Neural Networks for Analysis of Top Quark Production

B. Abbott et al.
The D0 Collaboration

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

August 1999

Presented Paper at EPS-HEP99,
Tampere, Finland, July 15-21, 1999
Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Notification

This manuscript has been authored by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U.S. Department of Energy. The United States Government and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government Purposes.
Neural Networks for Analysis of Top Quark Production

The DØ Collaboration *
Fermi National Accelerator Laboratory, Batavia, Illinois, 60510
(July 15, 1999)

Abstract

Neural networks (NNs) provide a powerful and flexible tool for selecting a signal from a larger background. The DØ collaboration has used them extensively in studying $t\bar{t}$ decays. NNs were essential to the measurement of the $t\bar{t}$ production cross section in the all-jets channel ($t\bar{t} \rightarrow b\bar{b}qqq$), and were also used in the measurement of the mass of the top quark in the lepton+jets channel ($t\bar{t} \rightarrow b\bar{b}\ell\nuqq$). This paper will describe two new applications of neural networks to top quark analysis: the search for single top quark production, and an effort to increase the sensitivity in the dilepton channel $t\bar{t} \rightarrow b\bar{b}\ell\nu\ell\nu$ beyond that achieved in the published analysis.

7 Institut des Sciences Nucléaires, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France
8 DAPNIA/Service de Physique des Particules, CEA, Saclay, France
9 Panjab University, Chandigarh, India
10 Delhi University, Delhi, India
11 Tata Institute of Fundamental Research, Mumbai, India
12 Kyungsung University, Pusan, Korea
13 Seoul National University, Seoul, Korea
14 CINVESTAV, Mexico City, Mexico
15 Institute of Nuclear Physics, Kraków, Poland
16 Institute for Theoretical and Experimental Physics, Moscow, Russia
17 Moscow State University, Moscow, Russia
18 Institute for High Energy Physics, Protvino, Russia
19 Lancaster University, Lancaster, United Kingdom
20 University of Arizona, Tucson, Arizona 85721
21 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
22 University of California, Davis, California 95616
23 University of California, Irvine, California 92697
24 University of California, Riverside, California 92521
25 Florida State University, Tallahassee, Florida 32306
26 University of Hawaii, Honolulu, Hawaii 96822
27 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
28 University of Illinois at Chicago, Chicago, Illinois 60607
29 Northern Illinois University, DeKalb, Illinois 60115
30 Northwestern University, Evanston, Illinois 60208
31 Indiana University, Bloomington, Indiana 47405
32 University of Notre Dame, Notre Dame, Indiana 46556
33 Purdue University, West Lafayette, Indiana 47907
34 Iowa State University, Ames, Iowa 50011
35 University of Kansas, Lawrence, Kansas 66045
36 Kansas State University, Manhattan, Kansas 66506
37 Louisiana Tech University, Ruston, Louisiana 71272
38 University of Maryland, College Park, Maryland 20742
39 Boston University, Boston, Massachusetts 02215
40 Northeastern University, Boston, Massachusetts 02115
41 University of Michigan, Ann Arbor, Michigan 48109
42 Michigan State University, East Lansing, Michigan 48824
43 University of Nebraska, Lincoln, Nebraska 68588
44 Columbia University, New York, New York 10027
45 New York University, New York, New York 10003
46 University of Rochester, Rochester, New York 14627
47 State University of New York, Stony Brook, New York 11794
48 Brookhaven National Laboratory, Upton, New York 11973
49 Langston University, Langston, Oklahoma 73050
50 University of Oklahoma, Norman, Oklahoma 73019
51 Brown University, Providence, Rhode Island 02912
52 University of Texas, Arlington, Texas 76019
53 Texas A&M University, College Station, Texas 77843
54 Rice University, Houston, Texas 77005

3
I. INTRODUCTION

Since the observation of the top quark in 1995 [1], much experimental effort has been invested in studying its properties [2]. Such analyses are difficult, owing to the small number of $t\bar{t}$ events available, the relatively large backgrounds, and the complex event geometries. Thus there has therefore been a great deal of interest in analysis techniques that could improve on the standard methods of selecting candidate events. One useful class of such techniques uses pattern classifiers based on feed-forward “neural networks.” [3]

The DØ experiment at the Fermilab Tevatron has made considerable use of neural network techniques in its analyses of top quark data. Both the cross section measurement in the all-jets channel [4] and the mass measurement in the lepton + jets channel [5] used neural networks; details of these analyses have already been published.

Here, we describe two more recent studies: a neural network analysis of single top quark production, and an effort to improve the efficiency for selecting $t\bar{t} \rightarrow e\mu$ events using neural networks. We shall start with a brief description of the kind of neural networks used in these analyses.

II. NEURAL NETWORKS

Figure 1 shows an example of the type of neural network used in these studies. It consists of a set of processing units, each of which has at least one input and one output. The output y_i of a single unit i is given in terms of its inputs x_{ij} by

$$ y_i = g(\sum_j x_{ij} + \theta_i), $$

where θ_i is a threshold specific to the unit, and g is a nonlinear squashing function, typically of the form

$$ g(x) = \frac{1}{1 + e^{-2x}}. $$

[Thus, the unit outputs are bounded in the range $(0, 1).$]

The units are arranged in layers, with the inputs of layer $n+1$ connected to the outputs of layer n by a weight matrix:

$$ x_{ij}^{n+1} = w_{ij} y_j^n. $$

Typically, the last layer consists of only one unit, and is called the “output” layer; the other layers are called “hidden” layers. Often, the y_i^0 are said to be the outputs of a dummy “input” layer. No processing, however, is done in that “layer.” Such a network is quite flexible; in fact, it has been shown that a network with only one hidden layer can approximate any reasonable (Borel-measurable) function to any required degree of accuracy, provided that sufficient units are available in the hidden layer [6].

For pattern recognition, one wants to have the network output 1 if the input is most consistent with signal, and 0 if the input is most consistent with background. Typically, one has available a collection of N inputs, some of which are known to be signal and some of which are known to be background. One defines an error function:

$$ \chi^2 = \frac{1}{N} \sum_{i=1}^{N} (O_i - t_i)^2, $$

where O_i is the output of the network for input i, and t_i is the desired output for that input. This quantity can be considered as a function of the weights w and thresholds θ; one then minimizes χ^2 with respect to these variables to achieve an approximation to the desired function.

The minimization technique most often used is called “backpropagation,” which is a sort of stochastic gradient descent. Other minimization algorithms can also be used. This process is often referred to as “training” the network.

III. SINGLE TOP QUARK PRODUCTION

The first study we will examine is a search for single top quark production [7]. The processes relevant at the Tevatron are illustrated in Fig. 2; the total cross sections for these processes calculated at next-to-leading order (NLO) are [8]:

$$ \sigma_{\text{NLO}}(p\bar{p} \rightarrow t\bar{t}X + \text{c.c.}) = 0.724 \pm 0.043 \text{ pb}, $$

$$ \sigma_{\text{NLO}}(p\bar{p} \rightarrow tqX + \text{c.c.}) = 1.70 \pm 0.27 \text{ pb}. $$

Such processes are interesting because they directly probe the $W - t - b$ vertex. Assuming the Standard Model, measuring these cross sections gives a measurement of the V_{tb} element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Such measurements are also

![Figure 1. A feed-forward neural network.](image-url)
sensitive to any new physics in the weak interactions of the top quark [9].

After the decay of the top quark, the particles produced in these processes are $Wb\bar{b}$ and $Wb\bar{q}$, possibly with additional jets from QCD radiative effects. This study looks for leptonic decays of the W boson, so the initial event selection requires a high-p_T lepton, large missing transverse energy (E_T), and at least two jets. No δ-tag is required in this study, in order to preserve signal efficiency (but if information about a tagging muon is present, it will be used).

The numbers of signal and background events expected to remain after this selection for D0’s Run 1 (109 pb$^{-1}$) are as follows:

<table>
<thead>
<tr>
<th>Process</th>
<th>N_{events}</th>
</tr>
</thead>
<tbody>
<tr>
<td>tb</td>
<td>2.1</td>
</tr>
<tr>
<td>$tq\bar{b}$</td>
<td>5.1</td>
</tr>
<tr>
<td>QCD multijet</td>
<td>2411</td>
</tr>
<tr>
<td>$t\bar{t}$</td>
<td>22.3</td>
</tr>
<tr>
<td>$Wb\bar{b}$</td>
<td>11.4</td>
</tr>
<tr>
<td>Wjj (c, s)</td>
<td>51.8</td>
</tr>
<tr>
<td>Wjj (g, u, d)</td>
<td>1615.7</td>
</tr>
<tr>
<td>WW</td>
<td>36.9</td>
</tr>
<tr>
<td>WZ</td>
<td>5.3</td>
</tr>
</tbody>
</table>

As can be seen, the background is huge compared to the signal, with the dominant background sources being QCD multijet production (with a jet misidentified as a lepton) and the production of W bosons with associated jets.

A crucial step in a neural network analysis is the selection of the variables used as input to the network. Adding more variables potentially increases the amount of information available to the network, but it also expands the space that must be searched during the minimization, making it more difficult to find a good minimum. In fact, with some procedures, adding variables of marginal utility can degrade the performance of a network. And while neural networks can in principle approximate any reasonable function, in practice complicated mappings may require too many hidden nodes for minimization to be practical.

A useful observation is that the rate for a scattering process is greatest in the regions of phase space near singularities in the corresponding matrix element [10]. If such singularities occur in different places for signal and background, then the dependence on the corresponding variables in which the singularities occur should differ strongly between signal and background. For example, the top quark production diagrams in Fig. 2 have a singularity at $M_W^2 = (p_t + p_W)^2 \rightarrow m_t^2$. In contrast, the dominant background diagrams, illustrated in Fig. 3, have singularity at

$$M_{g1,g2}^2 = (p_{g1} + p_{g2})^2 \rightarrow 0,$$

$$\hat{t}_{\phi,g1,g2} = (p_{g1} + p_{g2} - p_\phi)^2 \rightarrow 0,$$

$$\hat{t}_{\phi,g1} = (p_{g1} - p_\phi)^2 \rightarrow 0,$$

$$\hat{t}_{\phi,g2} = (p_{g2} - p_\phi)^2 \rightarrow 0.$$

These variables, however, are defined at the parton level, and cannot be directly measured, due to effects of QCD radiation, the unobserved neutrino, and unobserved momentum that escapes down the beam pipe. In such a situation, it is better to use other variables that are related to the singular variables, but can be derived directly from the observed final state. For example, the typical t-channel singular variable $\hat{t}_{ij,f}$ associated with the production of a light particle (or jet) f can be written

$$\hat{t}_{ij,f} = (p_f - p_i)^2 = -\sqrt{s}Yp_{f}^{\perp}e^{-by_f},$$

where \sqrt{s} is the total invariant mass of the produced system, Y is its total rapidity, and p_f^{\perp} and y_f are the transverse momentum and rapidity of the produced f.

From these kinds of considerations, a nominal set of input variables can be defined as:

Set 1: $M_{j1,j2}$, M_t, Y_{tot}, $p_{T,j1}$, y_{j1}

$$p_{T,j2}$, $p_{T,j12}$, y_{j12}, \sqrt{s}

where $p_{T,j2}$ and y_{j12} are the transverse momentum and rapidity of the system formed by the two highest p_T jets, and Y_{tot} is the total rapidity of the center of mass of the initial partons, as reconstructed from the final state. The z-component of the momentum of the W boson is found by enforcing the M_W mass constraint in the leptonic W boson decay. Distributions of some of these variables are shown in Fig. 4.

Figure 5 compares this set with the simpler sets:

Set 2: $p_{T,j1}$, $p_{T,j2}$, H_{all}, $H_{T\text{all}}$

Set 3: $p_{T,j1}$, $p_{T,j2}$, H_{all}, $H_{T\text{all}}$, M_t
where $H_{\text{all}} = \sum E_{j}$ and $H_{T\text{all}} = \sum E_{Tj}$. The comparison is made by training a neural network for each of the sets on a sample of events consisting of top quark signal plus Wjj background. It is seen that the neural network built using Set 1 performs better than those using Set 2 or Set 3.

Figure 5 also shows two other variations of the set of input variables. Set 4 is the same as Set 1, except that the variables H_{all} and $H_{T\text{all}}$ are added. It is seen that this does worse than Set 1 — the additional variables do not add enough information to counteract the increase in the size of the minimization space. Set 5 adds to Set 1 the widths w_{jet} of the two jets and the p_{T} of a b-tagging muon (set to zero if there is no such tag). In this case, the added variables help: Set 5 has a lower χ^2 than any of the others.

For the final analysis, a separate network is constructed for each of the major backgrounds, as shown in Fig. 6. The networks are trained using JETNET [11]; the results for each network are shown in Fig. 7. Figure 8 shows that the network output from Monte Carlo models agrees well with the data. Finally, individual cuts are made on each of the five network outputs. Figure 9 compares the results of this to a more conventional analysis. It is seen that for a given background level, the neural network analysis provides several times the signal efficiency of conventional cuts.
FIG. 7. Outputs of each of the neural networks for single top signal (dashed) and the indicated background (solid).

FIG. 8. A comparison of the combined output of the five networks for data (the open symbols) and a Monte Carlo model of signal and all backgrounds (the solid symbols). The individual network outputs are combined using $1/O_{\text{tot}} = (1/5) \sum_{i=1}^{5} 1/O_{\text{NN}i}$.

FIG. 9. Comparison of signal/background efficiencies for NN and conventional analyses. Each point represents one specific set of cuts.

FIG. 10. Distributions of input variables to the $\tau\tau$ neural network for signal (dashed) and $Z\to\tau\tau$ background (solid).

IV. $t\bar{t}$ DECAYS INTO $e\mu$

The "golden" channel for observing $t\bar{t}$ decays has long been the dilepton mode $t\bar{t} \rightarrow W^+W^-b\bar{b} \rightarrow e\nu, \mu\nu, b\bar{b}$. Due to the presence of two leptons with different flavors, this channel has a very low background. However, compared to the channels in which one of the W bosons decays into jets, the $e\mu$ channel has a relatively small branching ratio — about 2.5%, versus about 15% for the $e+\text{jets}$ channel. Therefore, any new analysis techniques that can increase efficiency for identifying signal in this channel while maintaining the low background level are welcome.

This study starts from the published measurement of the $t\bar{t}$ production cross section [12], which selects $e\mu$ candidates as follows:

- An electron with $E_T > 15$ GeV and $|\eta| < 2.5$.
- A muon with $p_T > 15$ GeV/c and $|\eta| < 1.2$.
- $E_T > 20$ GeV.
- At least two jets with $E_T > 20$ GeV and $|\eta| < 2.5$.
- $\Delta R_{b,\text{jet}} > 0.5$ and $\Delta R_{e,\mu} > 0.25$. ($\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$)
- $H_T > 120$ GeV, where $H_T = E_T + \sum_{\text{jets}} E_{T,\text{jet}}$.

For the present study, this selection is relaxed by removing the cut on H_T and reducing the E_T and jet E_T cuts to 15 GeV. This defines the sample used as input to the neural network.
There are three major backgrounds to contend with: QCD jet production with jets misidentified as leptons, \(Z\rightarrow\tau\tau\rightarrow e\mu\), and WW → eμ events. A separate network is trained to separate the signal from each of the three backgrounds. Six variables are used as inputs to each of the networks, these being \(E_T^e\), \(E_T^{jet}\), \(E_T\), \(H_T^{jets} = \sum_{jets} E_T^{jet}\), \(M_{e\mu}\), and \(\Delta\phi_{e\mu}\), except for the \(\tau\tau\) network, where \(E_T^{jet1}\) replaces \(E_T^{jet2}\). The input variables for the \(\tau\tau\) network are plotted in Fig. 10. Each network has seven hidden units. The networks are trained (using \textsc{jetnet}) on equal numbers of \(t\bar{t}\) signal and background events (2000 of each for the QCD network, and 1000 of each for the other two). The outputs of the three networks are combined, using usual

\[
O_{NN}^{comb} = \frac{1}{O_{NN1}^{comb}} + \frac{3}{O_{NN2}^{comb}} + \frac{1}{O_{NN3}^{comb}}. \tag{14}
\]

Distributions of this variable for signal and background are shown in Fig. 11. To define the candidate sample, a final cut of \(O_{NN}^{comb} > 0.88\) is imposed, which was determined by maximizing the expected relative significance, \(S/\sigma_B\). (\(\sigma_B\) is the uncertainty in the background estimate.)

The resulting signal efficiencies and estimated backgrounds for DØ’s Run 1 (108 pb\(^{-1}\)) are shown in Table I and Fig. 12. Compared to the standard (published) analysis, it is seen that the neural network analysis increases the signal efficiency by about 10%. In addition, the background is also slightly lower, although this is harder to evaluate due to the large statistical errors in the QCD background sample. Further comparison is made in Fig. 13.

<table>
<thead>
<tr>
<th>Background</th>
<th>(N_{expected})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z\rightarrow\tau\tau\rightarrow e\mu)</td>
<td>(0.10 \pm 0.10)</td>
</tr>
<tr>
<td>WW → eμ</td>
<td>(0.074 \pm 0.020)</td>
</tr>
<tr>
<td>(\gamma^*\rightarrow\tau\tau\rightarrow e\mu)</td>
<td>(0.006 \pm 0.005)</td>
</tr>
<tr>
<td>Fakes</td>
<td>(0.083 \pm 0.126)</td>
</tr>
<tr>
<td>Total</td>
<td>(0.26 \pm 0.16)</td>
</tr>
</tbody>
</table>

\[\text{FIG. 11. Distribution of } O_{NN}^{comb} \text{ for } t\bar{t} \text{ signal and background events.}\]

\[\text{FIG. 12. The neural network analysis compared to the standard analysis, for DØ’s Run 1. (a) Efficiency times branching ratio (%); (b) Ratio of NN analysis efficiency to standard analysis efficiency; (c) Expected number of signal events. Uncertainties displayed are statistical only; the systematic uncertainties (included in Table I) are highly correlated between the two analyses.}\]

\[\text{TABLE I. A comparison of the results of the conventional and neural network } t\bar{t} \rightarrow e\mu \text{ analyses. The numbers of background events are normalized for DØ’s Run 1 (108 pb\(^{-1}\)).}\]
FIG. 13. The neural network analysis compared to the standard analysis. Each point represents a different set of selection requirements.

V. CONCLUSIONS

In both the analyses considered here, neural networks provide a significant improvement over conventional analysis methods. We expect that such techniques will have a prominent place in the analysis of data from the upcoming Run 2 of the Tevatron.

ACKNOWLEDGMENTS

We thank the Fermilab and collaborating institution staffs for contributions to this work and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat à L’Energie Atomique (France), Ministry for Science and Technology and Ministry for Atomic Energy (Russia), CAPES and CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), and CONICET and UBACyT (Argentina).
