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ABSTRACT

Within the standard model of particle physics and cosmology we have calculated the big-bang
prediction for the primordial abundance of Helium to a theoretical uncertainty of 0.1% (6§Yp =
40.0002). At this accuracy the uncertainty in the abundance is dominated by the experimental
uncertainty in the neutron mean lifetime, 7, = 885.3 & 2.0sec. The following physical effects
were included in the calculation: the zero and finite-temperature radiative, Coulomb and finite-
nucleon mass corrections to the weak rates; order-a quantum-electrodynamic correction to the
plasma density, electron mass, and neutrino temperature; and incomplete neutrino decoupling.
New results for the finite-temperature radiative correction and the QED plasma correction were
used. In addition, we wrote a new and independent nucleosynthesis code to control numerical errors
to less than 0.1%. Our predictions for the 4He abundance are summarized with an accurate fitting
formula. Summarizing our work in one number, Yp(n =5 x 1071%) = 0.2460 4 0.0004 (expt) + <
0.0002 (theory).



1 Introduction

Big-bang nucleosynthesis (BBN) is one of the observational pillars of the standard cosmology, and
has the potential to be a precision probe of the early universe and fundamental physics [}, ¥, 3.
Observations of light-element abundances have improved dramatically over the past few years, and
the current and planned precision measurements of Deuterium, Helium-4, Helium-3 and Lithium-7,
should allow a precise (10% or better) determination of the baryon density and consistency check
of BBN, but only if the theoretical predictions of the light element abundances are as good as
the observations. In particular, a measurement of the primeval Deuterium abundance pins down
the baryon density, and in turn the other three abundances. Because the subsequent evolution
of the *He abundance is simple - stars make Helium - and measurements have the potential of
determining Yp to three significant figures, Helium can provide an important consistency check of
BBN. Furthermore, an independent determination of the baryon density from cosmic microwave
background anisotropies will soon test the consistency of the standard model of cosmology. Finally,
the combination of accurate observations and theory can be used to test physics beyond the standard
model of particle physics [il, 4], e.g., by imposing a strict limit on the number of light neutrino
species [B, B, 7. Cosmology is entering a high precision age, and this motivates high-precision
BBN.

Over the years, theoretical study of Helium formation has been intense, with the following
effects being considered: Coulomb and radiative corrections to the weak rates [8, 8, 10, i1, 42, 3],
BBN code numerical errors 1], nuclear reaction rate uncertainties [iI4, 5], finite-temperature
QED plasma corrections [, i[6], the effect of finite-nucleon mass [, 8], and incomplete neutrino
decoupling [8, 19].

The goal of this work was a calculation of the primordial abundance of Helium, within the
standard models of particle physics and cosmology, accurate enough so that its uncertainty is
dominated by the experimental uncertainty in the neutron mean lifetimel, 7, = 885.34 2.0 sec [20,
21, 22]. Because 7, is so accurately known (67,/7, = 0.23%), it is used to normalize all of the
weak rates that interconvert neutrons and protons: ep <+ vn, etn < vp and n « pev. The
baryon-number fraction of *He produced (= Yp) depends sensitively on the weak rates because
they determine the neutron-to-proton ratio n/p before nucleosynthesis, and essentially all of the
neutrons around at the onset of nucleosynthesis go into forming *He. We have determined the

effect on Yp by perturbing the weak rates in the standard code [23],
— ~—0.8—. (1)

Since the weak rates scale as 1/7,, this estimate implies that §7, introduces an uncertainty in Yp
of 0.18%. We use this uncertainty to set our goal for all theoretical uncertainty.
To meet our goal we need to calculate the weak rates to precision of better than 0.23 %. Another

source of errors in Yp come from thermodynamics, i.e., the energy density p. the pressure P and the

'The Particle Data Group currently recommends 7, = 887 + 2 sec [é(i] A recent measurement using ultracold
neutrons obtains a slightly lower value, 7, = 885.3 & 0.9stat &+ 0.4sys [211]. For our central value we use 885.3 and for
the uncertainty we use £2 sec.



neutrino temperature 7,,. To determine how accurately we need to know thermodynamic quantities,
we can estimate the change in Yp due to a change in a thermodynamic quantity, e.g., p. Again,

using the standard code, we find

3Y] §
P <04 2)
Yp p

This indicates that we should calculate thermodynamic quantities to better than 0.45%.

When calculating Yp to this precision, several factors must be considered:

1. Weak rate and thermodynamics numerics: most quantities to be calculated involve integra-

tions that must be done numerically.
2. ODE integration numerics: nucleosynthesis codes contain finite stepsize errors.

3. Nuclear reaction rates: errors originate from experimental uncertainties in the nuclear reaction

data, as well as from neglecting nuclear reactions important to BBN.

4. Weak-rate physics: there are several small physical effects that must be calculated, including
Coulomb, zero and finite-temperature radiative corrections, and the effect of finite-nucleon

mass.

5. Thermodynamics physics: for temperatures much greater than the electron mass, there are

order-a quantum electrodynamic corrections to the equation of state of the plasma.

6. Incomplete neutrino decoupling: neutrinos share partially in the entropy release when e*

pairs annihilate.

Items i, ¥ and B are addressed in the next section; item # is addressed in Sec. 3. Items & and & are
taken up in Sec. 4, and a summary of our results is given in the final section.

Finally, we mention that we have not considered the (9(043/2) collective plasma effects due to
the presence of the copious numbers of e* pairs at the time of BBN, because they are safely below
our theoretical error budget of 0.1% for Yp. These effects, all of relative size 0.1% and calculated in
Ref. [24], are: the enhancement of nuclear reaction rates due to Debye screening of nuclear charge;
the contribution of longitudinal plasmon modes (k < w, ~ 4mn.+/T) to the energy density and
pressure; the (negative) contribution to the energy density and pressure of the electromagnetic
interaction of €* pairs; and the reduction of the energy and pressure of photons due to plasma

effects on low frequency photons (k < w)).

2 Numerics

2.1 BBN Code

We have written a new nucleosynthesis code that is independent of the standard (Kawano) code [23].
The heart of any nucleosynthesis code is the set of ordinary differential equations that govern the

evolution of the abundances of the light elements (see, e.g., Ref. [25, 26]). This code tracks protons,



neutrons, Deuterium (D), Tritium (T), Helium-3 (*He), Helium-4 (*He), Lithium-6 (Li), Lithium-7

("Li) and Beryllium-7 (“Be). The baryon-number fraction of element i is given by&

Ain;
=

/Xvi

(3)

where A; is the element’s atomic number, n; it’s number density, and npg is the baryon-number
density. Nuclear reaction rates govern the evolution of the elemental abundances. Conservation of

baryon number provides the constraint:
Y Xi=1 (4)
7

We take for our initial temperature, T; = 10 MeV. and for our initial abundances, the nuclear

statistical equilibrium (NSE) values:

T 3(4-1)/2
—) AT X X2 BalT (5)
my

X4 =ga C(3)A_17T(1_A)/22(3A_5)/2} A5/2(

where A is the atomic number, my ~ 940 MeV is the nuclear mass, 7 is the baryon-to-photon ratio,
By is the binding energy of species A, and {(3) ~ 1.20206. At temperatures greater than about an
MeV, the nuclear rates are sufficiently high to cause the abundances to rapidly assume their NSE
values. If we make the reasonable assumption that the elements are always in kinetic equilibrium,
then the rate coefficients depend only on 5 and T. This implies the important and well known
conclusion that the predictions of nucleosynthesis are a function of only one parameter, i, which is
equivalent to ng since T, = 2.7277+ 0.002 K is so well known.

Several important quantities enter into the evolution equations: weak rates, thermodynamic
quantities and nuclear reaction rates. For the weak rates, we define the total conversion rates (per

neutron or proton):

rn—>p = L+ n—vp + I‘1/n—>ep + rn—>pez7:

rp—m = rep—)l/n + FDp—)e"‘n + rpez?—)n . (6)

Simple expressions for these rates may be obtained assuming no radiative corrections and infinite
nucleon mass. The thermodynamic quantities that must be calculated are p(7'), 1,,(T"), ps(T") and
the differential time-temperature relation dt/dT.

?Baryon-number fraction and baryon-mass fraction differ by order 1% due to nuclear binding energy. Because
nuclear reactions change the total mass in baryons, the mass fraction of species A; (= X["%*®) can change even if the
number of species A; does not. The mass fraction of species A; is

xmass _ n;m; _n.om, 1
' _Z]n]m] - ng my 1+Z]("J/"H)(mj/mH)7
where m; is the mass of species i: (e.g., ms = 4.002602 amu) and myg = 1.00783 amu. In the expression for X,
m;/mpy is replaced by A;. For Yp = 0.25 and the primordial mix of elements Xj"*** = 0.24866. Similarly, the

relationship between the baryon mass density and n depends on elemental composition. For the primordial mix with
Yp = 0.25,

QOph® =3.66x 10" 7,
assuming T, = 2.7277 K. Assuming a mass of 1 amu per nucleon, the prefactor is 3.639 x 107, and for the solar
abundance the prefactor is 3.66043 x 107.
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Figure 1: Baseline of “final” predictions: element abundances predicted by our BBN code.



1) p+n & D4y
2) D+n & T+ 4y
3) SHe + n < “*He + v
4) 6Li+n & "Li4«y
5) SHe4+n & T+p
6) Be+n & TLi+p
7) Li+n ¢ S3He+ *He
8) "Be + n < *He + *He
9) D+p & 3He+
10) T+ p < *He+ v
11) Li+p < "Be+ ¥
12) Li+p < “*He+ *He
13) D+ He & SLi+ 4
14) T+ 4He < 7Li+ vy
15) 3He 4+ *He ¢« "Be + v
16) D+D < S3He+n
17 D+D & T+p
18) D+T « “*He+p
19) D+3He & “He+ n
20) SHe + ?He ¢« “4He+p+p
21) D+ 7Li & *He+ *He+ n
22) D+ "Be ¢ *He+ *He+ p

Table 1: Reactions used in our code.

Our BBN code is completely independent from the standard code, with one exception. Our
code uses the same nuclear-rate data (with the exception of the weak rates). The nuclear-reaction
network corresponds to the smallest one offered by the standard code, which contains the reactions
listed in Table ih. Although this network is much smaller than the largest offered in the standard
code, the effect on Yp from neglecting these additional reactions is less than 10=*. The light-element

abundances predicted by our code are shown in Fig. il.

2.2 Numerical Accuracy of the BBN Codes

Because the differential equations governing the light-element abundances are stiff, an implicit
integrator was used to evolve them. Instead of entering explicit time steps, as in the standard code,
the desired final accuracies are entered as parameters of our code’s integrator. The temperature
steps are then determined adaptively. Integrator accuracy parameters are chosen to be small enough
so that stepsize errors were much smaller than the allowed error in Yp.

To calculate the weak rates and thermodynamic quantities accurately, we proceed as follows
(see, e.g., Ref. [27]). Let [ = fab f(z) dz for some function f(z). Expressed as a first order ordinary
differential equation, I = J(b) where d.J/dz = f(z), J(a) = 0. We solve this differential equation
using a fourth order Runge-Kutta routine. Figure 2 demonstrates for a specific example that

the actual numerical errors are as small as requested. All of the weak rates and thermodynamic



| 7
1. standard code with default stepsize | 0.2348

2. standard code with small stepsize 0.2415
3. our code 0.2411

Table 2: Comparison of the standard code and our code for = 5.0 x 107!, The two stepsize
parameters in the standard code are 0.3 and 0.6, respectively. The difference between 1. and 2.,
8Yp = 0.0073, is the integration error for these stepsizes; the small difference between 2. and 3.,
8Yp = 0.0004, shows that our code agrees with the standard code to within 0.2%. When very
accurate weak-rate routines are inserted into the standard code the agreement improves to about

0.1%.

quantities were calculated so that their numerical error contributions to the uncertainty in Yp were
acceptably small.

We compared the output of our code to the standard code, which dates back to the original
version written in 1966 [25], updated by Wagoner in 1973 [26, 28], and modernized and made
user friendly in 1988 [2d]. Nuclear reaction rates were updated in 1993[i14]. One must be careful
when making comparisons. First one must consider the numerical accuracy of the standard code.
Kernan and Krauss reported finding a significant numerical error in the standard code [11} 3],
8Yp = 0.0017, large enough to be very significant at our level of accuracy. Second, the standard
code implements certain physics corrections, namely a Coulomb correction put in by Wagoner. He
approximates the Coulomb correction by scaling all of the weak rates a factor, 0.98, independent
of temperature.

The Kernan-Krauss correction was measured by comparing the predictions of the standard code
at some unspecified integration stepsize to the predictions as the stepsize became very small; note,
however, that the error using the default stepsize (in Ref. [23]) is four times larger. It is added to
the results at the end of the computation. Needless to say, a simple additive numerical correction is
not adequate because other codes exist and not all users of the standard code use the same stepsize.
For our comparison we took out the Kernan and Coulomb corrections and then made the stepsizes
small enough so that integration errors were negligable. With the standard code configured this
way, we compared Yp and D as a function of 5 in two scenarios. For the first, we used the standard
weak rate routines to calculate the weak rates. For the second we used our high precision weak rate
routines to calculate the weak rates in the standard code. The results are shown in Table & and
Fig. 8. The agreement is excellent: for Yp the codes differ by less than 0.15% with our weak-rate
routines and by less than 0.2% with the standard weak rate routines. For D the codes agree to
better than 0.75%.

This agreement gave us confidence that our code calculates Yp accurately for the baseline case
(without the physics corrections). Of course, the convergence of two independent codes is not
proof that they converge on the correct value. Since our code was the first that was designed and
engineered around an error budget, we will take it and its internal error budget as the baseline for

all further calculations.
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Figure 2: Numerical error calculating I'c,_,,, for error parameter set at 6I'/I' = 10~%. The error
is acceptable low for all temperatures. Similar results were obtained for the other weak rates and
thermodynamic quantities.
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Figure 3: Comparison between the standard code and our code for Helium-4 (lower curves) and
deuterium (upper curves). For the solid curves, our very accurate weak rates were inserted into
the standard code. For the dashed curves, the stamdard code’s weak rate routines were used in the
standard code. (1m0 = n/10719)



| Reaction k [ Ry/Ry [ 6Yp/Yp (mo=5.0) | 6Yp/Yp (1o =1.8) |

nep | 0.23% 0.17% 0.18%
p(n,v)d 7% 0.04% 0.17%
d(d, n)SHe 10% 0.06% 0.07%
d(d,p)T | 10% 0.05% 0.06%
Total Uncertainty 0.19% 0.27%

Table 3: 1-0 experimental uncertainties and their effect on Yp. All nuclear rates whose uncertain-
ties significantly impact Yp are shown. The weak-rate uncertainty of 0.23% is due to uncertainty
in measurements of the neutron mean lifetime, and assumes that Coulomb, radiative and ther-
modynamic corrections to the weak rates are known to better accuracy than this. Note that for
n = 5.0 x 10719, the weak rates dominate the error budget. The bottom row indicates the RMS
total uncertainty in Yp for these two values of 7.

2.3 Nuclear Rate Uncertainties

The primordial Helium abundance is sensitive to nuclear reactions other than the weak rates.
Several studies of the uncertainties in theoretical abundances due to nuclear rate uncertainties
have been performed [T} 1[4, 30, 81, 32, 33]. Here we will use the results and techniques of the
recent work of Fiorentini, et al [13]. They use linear error propagation theory to quantify the
effect of experimental uncertainties in the nuclear-reaction rates on the light element abundance
uncertainties and their correlations. In this formalism the uncertainty in the Helium abundance is

given by
§Yp\?
(ﬁ) =Y AORE, (7)
k

where the sum k is over nuclear rates, § Ry is the experimental relative uncertainty in the rate Ry,

and Ay is the logarithmic derivative

_ 8log Yp

Ap = =0 P
"~ log Ry

(8)
Fiorentini, et al [I5] calculate the logarithmic derivatives numerically, using the standard code. The
experimental rate uncertainties are taken from Smith, et al [i14]. Contributions to the uncertainty
in the Helium abundance arise almost entirely from four rates. Table 2.3 lists these rates and
their relative experimental uncertainties. Figure 4 shows the resulting uncertainty in Yp. At low
values of 7 is appears that the reaction p(n,~)d dominates the error budget. However, it should
be noted that the quoted experimental uncertainties for the reactions other than n < p are very
conservative, perhaps overestimating the true uncertainties by a factor of several [34]. Furthermore,
for p = 5 x 107'°, which is implied by by measurements of the primeval D abundance[35], the
weak rates dominate the error budget even for these conservative uncertainties. In any case, it is
important to reduce the theoretical error budget wherever possible, and to accurately quantify its

size.



02 03 04

5Y,/Yp (%)

0.1

on/n (%)
\
\

Mo

Figure 4: The top panel shows the uncertainty in Yp due to experimental uncertainties in nuclear
rates, as a function of 5. The solid line shows the total uncertainty, while the other lines show each
nuclear reaction separatley. The dashed line is for n <+ p, the dashed-dotted line is for p(n, v)d, and
the two dotted lines are for d(d,n)*He and d(d, p)T. The bottom panel shows the uncertainty in 7
that would result from the above uncertainties in Yp, when 7 is derived from the *He abundance.
The dashed line is for the weak rate uncertainties alone, while the solid line is for the total nuclear
rate uncertainty. The factor of ten difference in the scales between the two panels is indicative of
the fact that Yp depends logarithmically upon 7.



Figure 5: Tree level diagram for the process ep — vn.

3 Weak Rates

The primordial helium abundance is very sensitive to the weak rates that interconvert neutrons
and protons. To calculate Yp to 0.12% the weak rates must be known at the 0.15% level. In
addition to numerical issues discussed earlier, several physical effects are important at this level:
zero-temperature radiative and Coulomb corrections, finite-nucleon mass correction, and finite-
temperature radiative correction.

The expressions for the weak rates are derived starting with the tree-level (Born diagram) shown
in Fig. 5. For purposes of illustration, we will consider the process e +p — v, +n. Without making
any approximations the phase space integral for the conversion rate (per proton) can be simplified

to a five-dimensional integral involving the matrix-element squared |M|* [i§]

1
r6p<—>un m/dpedppdcos%dcos&,d@
2.2
peppEl/ 1 2
o o cfo(1— ) (1= fn),
F, P,

where F., F,, F,, and E, denote the energies of the respective particles and [J is the Jacobian
introduced in integrating the energy part of the delta function. |./\/l|2 is summed over initial and
final state spins. The integration limits correspond to the kinematically allowed region in the five-
variable phase space. An expression for F, in terms of the integration variables p., py, 8,,6,, and

¢, is given by

A?B 4+ 2FE\/A* — m2(4E? — B?)
P = :

4F? — B2
A* = 2E.E,+m2—-m:—m?— m; — 2peppcos b,
B = 2[p.cosb, + p,(cosb,cosb, +sinb,sinb, cos¢,)]. (11)

where F = E. + FE,. For more details, see Ref. [i§].
This rate expression is challenging to evaluate for two reasons. First, the kinematically allowed
region in the five-dimensional phase space is not simple. Second, the matrix element is complex.

If the nucleons are assumed to be infinitely massive, the expression simplifies greatly. The matrix
clement |M|* = 2°G%(1 + 3¢g%)E.E,E,E,. The sole kinematical constraint is F, = £, + Q, (Q =

10
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Figure 6: Weak rates as a function of temperature (Born diagram, infinite-nucleon-mass limit): (1)
ep = vn, (2) vp — en, (3) en — vp, (4) vn — ep, (5) n — pev, (6) pev — n. Note, freeze-out of
the n/p ratio occurs at T ~ 0.8 MeV and nucleosynthesis begins in earnest at 7'~ 0.1 MeV.

my, —m, = 1.293, MeV), and the rate expression becomes a one variable integration. Normalizing

the rates to the zero-temperature free neutron decay rate 1/7, = L'y, (T = 0),

1 G (14 3¢%)m>
1 7 (14 3g3)m? Mo, (12)
Tn 273
q
Ao = / de e(e — q)%(* = 1)Y/? =1.6333, (13)
1
leads to the well known formula for the process ep — vn:
1 oc 2 _2y1/2
rggc)—nzn = / 6(6 a ) . (14)
Tado Jg  [1+exp(e2)][1 +exp((g — €)2,))]
where T is the photon temperature, T, is the neutrino temperature, ¢ = E./m., ¢ = Q/m.,

z=m./T, and z, = m./T,. Summing the n — p and p — n rates yields the standard weak-rate

Lrsp = Tn,\o( / /) 1+:;)q)(1ﬁ)zy),
Tn/\o( / / )de 1+Z;)q()lfzy)- (15)

The six individual rates are plotted as a function of temperature in Fig. b.

expressions [36]

I‘p—>n

3.1 Zero-Temperature Coulomb and Radiative Corrections

To order a, the weak rates with zero-temperature Coulomb and radiative corrections are given by

the sum of the interference between the Born diagram (Fig. i) and the diagrams in Fig. 7.

11
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Figure 7: Zero-temperature corrections to the process ep — vn. The center blob is the charged-
current, weak-interaction vertex.
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It is conventional to separate the corrections into a Coulomb part proportional to nuclear charge
Ze and a radiative part proportional to e. Since Z = 1 here, this separation is arbitrary. Dicus et
al calculated the Coulomb and zero-temperature radiative corrections to the weak rates in 1982 [§].
Summarizing their results we obtain the following prescription for correcting the rates. First,
perform the zero-temperature radiative corrections by multiplying the integrands of all of the rates
by the factor,

1+ 5-C(8.9)] - (16)

where

2
C(B,y) = 40+4(R-1) (%— ;—HnQy) +R(2(1+ﬂ2)+6%—4ﬂl%)

—4 (24 118+ 258 + 256° + 303* + 208° + 84°) /(1 + B)°, (17)

(3 is the electron’s velocity and R = tanh 3~!/3. Next apply the Coulomb correction by multiplying
the integrand of the rates for n < pev and ep & vn by the Fermi factor,

F(B) = 2ra/

- (18)

Here we used the non-relativistic Fermi function. The error from using the non-relativistic version
is of order 2% of the Coulomb effect itself [87], and so the approximation is fine. Finally, A\g must
be corrected for Coulomb and zero-temperature radiative effects by multiplying it’s integrand by
[1 + %C(ﬁ,y)] F(pB). Doing this increases Ag by 7.15%, to 1.7501.

Figure 8 shows the combined zero-temperature corrections. Note that the corrections are less
than or equal to zero for both rates for all temperatures: decreased weak rates imply earlier n/p
freeze-out and an increase in Yp. Our code calculates the zero-temperature corrections to the
weak rates by modifying the integrands of the rate expressions as described above, and by using
the corrected Ag. The zero-temperature corrections yield a change, §Yp/Yp = 1.28% which is
insensitive to the value of 5 over the range 1071° < 5 < 107°. This result is in agreement with
Ref. [§].

Wagoner approximated the Coulomb correction by reducing both the n — n and p — n rates
by 2%. This correction, shown by the horizontal line, is close to the high temperature asymp-
totic Coulomb correction of —2.16%. However, n/p continues to decrease slowly for temperatures
lower than freeze-out, where Wagoner’s approximation breaks down. The fact that the real cor-
rections are less negative in this regime means that the change in Yp from the Coulomb correc-
tion will be less positive than one would estimate from Wagoner’s approximation. Adding in the
zero-temperature radiative corrections brings the total zero-temperature change in Yp closer to
what would be found using Wagoner’s approximation to the Coulomb correction. Table 3.1 shows
0Yp/Yp for the Coulomb and zero-temperature radiatively separately and summed, compared to
0Yp/Yp from Wagoner’s approximation. Note in particular that the difference between Wagoner’s

approximation and the zero-temperature correction is 0.28%, which is significant at the 0.1% level.

13
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Figure 8: Zero-temperature radiative and Coulomb corrections to the n <+ p rates. The horizontal
line is Wagoner’s approximation to the Coulomb correction. The vertical line is at freeze-out.

Correction ‘ 0Yp/Yp ‘
Coulomb 1.04%
T=0 Radiative 0.24%
Combined 1.28%
Wagoner’s approximation | 1.56%

Table 4: Zero-temperature corrections to Yp, compared with change in Yp from Wagoner’s approx-
imation of the Coulomb correction. These corrections are insensitive to 5 for 10719 < 5 < 1079,
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Figure 9: Finite-nucleon-mass correction to the n ¢ p rates. The freeze-out temperature, Tr ~

0.8 MeV, is indicated with a vertical line.

3.2 Finite-Nucleon Mass Correction

Recall that the standard rate expressions, Eqn. 14, assume infinitely massive nucleons. We have

calculated the weak rates without this assumption by numerically integrating the five-dimensional

rate integral, Eq. 9, using the Monte Carlo method [iI§]. Figure 8 shows the finite-mass corrections

to the n <» p rates. Using the individual rate corrections we found the corrections to the summed

n < p rates,
6rn—>p _ rn—>p - r'?f—)p
rn—>p B r?f—}p
5rp—>n _ rp—m B Fgc—m
rp—>n N I‘gc—rrz

(19)

(20)

where ['*° is the rate in the infinite-mass approximation, and I' is the unapproximated rate. Our

. . . . r = .
corrections are accurate to within a few percent, and were verified several ways [18]. We incorpo-

rated the finite-mass corrections into our code by modifying the n < p rates at each temperature

by the correction shown in Fig. g The resulting correction to Yp was found to be 6Yp/Yp = 0.50%,

valid for 10719 < 5 < 1079.

3.3 Finite-Temperature Radiative Correction

Finite-temperature modifications to the weak rates arise from several sources:

1. the (1 £ f) quantum statistical factors in the integration over phase space

2. a shift in the electron mass

3. a change in the neutrino-to-photon temperature ratio
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Figure 10: Finite-temperature corrections to the weak rates, i.e., corrections involving photons
from the plasma. The bottom two diagrams represent stimulated emission.

4. a correction to the photon and fermion propagators

5. the square of the sum of diagrams for processes that involve photons from the plasma (ab-

sorption and stimulated emission); see Fig. il 0.
6. finite-temperature wave-function renormalization

Item i} is included in our definition of the Coulomb correction. We shall define items ¥ and 3 to be
part of the thermodynamics effects, considered later. Therefore, the finite-temperature radiative
correction to the weak rates involves items 4, % and 6.

Dicus, et al [§], and Cambier, Primack and Sher [3§] calculated the finite-temperature radiative
corrections to the weak rates. Neither of these papers correctly handle the finite-temperature
wave-function renormalization. In fact, finite-temperature wave-function renormalization is still an
open issue. The difficulty lies in the fact that finite temperature spoils Lorentz covariance through
the existance of a preferred, thermal frame (in this frame the phase-space distributions are the
Bose-Einstein or Fermi-Dirac distributions). The usual methods for obtaining the wave-function
renormalization rely on Lorentz covariance, so that the appropriate generalization to the finite-
temperature case is not clear. Donoghue and Holstein [H, 0] start by assuming a finite-temperature
spinor field — with creation and annihilation operators obeying the standard anti-commutation
relations — that satisfies the nonlinear Dirac equation. They write the propagator in terms of
these finite-temperature scalars, obtaining a finite-temperature wave-function renormalization that
is a multiplicative factor. Sawyer [i1¥], and Esposito, et. al. [3Y], start by identifying particle
states with poles of the propagator, without reference to the finite-temperature field. They assume
that the poles are only perturbatively shifted from their zero-temperature values. They then
identify the finite-temperature wave-function remormalization with the residue of the propagator
at the new pole. The result is a finite-temperature wave-function renormalization that contains

additional, non multiplicative terms, so that the results of the two alternative approaches are
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process ‘ lower u-limit upper u-limit ‘ e-Fermi 1 e-Fermi 2 ‘ v ‘ N(+v) ‘

en — vp T oc N (u) N(v) w+q —v
ep — vn q oc N(u) N(v) w—q —v
vn — ep q oc N(—u) N(-v) w—q +v
vp — en z oc N(—u) N(-v) w+q +v
n — pev x q N(—u) N(-v) | —w+gq —v
pev = n x q N(u) N(v) —w+gq +v

Table 5: Substitutions in Eqgs. (21-25) for computing finite-temperature radiative corrections.

different (as pointed out by Chapman [J]). Furthermore, the results of the Sawyer differ from
Esposito, et. al., even though they follow similar approaches. The differences change the rates for
some processes. However, for the case of the weak rates, the three different finite-temperature wave-
function renormalization results give the same contribution to the weak rates. For convenience, we

used the formalism of Sawyer in our treatment. The resulting correction to the en — vp is given as

or = E;T:GF(“F3 ) x
// du dky pu Ny () [N_ (k)W (11, ko) + Ny (0) W (s £2)] (21)

where 2 = m/T, py = Vu? — 22, v=/k2+ 2%, Ni(u)=1/(e" £ 1),

kv 'u2 U+ Dy 2u
Wy (u, ky) = [(QPU + oo In pa—— H)] [H(u+ ky)+ H(u—ky,) —2H (u)] +
u U+ Py ]
—In -2l [Hu+k,) — H(u -k, 22
kuH(u) pu + k m* — (UU - pukv) 4kvpuu
(u. k) = ————=|[2uln 1 - 2
Wrlu;k) 4pyv [ Pu — ko U (wo 4 puky)  pi -k (22)
and

H(w) = v*N(-v)O(v), (24)
v = (w+q) (25)

with ¢ = @Q/T. The term proportional to W, is due to finite-temperature wave function renormal-
ization. To find the correction to the other weak rates, make the substitutions shown in Table 5.
We calculated the finite-temperature radiative corrections to each of the weak rates. The
correction to the summed n ¢ p rates, which match Sawyer’s results, are shown in Fig. 11. The
correction formulas are complicated enough to preclude direct incorporation into our BBN code.
Therefore we implemented these corrections as temperature-dependent fits within the BBN code.
The resulting change in Yp, 6Yp/Yp = 0.12%, was found to be insensitive to 7 in the range
10719 < 5 < 1079, Sawyer claims a change of 40.02%, while Chapman claims a change of +-0.01%.
Both Sawyer and Chapman compute the change in the neutron fraction to estimate §Yp/Yp. To
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Figure 11: Finite-temperature radiative corrections to the n ¢ p rates. This plot is to be compared
to Fig. 4 in Ref. 12.

first order in the perturbation, the equations governing the evolution of the neutron fraction X,

and its perturbation 64X, can be written

d X, dt ,
dT = ﬁ [_Iann—n) + (1 - /Xn) rp—)n]
déX, dt

where v, = 6I',,,, /Iy and v, = 015 /I p—s,,. Then the change in Yp is estimated as

8Yp 80X, 60X,
YP B Xn onsetofBBN_ X” T:O‘

(27)

In order to have a direct comparison with the results of Sawyer and Chapman, we found 6Yp/Yp
using this method. The evolution of §X,, is shown in Fig. [Z. Our results obtained from this
approximation method confirm those where we used the BBN code, and differ from Sawyer and

Chapman. However, all agree the change in Yp is small.

4 Thermodynamics

Thermodynamic corrections refer to corrections to the density, pressure and neutrino-to-photon
temperature ratio. There are two effects to consider: finite-temperature QED corrections to the

equation of state of the electromagnetic plasma, and incomplete neutrino decoupling.

4.1 Finite-temperature QED Correction

The finite-temperature QED corrections encompass corrections to the density, neutrino temperature

and electron mass. All of the these corrections follow from the finite-temperature QED modification
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Figure 12: Temperature evolution of the estimated change in neutron fraction X, due to finite-
temperature radiative corrections. The solid line shows the results of integrating the perturbation
equations; the low-temperature asymptotic solution gives the correction to Yp, §Yp/Yp = d2,/2,.
The arrow indicates the final result of substituting the radiative corrections into our full code,
expressed as 0z, /z,. The two methods agree very well.

to the equation of state of the electromagnetic plasma. These corrections were calculated by
Heckler [iI6] and applied to cosmology and solar physics. We will follow his approach, correcting a
few small errors.

Helium is sensitive to thermodynamic quantities in several ways. First, the energy density
determines the expansion rate; changes in the expansion rate affect the freeze-out temperature,
the abundance of free neutrons, and finally Yp. The next two effects follow from corrections to
the electron mass. First, a change in the electron mass affects the weak rates directly. Second,
it changes the entropy of the electron-positron plasma at the time neutrinos decouple; since this
entropy is transferred to the photons when the e* pairs disappear, this changes the neutrino-to-
photon temperature ratio, which affects the weak rates, since they are very sensitive to the neutrino
temperature.

The finite-temperature QED correction to the equation of state can be expressed as a modifi-

cation to the pressure of the pressure-weighted, effective number of effective degrees of freedom,
P(T) = Ry(T) + P(T), (28)

where §P(T) is the correction to the pressure and Py(T) = (72/90) gpT* is the standard expression
for the pressure in terms of gp. The change in pressure can be equated to a change in g,, dgp =
90/(72T*) §P. The correction §P(T) can be expressed as an expansion in electron charge e ~ 0.301:
§P(T) = Y_,;6P,(T). The Feynman diagrams for the e?-term and e3-term are shown in Fig. 4.1.
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Figure 13: Feynman diagrams that contribute to the correction to the equation of state of the
electromagnetic plasma. The left diagram produces the order €? correction, while the right diagram
is the smaller € correction.

For vanishing chemical potential the €? term is [40,

24 oc . 2 _ 42
SPy(T) = T/ du%
. €

2T4 2 . . Do 72
/ / du dvp, py N(u) N ()(+ : ln“”“’p”), (29)

87T3 Pu Pv UU—PuPu+$2

where 2 = m. /T, u= F,/T, p, = Vu? — 2% and N(u) = 1/(1+€"). In the high-temperature limit
T> me,

Fe2T4

0P (T) ~ —
A similar but more involved calculation yields the result for §P5(T’) in the limit 7 > m [40],
e3T4
OP(T) ~ —————. 31
At high temperatures, the ratio
P (T 1
2(1) 1 ‘/5”:11, (32)
5P3(T) € 2

while both the €2 and the e3-terms are exponentially suppressed for 7 < m. Therefore, to good
approximation, we can neglect §P5(T) for all T. For T > m,, g, = —25€?/167*.

From the standard thermodynamic relation p = —P + T (0P/9T) we can find the thermody-
namic correction to the density, p = po+ dp, where the standard density pg may be written in terms
of the density-weighted effective number of relativistic degrees of freedom, pg = (72/30) g, T*. The

change in the density can be written

30 3} 25
59PZW(—5P+T8 (SP) T>>me—W62. (33)
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Figure 14: Finite-temperature QED change in pressure-weighted (solid line) and density-weighted
(dashed line) relativistic degrees of freedom.

Figure 14 shows dg, and dgp as a function of temperature.
The finite-temperature QED correction to the pressure is a change in the dispersion relation of

the electrons which can be attributed to a change in the electron mass:
E? = p2 + m? 4+ §m’. (34)

The formula for §m? follows from the definition of the pressure [40].

2T2 2T2 oc ku 1
5m2(P: T) = € 5 + € 3 / du — T
T = u €Y
e2m2*T [ Pu + Ky 1
— dul ,
2m2p /l, “m Py —ky| et +17 (35)

where 2 = m./T, k, = Vu?2 —2? and p, = p/T. Figure 15 shows the finite-temperature QED
correction to the electron mass as a function of temperature. Figure [ shows the effect of the shift
in the electron’s mass on the n ¢ p rates. The lower curves indicate the error due to not including
the momentum-dependent part of the mass correction. For our calculations, the error is negligable
and we neglect the p-dependent term in the mass correction formula.

The final effect of the thermodynamic corrections is a change in the neutrino-to-photon temper-
ature ratio. This can be derived starting with the expression for § P(7") and tracking the entropy

density of the neutrinos and other particles. Let s, be the entropy density of neutrinos and sgym
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Figure 15: The top panel shows the finite-temperature QED correction to the electron mass as a
function of temperature. The dashed curve neglects the p-dependent term, while the solid curve
assumes p = 37T. The bottom panel shows the relative error due to not including the p-dependent
term. This error, which is a ten percent correction to the correction, can be safely neglected.

a2

log(|6T/T1)
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Figure 16: The top curves show the effect of the finite-temperature electron-mass correction on
weak rates. The solid curve is for the n — p rates and the dashed curve is for the p — n rates. The
bottom curves show the error due to not including the p-dependent term in the mass correction
formula.
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be the combined entropy density of the electrons, positrons and photons:

P, +p, 1% 4
L = v tP T p3 36
§ T, 30 vV (36)

fﬁi +’pe +'}) +_pW

SEM =

= 713

47 — 22 2 w’
B+_/ T _m)+%<5gp+3agp>]. (37)

In the limitthat the neutrinos are decoupled, the two entropies per comoving volume are separately
conserved: s,a, spya® = constant, where @ is the scale factor. The small residual coupling of
the neutrinos to the electromagnetic plasma leads to a correction of about ~ 0.1% [IY], discussed

below. At high temperature we have

3 2
SEMU 22 22 25 €
=—4+ =0 36g,(T)]~—[1-—=—], 38
=g bem sy = (1- 25 (38)
while for all temperatures,
. 3 3 oc 02 — 22
SEM@ T 8 20 us — T 2 2 1
= | = — 4+ — dy ———— (4u* — — [8gp(T 8g,(T
s, a3 (Ty) 21+77r4 = " e+ 1 ( “ v >+21[ gp(T) 4 34g,(T)] (39)

Assuming that the neutrinos decouple at a temperature Tp ~ 2 MeV > m. and taking the ratio of
entropies to be given by Eqn. (8%), it follows that the ratio of the neutrino-to-photon temperature

is

& ° B 1i 117r f du u-:f ( u? — 352) + % [6gp(T) + 36g,(T)] (40)
T N 1 _ 25¢2 :
8872
4 25¢2 4
o | 1 2 41
Tme 11( +887r2) 100 (11) (41)

The zero-temperature limit of the neutrino temperature photon temperature relation is altered?.
This makes sense physically: the positive correction to the electron mass means that the electron-
positron plasma has less entropy to give to the photons upon annihilation, and thus photons are
heated less than they would be without the correction. Figure 17 shows the finite-temperature
QED change in neutrino temperature versus photon temperature.

We incorporated the QED corrections to the equation of state into our code by changing the
energy densigy, the electron mass in the weak-rate calculations and the neutrino temperature.
The resulting change in Yp, 6Yp/Yp = +0.043% was found to be insensitive to 7 in the range,
10719 < 5 < 107°. Dicus, et al [B] attempted to calculate the thermodynamic corrections, and
found 6Yp/Yp = —0.04%, but only included the effect of the electron mass on the weak rates.
Heckler estimated the effect on Yp and found éYp/Yp = +0.06%. Not only was this just an
estimate, but also his value for the change in neutrino temperature is not correct. In any event,

the thermodynamic correction to Yp is small.

3This expression differs somewhat from the result obtained by Heckler [:_-lé]
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Figure 17: Relative finite-temperature QED change in the neutrino temperature, as a function of
photon temperature. Note that the zero-temperature limit is altered from the standard value.

4.2 Incomplete Neutrino Decoupling

* annihilations. It has

The standard code assumes that neutrinos decoupled completely before e
been pointed out that this assumption is not strictly valid [8]. Neutrinos are “slightly coupled” when
eT pairs are annnihilated, and hence share somewhat in the heat released. The first calculations
[8, @1, 42 of this effect were “one-zone” estimates that evolved integrated quantities through the
process of neutrino decoupling. More refined “multi-zone” calculations tracked many energy bins,
assumed Boltzmann statistics and made other approximations. [i19, 43]. The latest refinements
have included these small effects as well [d4, 45, 46]. Fields et al [d7] incorporated the slight effect
of the heating of neutrinos by e* annililations into the standard code and found a shift in “He

production, 6Yp = +1.5 x 10™%, which is insensitive to 5 for 10719 < 5 < 1077,

5 Summary

All of the physics corrections we investigated have been studied elsewhere. However, not all of them
have been implemented in a full code; there have been changes in some of the physics corrections,
and the issue of numerical accuracy has not been studied thoroughly. Further, the corrections
have been implemented in a patchwork fashion, so that the users of many codes do not know which
corrections are in, which are out, and which may be double counted (e.g., adding the Kernan-Krauss
numerical correction and running a small stepsize).

The goal of this work was a calculation of the primordial *He abundance to a precision lim-
ited primarily by the uncertainty in the neutron mean lifetime, d7, = +2sec, or §Yp/Yp ~ 0.1%,
with reliable estimates of the theoretical error. To achieve this goal we created a new BBN code,

designed, engineered and tested to this numerical accuracy. To this baseline code we added the
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Cumulative Effect Alone
Yp oYp (X10_4) oYp/Yp (%) éYp (X10_4) 0Yp/Yp (%)

Baseline 0.2411

Coulomb and T = 0 radiative | 0.2442 +31 +1.28 +31 +1.28
finite mass 0.2454 +43 +1.78 +12 +0.50
finite T radiative 0.2457 +46 +1.90 +3 +0.12
QED plasma 0.2458 +47 +1.94 +1 +0.04
residual v-heating 0.2460 +49 +2.00 +1.5 +0.06

Table 6: Summary of results. For absolute numbers we have picked n = 5.0 x 107'°. By baseline
we mean the results of our BBN code without any of the physics effects listed, and with small
numerical errors.

microphysics necessary to achieve our accuracy goal — Coulomb and zero-temperature radiative
corrections, finite-nucleon-mass corrections, finite-temperature radiative corrections, QED thermo-
dynamical corrections, and the slight heating of neutrinos by e* annihilations. These corrections —
coincidentally all positive — increase the predicted *He abundance by §Yp = 0.0048 or 2%. Table 6
summarizes these corrections for n =5 x 10719, (We chose this value for 5 because it is the central
value implied by recent measurements of the deuterium abundance in high-redshift hydrogen clouds

[B5, 48, 49].) Summarizing our work in one number

Yp(n =5 x 10719 = 0.2459 £ 0.0004 (expt) + < 0.0002 (theory). (42)

Finally, we give two fitting formulae for our high-accuracy *He predictions. The first, is accurate
to better than 0.1% and is valid for 107!1° < 5 < 107, N, = 3.00 and 880sec < 7, < 890sec. In
terms of { = 10 + log 7,

Yp(¢,7n) = Yp(¢,885.3sec)+ (mn — 885.3sec) §Yp((),

Yp(¢,885.3sec) = (ao+ai+as(*+asz(®+asl?),
O0Yp(¢) = (bo+b1C+b2C*+ 53¢ +bac?) (43)
where the coefficients a;, b; are given by
ag = 0.22285, a; = 0.05418, a; = —0.04816,
as = 0.02990 , ay = —0.00578

bg =2.101 x 107*, by = —0.406 x 10~*, by =2.701 x 10~*, (44)

by = —5.539 x 10~*, by = 3.295 x 107%.
The second fitting formula is accurate to 0.5% and is valid for 10719 < 5 < 1079, 880sec < 7, <
890 sec, and 2.5 < N, < 4.0.
YP(C: T, ‘]V) = YP(C: T, 3) + (N - 3) (CO +a C +c2 CQ +c3 CS + ¢4 C4) : (45)

where

co=0.0111, ¢; =0.00481, ¢, = —0.01182,

4
c3 = 0.01474, ¢4 = —0.00553 . (46)
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