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B
0
d MIXING AND CP VIOLATION

MEASUREMENTS AT THE TEVATRON

K.Byrum
Argonne National Laboratory, High Energy Physics, Bldg 362,

9700 S. Cass Ave., Argonne, Illinois 60439

Abstract

We present six time-dependent B0
d mixing measurements of �md from the

CDF Run I data. The CDF average is �md = :494�:026�:026(ps)
�1. We also

present a measurement of the CP-violating asymmetry sin(2�) using a sample
of B0= �B0! J= K0

s decays and report sin(2�) = :79+:41�:44.

1 Introduction

In the context of the standard model, the mixing of B0
d $

�B0
d occurs through

the charge current coupling between quarks. This can be described in the
context of the Cabibbo-Kobayashi-Maskawa (CKM) [1] matrix which trans-
forms the 
avor eigenstates of the quarks into their mass eigenstates. The
CKM rotation matrix can be completely determined from the three angles
and a phase. It is useful to write it in the Wolfenstein [2] parameterization
as:

VCKM �

0
B@
Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

1
CA =

0
B@

1� �2

2
� A�3(�� i�)

�� 1 � �2

2
A�2

A�3(1� �� i�) �A�2 1

1
CA+O(�4)

where � = sin(�C) and the three other parameters A, �, and � can be de-
scribed by the remaining two weak rotation angles and the complex phase
that introduces CP violation. Unitary of the CKM matrix can be represented
graphically as a triangle in the complex plane. The base of this triangle is
scaled to unit length by A�3. This leaves three angles �; �, and 
 and two
sides which may be measured. B0

d $
�B0
d mixing constrains the element Vtd

which contributes to one of the triangle sides, while CP violation in the decay
B0= �B0 ! J= K0

s determines the angle �.
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1.1 B
0

d
$

�
B

0

d
Mixing

A neutral B0
d meson can oscillate into its anti-particle state, �B0

d through
second-order weak processes with a probability equal to:

P(B0

d(t0)!
�B0
d(t))=

e�t=�B

2�B
(1� cos(�md t)); (1)

where �md is the frequency of the oscillation and is equal to the mass di�er-
ence (�md = mH �mL) between the heavy and light mass eigenstates, �B is
the mean lifetime of the two mass eigenstates, and t is the proper decay time
of the B0

d in its rest frame. The asymmetry between the mixed and unmixed
state is

A=
P (B0

d ! B0
d) � P (B

0
d !

�B0
d)

P (B0
d ! B0

d) + P (B0
d !

�B0
d)

= cos(�md t): (2)

To measure the time-dependent mixing asymmetry, we need three mea-
surements: (1) the 
avor of the B at production, (2) the 
avor of the B at
decay, and (3) the proper decay time. At CDF, measuring (2) and (3) are
relatively easy. The 
avor is known by the B reconstruction, and the proper
time is measured using the CDF silicon vertex detector (SVX) with a 2-D
r� resolution of �d � (13 + 40=pT )�m. We use three algorithms for deter-
mining the B 
avor at production. The soft lepton tagging (SLT) algorithm
identi�es the 
avor of the opposite B through its decay to a lepton. The jet
charge tagging algorithm (JetQ) uses a momentum-weighted charge average
of particles in a b quark jet to infer the charge of the b quark. These two
tagging algorithms are referred to as opposite side taggers (OST) since the
production 
avor is determined by the B opposite the B candidate of inter-
est. The same side tagging algorithm (SST) uses charged tracks surrounding
the B to determine its 
avor. The e�ectiveness of a tagging algorithm is
characterized by the e�ciency, �, which is the fraction of events that can be
tagged and the dilution, D, which dilutes the asymmetry due to an imperfect
detector, mistags, etc. The statistical accuracy of a sample of tagged events
is proportional to N�D2 where N is the number of events. Figure 1 shows
six CDF B0

d-oscillation measurements of �md, and the combined average.
These measurements exploit all three of the tagging algorithms.

1.2 CP-Violation

To measure CP-violation, we use the CP eigenstate B0
d=

�B0
d ! J= K0

s . For
the CP-asymmetry to be non-zero, the imaginary phase between the two
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decay paths leads to a di�erence in the decay rate. The CP asymmetry is
described by

A(t)=
P ( �B0

d ! J= K0
s ) � P (B

0
d ! J= K0

s )

P ( �B0
d ! J= K0

s ) + P (B0
d ! J= K0

s )
= sin(2�) sin(�md t) (3)

The �rst measurements of sin(2�) were published by CDF [3] and OPAL [4]
in 1998. OPAL measured sin(2�) = 3:2+1:8�2:0 � 0:5 using J= K0

s events. CDF
used a sample of � 200 J= K0

s events to measure sin(2�) = 1:8 � 1:1� 0:3.
The CDF events required the J= to be reconstructed in the SVX and used
only one tagging method to identify the B at production.

In the present update, we have expanded the earlier result to include
� 200 additional events in which the J= is reconstructed in the central
tracker (CTC) thus having large uncertainty on the decay time. We have also
allowed for multiple taggers for each event. To measure the time-dependent
CP asymmetry, we measure the proper decay time and tag the 
avor of the
B at production. Each event can be tagged with either a SST, an OST or
both. When multiple taggers are combined the e�ective dilution (D) is:

Deff =
DOST �DSST

1�DOSTDSST

(4)

To calibrate the OST algorithms, we use the B� ! J= K� events which
have similar kinematics to the J= K0

s signal sample and have a known 
avor.
For the dilution of the SST, we use the result from our previous measurement
of sin(2�) [3]. Table 1 list the e�ciencies and dilutions for the di�erent
tagging algorithms.

The tagged J= K0
s events are �t using a negative log-likelihood function.

The �t is described by the signal events, the prompt background and the long-
lived background. Each component is broken down into a piece with precision
lifetime information and a piece with less precise lifetime information. The
probability function includes terms for lifetime, normalized mass (MN ) and
the tagging e�ciency functions. Background asymmetries are constrained by
events far from the signal peak at MN = 0, and detector asymmetries are
accounted for in the �t using a large inclusive J= sample.

The result for sin(2�) is shown in Figure 2a including systematic errors
due to the dilutions, �md, �B0, and mB0. The left side of the �gure shows
the asymmetry versus lifetime using the precision lifetime sample. The solid
curve shows the full likelihood �t with �md �xed to the world average and
the dashed curve shows the �t with �md 
oating. The one data point on
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Table 1: E�ciencies and Dilutions of tagging algorithms used for determining
the 
avor of B0

d=
�B0
d ! J= K0

s

Tag E�ciency (%) Dilution (%)
SSTsvx 35.5 �3.7 16.6�2.2
SSTnon 38.1 �3.9 17.4�3.6
SLT 5.6 �1.8 62.5�14.6
JetQ 40.2 �3.9 23.5�6.9

Combined �D2=6.3�1.7

the right side of the �gure is the value of sin 2� obtained from the CTC
sample with low lifetime resolution. This result corresponds to a Feldman-
Cousins frequentist limit of 0:0 < sin(2�) < 1 at 93% CL. Figure 2b shows
the CDF result compared to indirect results in the � � � plane [5]. The
dotted lines correspond to the central values of � from sin(2�) = :79. The
solid lines represent the 1 � regions. The oval shaped region shows the 1�
(light shaded region) and 2� intervals from indirect measurements of the
CKM parameters [5].

2 Conclusion

We present six measurements of the mixing parameter �md from the CDF
Run I data and measure �md = :494�:026�:026(ps

�1). Using the tagging al-
gorithms developed for these mixing measurements, we measure the CP-
violating asymmetry sin(2�) with a sample of of B0= �B0 ! J= K0

s decays.
We report sin(2�) = :79+:41�:44 which corresponds to a Feldman-Cousins fre-
quentist limit of 0 < sin(2�) < 1 at 93% CL.
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Figure 1: Six measurements of the mixing parameter �md from the CDF
Run I data.
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