was set from the spin-
averaged 1P −1S splitting. Figure 4 shows the
masses of charmonium and bottomonium states
expressed as splittings from the spin-averaged 1S
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Figure 4. The quarkonium spectra compared
with results obtained with the symmetric action.

mass. The hyperfine splitting is shown in figure 5
as a function of M2 for all the data sets examined
(i.e. with untuned asymmetric actions as well as
at ζNP and ζ = 1).

4. Conclusions

We have demonstrated the feasibility of a non-
perturbative tuning of the first parameter of the
Fermilab improved action, and find this value
to be rather higher than the tree level predic-
tion, although the mass dependence is already
qualitatively predicted at tree level. The bare
quark mass required to reach a particular physical
régime is found to be much greater than for the
symmetric action (again this behaviour is qual-
itatively predicted at tree level) which can have
algorithmic implications in the quark propagator
computation.

The quarkonium spectra (and a similar analy-

Figure 5. The hyperfine splitting as a function
of M2 computed using the symmetric, the tuned
and the asymmetric untuned actions.

sis of the hyperfine, fine structure and the 2S−1S
splittings) show that the tuned action produces
the expected physics, and supports the use of M2

as the physically relevant mass scale in computa-
tions where ζ is not tuned. Further confirmation
comes from figure 5 where it can be seen that
the hyperfine splittings lie on the same curve re-
gardless of whether the action is tuned or not,
indicating that it is dependent on M2 only.
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