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The computational requirements and dynamics of Monte Carlo simulations of unquenched QCD incorporating
the infrared quark eigenmodes (up to ≈ ΛQCD) exactly and UV modes via a loop representation are discussed.
The accuracy of such a loop representation is studied for a variety of lattice volumes and quark masses. The
method has been successfully applied for lattices up to 103x20 at a '0.17F with improved (clover) action, and
allows simulations at or near kappa critical.

1. Splitting the Quark Determinant

The essence of the truncated determinant ap-
proach [1] to unquenched QCD lies in the real-
ization that the infrared part of the quark deter-
minant (specifically, the determinant D(A) of the
hermitian operator H ≡ γ5(D/(A) −m)) can be
gauge-invariantly split off, leaving an ultraviolet
part which is accurately fit by a linear combi-
nation of a small number of Wilson loops. The
eigenvalues λi of H
(1) measure quark off-shellness (for A = 0, λi →
±

√
p2 + m2),

(2) are gauge-invariant, λi(A) = λi(Ag).
Thus we can write D(A) = DIR(A)DUV(A),

where the infrared part DIR(A) is defined as the
product of the lowest Nλ positive and negative
eigenvalues of H , with |λi| ≤ ΛQCD (typically, '
300-400 MeV). This cutoff is chosen (a) to include
as much as possible of the important low-energy
chiral physics of the unquenched theory while (b)
leaving the fluctuations of lnDIR of order unity
after each sweep updating all links with the pure
gauge action. This ensures that the acceptance
rate is sufficiently high when the infrared deter-
minant only is used in the accept/reject stage of
the procedure. The crucial point is that it is pos-
sible to achieve both (a) and (b) on fairly large
lattices (up to physical volume ' 20 F4) as well
as at kappa values arbitrarily close to kappa crit-
ical.

2. Efficient Computation of the IR spec-
trum in QCD4

The following Lanczos procedure allows us to
extract the needed infrared eigenvalues of H rel-
atively rapidly:
(1) Starting from an initial vector v1, an orthonor-
mal sequence v1, v2, v3, ..vNL is generated by the
standard recursion:
vk+1 = 1

βk
Hvk − βk−1

βk
vk−1 − αk

βk
vk

with the constants αk, βk determined from over-
laps of generated vectors. In the basis of the vi, H
is tridiagonal. The corresponding real symmetric
tridiagonal matrix TNL has the αk on the diago-
nal and the βk on the sub (and super) diagonal.
(2) A Cullum-Willoughby sieve [2] is used to iden-
tify and remove spurious eigenvalues.
(3) The remaining “good” eigenvalues converge
most rapidly in the least dense part of the spec-
trum, in particular, in the needed infrared por-
tion. This remains true even at kappa critical ( in
marked contrast to the matrix inversions needed
in HMC simulations, for example), where the den-
sity of eigenvalues near zero is still small. The sta-
bility and accuracy of the converged eigenvalues
has been checked extensively by gauge transform-
ing the gauge field.
(4) The diagonalization of the TNL matrix (typ-
ically, of order 10,000 in the QCD case) can
be completely parallelized using the Sturm se-
quence property [3] of tridiagonal matrices in
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which nonoverlapping parts of the spectrum are
independently extracted by a bisection procedure.

3. Fitting the UV modes- Loop represen-
tations of the Quark determinant

The effective gauge action generated by inter-
nal quark loops is a gauge-invariant functional,
which can be evaluated explicitly in a hopping
parameter expansion:

lnD(A)/V = 288κ4
∑

L1 + 2304κ6
∑

L2

+ 4608κ6
∑

L3 + 1536κ6
∑

L4 + ..

where V is the lattice volume, L1 a generic pla-
quette, and L2,3,4 are 6 link loops with link direc-
tions (i, i, j,−i,−i,−j), (i, j, k,−j,−i,−k), and
(i, j, k,−i,−j,−k) (1 ≤ i, j, k ≤ 4). Unfortu-
nately, this hopping parameter expansion is use-
less [4] except for extremely heavy quarks (κ →
0), due to the contribution of large loops. In-
stead, large loops may be cut off by removing
the IR modes |λi| < ΛQCD. Now the expansion
converges much more quickly, and we may write
lnDUV (A) = V

∑
Li(A) where the sum involves

only a small number of loops (as we shall see, typi-
cally less than 10) and the coefficients ci are deter-
mined nonperturbatively. Of course, to compute
DUV , we need the complete spectra for an ensem-
ble of configurations. The computational cost for
extracting a complete Dirac spectrum via Lanc-
zos is large but manageable, as this calculation
need only be done for a limited number of decor-
related configurations. For example, the complete
Dirac spectrum for a 103x20 lattice has 240,000
eigenvalues and requires about 500,000 Lanczos
sweeps, equivalent to about 1 400-Mhz-Pentium-
week. The final spectrum can be checked with
analytic spectral sum rules which give the sum of
powers of the eigenvalues as explicit functionals
of small loops.

The results of a fit of lnDUV to a linear combi-
nation of Wilson loops on an ensemble of 103x20
lattices at beta=5.7 (with clover improvement)
and κ=0.1425 is shown in Fig.1 The configura-
tions were generated including the truncated de-
terminant lnDIR and therefore already contain
the exact low-energy chiral physics. The fit is
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Figure 1. Fit of UV Determinant to Loop Action,
κ=0.1425

very good once 4, 6 and 3 figure-8 8-link opera-
tors are included in the fit . These results sug-
gest that the full determinant can be accurately
modelled by computing the low eigenvalues ex-
actly and including the remaining high modes
via an approximate loop action. In any event,
we expect that the UV fluctuations affect pri-
marily the scale of the theory, while for the low
energy spectrum, quark off-shellness is limited
to about ΛQCD and dimensionless mass ratios
should therefore be largely insensitive to DUV .

4. MonteCarlo Dynamics for QCD4 Simu-
lations with the Truncated Determinant

In the truncated determinant approach to
QCD4 [1], unquenched configurations are gener-
ated by the following algorithm:

1. Update the gauge configuration with the
pure gauge action, using a procedure com-
pliant with detailed balance. We have used
Metropolis link updates applied to a ran-
domly chosen block of noninterfering links
to ensure detailed balance while maintain-
ing parallelizability of the computation.

2. Apply a metropolis accept/reject criterion
based on the the effective quark action

Squark = NF ln detDIR(A) (NF = 2) (1)
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Figure 2. Determinant relaxation, κ=0.1440

Typically, we use an IR cutoff for the truncated
determinant corresponding to a gauge-invariant
eigenvalue of 300-400 MeV. This procedure leads
to tolerable acceptance rates on lattices of fairly
large physical volume - we have explored systems
up to 20 F 4, while controllable finite size errors
in electromagnetic fine structure lattice studies [5]
with a long range massless U(1) field require lat-
tice volumes ≥6 F 4. The simulations in progress
are on three different lattice sizes:
(1) 103x20 lattices at β=5.7 (clover improved)
at κ=0.1415, 0.1425, 0.1436 and 0.1440 (the
last value being very close to kappa critical).
This corresponds to a physical volume of roughly
(1.7F)3x3.4F.
(2) 64 lattices at an effective β of 4.5, but us-
ing the O(a2) improved gauge action of Alford et
al,[6], at kappa critical.
(3) 84 lattices at an effective β=4.5 (O(a2) im-
proved), again at kappa critical.

For the 103x20 lattices we have checked that
the truncated determinant simulations succeed
in equilibrating the configurations, and that
they decorrelate reasonably rapidly subsequent
to equilibration. The equilibration can be stud-
ied by looking at the relaxation of Squark from
the quenched value corresponding to the starting
configuration. Even at κ = κc, the 103x20 lat-
tices equilibrate after a few hundred sweeps (see
Fig. 2).

To measure decorrelation we have calculated
the autocorrelation of the pion propagator at vari-
ous time separations, keeping configurations sepa-
rated by 20 steps of the basic algorithm. A typical
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Figure 3. Decorrelation of pion propagator,
κ=0.1425

example, from the 103x20 runs with κ=0.1425, is
shown in Fig.3, where the pion correlator at time
slice 6 is seen to be effectively decorrelated after
about 30 steps of the algorithm.

Cases (2,3) represent physically large lattices
(33 F4 and 105 F4 resp.) at kappa critical and
display critical slowing down (several thousand
sweeps are needed to equilibrate the configura-
tions). However the lattice sizes are small: new
configurations can be generated and the trun-
cated determinant computed quite rapidly (' 20
minutes for the 64 lattices, two hours for the
84 lattices, on a Pentium 400 Mhz processor).
These lattices will allow a detailed study of string-
breaking and other unquenched dynamical effects
(see talk of Eichten, this conference).
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