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ON POSSIBLE USE OF BENT CRYSTAL TO IMPROVE TEVATRON
BEAM SCRAPING *

V. M. Biryukov', Institute for High Energy Physics, Protvino, Russia
A. 1. Drozhdin, N. V. Mokhov, FNAL, Batavia, IL

Abstract

A possibility to improve the Tevatron beam halo scraping
using a bent channeling crystal instead of a thin scattering
primary collimator isstudied. To evaluate the efficiency of
the system, realistic simulationshave been performed using
thecaTcH and sTRUCT MonteCarlo codes. Itisshownthat
the scraping efficiency can beincreased and the accel erator-
related backgrounds in the CDF and DY collider detectors
can bereduced by about one order of magnitude. Resultson
scraping efficiency versus thickness of amorphous layer of
the crystal, crystal alignment and itslength are presented.

1 INTRODUCTION

Bent-crysta technique is well established for extracting
high energy beams from accelerators. It was successfully
applied a up to 900 GeV|[1], and simulationswere able to
predict the results correctly. Recent experiments at IHEP
Protvino[2] have demonstrated that 50-70% of the beam
can be extracted using athin (3-5 mm) Si channdling crys-
tal with bending of 0.5-1.5 mrad. It would be promising to
apply this technique for a beam hao scraping at high en-
ergy colliderq3, 4]. A bent crystal, serving asaprimary e -
ement, should bend hal o particlesonto asecondary collima-
tor. A demonstration experiment of thiskind was recently
performed at IHEP[2] where afactor of 2 reduction in the
accelerator background was obtained with abent crystal.

2 BEAM LOSSAND BACKGROUNDS

The current approach to the Tevatron Run Il collimation
system is described in detail in[5]. Below we show how
asiliconbent crystal can improve the Tevatron collimation
system efficiency. Two cases are compared for a 900 GeV
proton beam:

e the Run Il collimation system with only one of three
primary collimators—(D17h) horizontal—used. It in-
terceptslarge-amplitude protonsand protonswith pos-
itive Ap;

o thesame collimation scheme, but asilicon bent crystal
isused instead of D17h.

Inredlity, two additional primary collimators (bent crys-
tals) should be used at D17v and D49h locations for verti-
cal amplitude and off-momentum scraping. Therefore, re-
sults presented here represent about 30% of total lossesin
the machine.
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The studies[6] have shown that the accelerator related
background in the D@ and CDF collider detectorsis orig-
inated from beam halo loss in the inner triplet region. In
addition to the opticaly small aperture at 3,,.. location,
theaperturerestrictionsinthisareaarethe DG forward de-
tector’s Roman pots placed a 80 and the B&@ Roman pots
placed a 100 at the entrance and exit of the beam sepa-
rators. Beam losses in B and DG depend strongly on
the secondary collimator offset with respect to the primary
collimators. Each of the Roman pot detectors at D@ con-
sists of four 2x 2 cm? plates (two horizontal and two verti-
cal placed on the both sides of the beam). Each of the CDF
Roman pots consists of twelve units: three D@ type sets
with 12 cm between them, which resultsin higher total hit
rates at CDF[7]. The CDF detectors are made of a silicon
wafer, about 400 pm thick, on which a thin 50 ym layer
of diamond is deposited. Each D& detector is a box that
includes a scintillation fiber detector with atotal length of
37.7 mm along the beam. The vacuum windows are com-
posed of a 50um stainless stedl foil in order to reduce mul-
tiple Coulomb scattering.

3 USING BENT CRYSTAL

A silicon (110) crystal bent at an angle of 0.1-0.3 mrad is
placed upstream of the D17 secondary collimator instead of
the original thin scattering tungsten target[5, 7] inthe same
position. Crystal channdlingissimulated asdescribedin[§].
Particle tracking in the lattice is done with the STRUCT
code] 9] withupdated MARS physicg[10]. A non-channeling
amorphous layer on the crystal surface due to itsirregular-
ity at amicron level istaken into account as a silicon target
upstream of the crystal as shownin Fig. 1.
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Figure 1: Amorphous layer and crystal layout at D17 used
in simulations.

A number of protons passed through the Roman pots up-
stream of the D@ and CDF main detectors with a 5 mm



thick tungsten target at D17 as a primary collimator and
with acrystal instead is presented in Teble 1. A crystal an-
gle with respect to the beam is-0.108 mrad, and its length
is5 mm. In both cases, a nuclear interaction rate in the
primary element itself is also shown as a measure of irra-
diation of the downstream superconducting components at
D17. One can see that the use of the crystal can reduce
background in the detectors by about one order of mag-
nitude and decrease the machine irradiation by a factor of
four.

Table 1: Halo hit rates at the DG and CDF Roman potsand
nuclear interaction rates N intarget and crystal (in 10%p/s)

with target with crystal
amorphous layer thickness
Opm | Spwm | 2um
D@ 115 135 1.60 115
CDF 436 540 | 3.20 3.43
N 270 824 | 70.6 50.3

Extracted and scattered beam densities at the entrance
and exit of the crystal with a 5um amorphous layer is pre-
sented in Fig. 2-3. Several groups of particles are clearly
seen. They represent protons which come to the crystal on
the 8-th, 13-th, 18-th, 20-th, 32-nd, 37-th and 51-st turn af-
ter interaction with the amorphous | ayer.
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Figure 2: Proton angular distribution on the crystal (top)

and distribution of the number of turnsfor protonsto be cap-
tured after scattering in the amorphous layer (bottom).

The crystal critical angle is +5 urad, therefore the effi-
ciency depends strongly on the crystal aignment. With the
alignment of -(104 - 111) urad the large amplitude protons
are captured by the crystal over the next 32 turns after the
first scattering. For poorer alignment it takeslonger timefor
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Figure 3: Horizontal phase space on the crystal entrance
(top) and exit (bottom). The top plot also shows (gray) un-
captured protons at the crystal exit.

the scattered protonsto get intothecritical region, whichin-
creases background in the detectors as shown in Fig. 4 for
a5 mm crystal with a 2um amorphous layer. Angular dis-
tribution of protonsafter scattering on the amorphous |ayer
depends on the crystal length. Shorter crysta would give
smaller particle divergence, which should improve the sys-
tem efficiency. In redlity, a combined effect of scattering,
channeling and tracking in the lattice could smear such a
simple dependence as shown in Fig. 5 for acrystal with a
2um amorphouslayer. A shorter crystal indeed isbetter for
the CDF Roman pots if its length <5 mm, but for longer
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Figure4: Hit rates onthe D@ and CDF Roman pots versus
crystal dignment.



crystals and for the D@ detectors the results obtained are
almost independent of length.
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Figure5: Hit rateson the D@ and CDF Roman pots versus
crystal length.

Overdl beam loss distribution a ong the Tevatron lattice
is shown in Fig. 6 for the two studied cases with a5 mm
thick tungstentarget and a5 mmthick siliconbent crystal as
the D17 primary scatterer at 50. The secondary collimators
areingstalled at 60. Beam losson the primary e ement itself
is not shown. One sees that not only beam lossis lower at
thecollider detectorsat B& and D@ , but the entiremachine
becomes cleaner if the bent crystal is used.
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Figure 6: Beam loss distribution in the Tevatron with a
5 mm thick tungsten target (top) and a5 mm thick silicon
bent crystal (bottom) as a primary scatterer at D17.

4 CONCLUSIONS

The studiesperformed show that areplacement of theamor-
phous tungsten target as a primary collimator in the Teva
tron beam collimation systemwith a5 mm thick silicon bent
crystal would reduce by about one order of magnitude the
accel erator-related backgroundsin the CDF and D@ detec-
tors and decrease beam losses in the supercondcting mag-
nets of the D sector by afactor of four.
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