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Abstract
A sample of �400 B0

d=B
0
d! J= K0

s decays collected in �pp collisions by the CDF
detector is used to directly measure the CP -violation parameter sin(2�). We
�nd sin(2�) = 0:79+0:41

�0:44, favoring the standard model expectation of a large CP

violation in this B0 decay mode.

1. Introduction

The origin of CP violation has been an outstanding
issue since its discovery in K0

L ! �+�� decays
35 years ago [1]. In 1972, before charm was
discovered, Kobayashi and Maskawa [2] proposed
that quark mixing with 3 (or more) generations was
the cause. In this case, the CKMmatrix relating the
mass and weak eigenstates of quarks possesses, in
general, a complex physical phase that violates CP .
Unfortunately, the K0 has been the only place to
study CP violation. Despite precision K0-studies,
a complete picture of CP violation is still lacking.

CP tests have encompassed B mesons, but
the violations in inclusive studies [3] are too small
(�10�3) to as yet detect. In the '80's it was realized
that the interference due to mixing of B0

d decays to
the same CP state could show large violations [4].

B0
d=B

0
d!J= K0

s is the \golden" mode for large
e�ects, with little theoretical uncertainty relating it
to the CKM matrix. A B0

d may decay directly to

J= K0
s , or it may oscillate into a B

0
d and then decay

to J= K0
s . The two paths have a phase di�erence,

and the interference results in an asymmetry:

ACP (t) � B0
d(t)�B0

d(t)

B0
d(t) +B0

d(t)
= sin(2�) sin(�mdt);

(1)
where B0

d(t) [B
0
d(t)] is the number of J= K

0
s decays

at proper time t from mesons produced as B0
d [B

0
d].ACP varies as sin(�mdt) because it is shifted by a

1
4 -cycle relative to the cos(�mdt) mixing oscillation
by the mixed/unmixed decay interference. The am-
plitude is sin(2�), with � = arg(�VcdV �cb=VtdV �tb) for
CKM elements Vqq0 . � is also an angle from the so-
called \unitarity triangle" of the CKM matrix.

2. The B0=B0
! J= K0

s
sample
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We exploit the large B cross section at the
Tevatron and obtain a sample of J= K0

s decays
to measure sin(2�). We start from the Run I
J= !�+�� sample (pT (�) above �1:5GeV/c) of
�1

2 million events. The K
0
s ! �+�� reconstruction

tries all oppositely charged track combinations
(assumed to be pions). The pT (K

0
s ) must be above

0.7 GeV/c, its decay vertex displaced from the
J= 's by >5�, and pT (J= K

0
s ) > 4:5 GeV/c. After

imposing the J= andK0
s masses, the �tted J= K

0
s

mass MFIT and error �FIT are used to construct
MN � (MFIT �M0)=�FIT , where M0 is the world
average B0

d mass. The MN distribution is shown in

Fig. 1. A likelihood �t yields 395� 31 B0
d=B

0
d's.

The �pp collisions spread beyond CDF's Si-
�vertex tracking detector (SVX), so only about half
(202�18 vs: 193�26) of the J= 's have both muons
in the SVX. The precision lifetime information from
the SVX allows one to make a time-dependent �t
to Eq.1. However, the CP asymmetry remains even
when integrated in time; so although lifetime infor-
mation is basically lost in \non-SVX" data, they
are still useful. The statistical power for measur-
ing sin(2�) is only reduced by � 1=3 for this sub-
sample. The \SVX" subsample was the basis for
our previous sin(2�) measurement [5].

3. Flavor tagging

Observing the asymmetry ACP (t) is predicated
upon determining the b \
avor"|whether the B
meson is composed of a b or a �b quark|at the time
of production. If the initial 
avor is correctly tagged
with probability P , then the observed asymmetry
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Figure 1. Normalized mass distributionMN (see text)
of the J= K0

s candidates. A Gaussian signal plus linear
background �t to the data is shown by the curve.

is attenuated by the \dilution" D = 2P � 1, i.e.
AObs
CP = D sin(2�) sin(�mqt).
A method with tagging e�ciency � yields an

error on sin(2�) which scales as 1=
p
�D2N for N

background-free mesons. Thus, �D2 measures the
e�ective tagging power. An analysis can be improv-
ed by using several taggers, the combined e�ect is
approximately the sum of the respective �D2's.

The tagging needs for this analysis are similar to
those employed in B0-B0 oscillation measurements
of �m. CDF has performed six �md analyses that
demonstrate three types of tagging methods. The
CDF average �md is 0:495�0:026�0:025 ps�1 [6],
which is of similar precision to other experiments
and agrees well with a world average [7].

We call the �rst method \same-side tagging"
(SST), as it relies on the charge of a particle \near"
the B0 [8]. The idea is simple. A �b quark forming a
B0
d combines with a d in the hadronization, leaving

a �d. To make a charged pion, the �d combines with
a u making a �+. Conversely, a B0

d will be asso-
ciated with a ��. Correlated pions also arise from
B��+ ! B(�)0�+ decays.z Both sources have the
same correlation, and are not distinguished here.

The SST tag is the candidate track with the
smallest momentum transverse to the B+Track
momentum. A valid track candidate must be within
�R=

p
(��)2+(��)2�0:7 of the B, have pT >400

MeV/c, reconstructed in the SVX, and have its
impact parameter within 3� of the primary vertex.

z A CDF B�� analysis of `D(�) data found the fraction of
Bu;d mesons arising as B�� states to be 0:28�0:06�0:03 [9].

SST was studied in a �md-analysis [10], and
used in our earlier measurement of sin(2�). The
SST dilution for the J= K0

s sample was found to
be 16:6 � 2:2% [5] for events reconstructed in the
SVX. This method has been extended to events out-
side the SVX coverage (the impact parameter cut
is removed); and we �nd DSST

nonSVX = 17:4� 3:6%.
Two \opposite-side" taggers, where the other b-

hadron signals the 
avor of the B0, are also used.
The lepton charge from b! `� decay of the other
b-hadron tags the B0 
avor, i.e. `� (`+) implies B0

(B0). Lepton (e and �) identi�cation criteria are
applied to all charged tracksx with pT thresholds of
1.0 (2.0) GeV/c for electrons (muons). The dilution
is measured using a B+ ! J= K+ sample (�1000
events), and we �nd Dlep = 62:5� 14:6%.

The other opposite-side method is \jet-charge."
The tag is a charge average of an opposite-side jet.
The jet is formed by a mass-clustering algorithm
which starts with \seed" tracks of pT >1:75 GeV/c,
and combines other tracks with pT >0:4 GeV/c, up
to a cluster mass approximating the B mass. The
B0 decay products are explicitly excluded from the
jet, as are tracks within �R<0:7 of the B0. If mul-
tiple jet clusters are present, the one most likely to
be a b-jet is chosen based on track impact paramet-
ers and cluster pT . The jet-charge for a cluster is:

Qjet =
�i qipTi(2� Ti)

�i pTi(2� Ti)
; (2)

where qi and pTi are the charge and pT of the i-th
track in the jet with pT > 0:75 GeV/c, and Ti is
the probability that the track is from the primary
vertex. A B0 (B0) is implied if Qjet<�0:2 (>0:2),
otherwise it is untagged. The dilution is measured
from the B+!J= K+ sample to be 23:5� 6:9%.

By coincidence, each tagger has an �D2 of �2%.
The total �D2 is 6:3�1:7%, so our sample of 400
events corresponds to �25 perfectly tagged J= K0

s

decays plus background.

4. Extracting sin(2�)

The three taggers are applied to the sample. A
lepton tends to dominate the jet-charge if a lepton
tag is in the jet. Lepton tagging has low e�ciency
but high dilution, so the correlation between lepton
and jet-charge tags is avoided by dropping the jet-
charge tag if there is a lepton tag. This means each
B0 is tagged at most by two methods. If the tag
result for an event by method-i is si (s = +1; �1; 0
for B0, B0, untagged), then the e�ective dilution for
two tags is Dij = jsiDi + sjDij=(1 + sisjDiDj).

x Lepton identi�cation limits the tracks to j�j< 1:0. Also,
identi�ed conversion electrons are explicitly removed.
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Figure 2. The CP asymmetry of the data with the �t
result. The SVX data is shown in proper-time bins on
the left, and a single bin for non-SVX data on the right.

An unbinned likelihood �t is performed using
the 
avor tags (and the e�ective Dij 's), MN ,
and lifetime information from the data; and it
computes the likelihood probability that an event
is signal or background (either prompt or long-
lived). The treatment of the SVX and non-SVX
data in the likelihood is di�erent, but both are part
of the same �t. The B0 lifetime and �md values
are �xed to world averages (1:54 � 0:04 ps and
0:464 � 0:018 ps�1 [11]). The �t also incorporates
allowances for (small) systematic detector biases.

The �t yields sin(2�)=0:79+0:41
�0:44 (stat. + syst.)

for the combined taggers [12]. The �t is shown in
Fig. 2 along with a dilution weighted average of the
sideband-subtracted data. The result corresponds
to 0<sin(2�) for a 93% uni�ed frequentist [13] con-
�dence interval. Although the exclusion of zero has
only slightly increased from our previous result [5],
the uncertainty on sin(2�) is cut in half.

We applied our taggers and �tting machinery to
a sample of �450 B0

d ! J= K�0 decays as a cross
check. We �nd �md = 0:40 � 0:18 ps�1, in accor-
dance with the precision of the sin(2�) analysis.

5. Summary and prospects

We have directly measured sin(2�), and our result
provides evidence for large CP asymmetries in B0

mesons as expected from indirect determinations,
e.g. 0:52<sin(2�)<0:94 at 95% CL [14].

A critical test, however, requires much greater
precision. CDF will attain this in Run II. Starting

in 2000, a 2-year run should deliver 20� the lum-
inosity (� 2 fb�1), and be exploited by a greatly
enhanced detector [15]. We project �104 J= K0

s 's
from dimuons, for a sin(2�) error of about �0:08.
Triggering on J= ! e+e� may boost the sample
by �50%. CDF is also working on a Time-of-Flight
system which will aid 
avor tagging. We expect to
achieve sensitivities in the range projected for the
dedicated B factories.
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