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Abstract

Spin correlations, using a generic spin basis, are investigated to leading
order in QCD for top quark production at lepton colliders. Eventhough,
these radiative corrections induce an anomalous v/Z magnetic moment for
the top quarks and allow for single, real gluon emission, their effects on
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configuration in polarized lepton collisions even after including the O(ay)
QCD corrections.
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1 Introduction

The discovery of the top quark, with a mass near 175 GeV [}, 2], provides us with a
unique opportunity to better understand electro-weak symmetry breaking and to search
for hints of physics beyond the standard model. It has been known for sometime that
top quarks decay electroweakly before hadronization [3, 4] and that there are significant
angular correlations between the decay products of the top quark and the spin of the
top quark [§]. Therefore if the production mechanism of the top quarks correlates
the spins of the top and anti-top quarks, there will be a sizable angular correlations
between all the particles, both incoming and outgoing, in these events.

There are many papers on the angular correlations for top quark events [h, 7]
produced both at eTe™ colliders [8] and hadron colliders [9]. In most of these works,
the top quark spin is decomposed in the helicity basis. Recently, Mahlon and Parke [10]
have proposed a more optimal decomposition of the top quark spin which results in a
large asymmetry at hadron colliders. Parke and Shadmi [11] extended this study to

et

e~ annihilation process at the leading order in the perturbation theory and found
that the “off-diagonal” basis is the most efficient decomposition of the top (anti-top)
quark spin. In this spin basis the top quarks are produced in an essentially unique
spin configuration. Since this result is of great interest, it is of crucial importance to
estimate the radiative corrections to this process which are dominated by QCD effects.
The QCD corrections to top quark production can be calculated perturbatively
at energies sufficiently above the production threshold of the top quark pairs. The
analytical study of QCD radiative corrections to heavy quark production was pioneered
in Ref. [1Z] (see e.g. Ref. [13] for a recent article). Polarized heavy quark production,
in the helicity basis, has also been investigated by many authors [14, 15].
In this article, we present an analytic differential cross section for polarized top

quark production at the QCD one-loop level. We focus on the issue of what is the



optimal decomposition of the top quark spin for eTe™ colliders i. We have calculated
the cross section in a “generic” spin basis which includes the helicity basis as a special
case. The radiative corrections. in general, add two effects to the Born level analysis:
the first is that a new vertex structure (anomalous v/Z magnetic moment) is induced
by the loop corrections to the tree level vertex, the second is that a (hard) real gluon
emission from the final quarks can flip the spin and change the momentum of the parent
quarks. Therefore, compared to the radiative corrections of physical quantities which
are spin independent, it is possible that spin-dependent quantities maybe particularly
sensitive to the effects of QCD radiative corrections.

The article is organized as follows. In Section 2, we examine the QCD corrections to
the polarized top (anti-top) quark production in the soft gluon approximation. The aim
of this section is: (1) we estimate the numerical effects from the new vertex structure
on the spin correlation found in the Born level analysis and (2) we show that we can
use the off-diagonal basis as a optimal basis also at the QCD one-loop level. In Section
3, we present our analytic calculations of the full one-loop corrections to the polarized
top quark production in a generic spin basis. We give the numerical results both in
the helicity, beamline and the off-diagonal bases in Section 4. Here we compare the
full one loop results with those of the Born and soft gluon approximations. Finally,
Section 5 contains the conclusions. The phase space integrals which are needed in
Section 4 are summarized in Appendix A. The unpolarized total cross section for top

pair production, using our results. is given in Appendix B as a cross check.

* The physics of top quark production at muon colliders and et e~ colliders is identical provide the
energy is not tuned to the Higg boson resonance.



2 Spin Correlations in the Soft Gluon Approxima-
tion

In this section we derive the first order QCD corrected spin dependent, differential cross
section for top quark pair production in the soft gluon approximation. It is instructive
to first consider the soft gluon approximation because in this approximation only the
QCD vertex corrections modify the spin correlations of the top quarks. The full one-
loop analysis will be given in the next section. We use the same generic spin basis as in
Ref. [1T]. In this paper we do not consider transverse polarization of the top quarks f
since we are interested in how QCD corrections modify the tree level spin correlations
and which spin basis is the most effective for spin correlation studies. Therefore we use
a generic spin basis with the spin of the top quark and anti-top quark in the production
plane. We define the spins of the top and anti-top quarks by the parameter ¢ as given

in Fig.1.

Figure 1: The generic spin basis for the top (anti-top) quark in its rest frame. s; (sz)
is the top (anti-top) spin axis.

The top quark spin is decomposed along the direction s; in the rest frame of the top

quark which makes an angle ¢ with the anti-top quark momentum in the clockwise

1t is known E?:] that the transverse top quark polarization becomes nonzero when the higher order
QCD corrections are included and that this transverse polarization is very important and related to
the phenomena of CP violation.



direction. Similarly, the anti-top quark spin states are defined in the anti-top rest
frame along the direction s; having the same angle ¢ from the direction of the top
quark momentum. We use the following notation in this paper: the state 444 ({y1})
refers to a top with spin in the +s; (—s;) direction in the top rest frame and an anti-top
with spin +sz(—s;) in the anti-top rest frame.

The one-loop QCD correction to the cross section is given by the interference be-

tween the tree and one-loop vertex diagrams in Fig.2.

Figure 2: The Born and the QCD one-loop contributions to the e~et — #{ process.

At the one-loop level, the ¥ — ¢ — ¢ and Z — ¢ — ¢ vertex functions can be written in

terms of three form factors A, B, C as follows:

R R 0

7= =oo|{ea+ A+ @ -l B} ),
+{QF (1 4+ 4) = (QF - QF) B} (vw),
QF+QF 1, —1,  QF—QF

+ 2 B 2m + 2

by +1,
C+—"s . 2
om 15| (2)
where (), = % is the electric charge of the top quark in units of the electron charge e,

Oy is the Weinberg angle, and m and ¢, ({,) are the mass and the momentum of the

top (anti-top) quark (fy]é/L = 4# H;%). The top quark couplings to the Z boson are
given by
QL— 3 — 4sin? Oy QR— 2sin? Oy 3)
L Geosbw t 0 3cosfOw



After multiplying the wave function renormalization factor (we employ the on-shell

renormalization scheme), the “renormalized” form factors read

A = as[(”ﬁﬁzlnig—2)1n:1—2—4+351n% (4)
+ 1;”82{%1n2%+1n2%—1n2%+2mz<%)+§HH,

B = dsl_ﬁ/ﬂlnig,

c = dsl(zmﬂ)l_ﬁmmig_

where (3 is the speed of the produced top (anti-top) quark and the strong coupling

(5)

201- )] (6)

constant is &, = CZ(WR)QS = fjg?gz with Cy(R) = % for SU(3) of color. We have
introduced an infinitesimal mass A for the gluon to avoid infrared singularities. In the
above expressions, we have shown only the real part of the form factors because (1)
the 7Z width is negligible in the region of center-of-mass (CM) energy /s far above
the production threshold for top quarks and (2) we are not considering the transverse
polarization for the top quarks. The contribution from C can be neglected since it is
proportional to the electron mass.

The differential cross section at the one loop level is given by

djﬁ (EZEE — tTZTT) = % (6ZEE — tl'{l')

= (37;? ﬁ) (Arrcos& — Brpsin€) (7)

X {(ALR cosé — Brrsiné)(1 4+ 2A 4+ 2B)

—2(y*Arpcos € — Brpsin€) B} .

do _ 4 _ _
m <6L €p — tTt¢ or t\LtT)

3ra? .
= ( ;j ﬁ) (ALR Slnf —|— BLR COSf :|: DLR) (8)
X {(ALR Sinf + BLR COSf + DLR)(l + 2A + QB)

-2 (’yQALR sinf + BLR COSf + DLR) B}
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Here, the angle 6 is the scattering angle of the top quark with respect to the electron in
the zero momentum frame, a is the QED fine structure constant and v = 1//1 — 32.

The quantities Arg. Brr. Brr, Drgr and Drp are defined by

At = [(fre + fur)y/1 — (2 sin0] /2 ,
Brr = [fru(cost+B) + fin(cost — B)]/2 = Bra(—8) . (9)
Dip = {fLL(l + Bcost) + frr(l — Bcos 9)]/" = Drr(—0) ,

with
1 S
sin® Oy s — M2’

where My is the Z mass (as mentioned before, we neglect the 7 width) and I,.J €

Jrr=—Q:+ QgQ}]

(L, R). The electron couplings to the Z boson are
2 sin? Oy — 1 sin? Oy

Qf = Q=

2 cos Oy cos Oy

The cross sections Eqs.(7.8) contain an infrared singularity (in the form factor A)
that will be cancelled by the contributions from the real gluon emission. In the soft
gluon approximation, it is very easy to calculate the real gluon contribution. As is well
known, the amplitude for the soft gluon emissions can be written in the factorized form
proportional to the tree amplitude. This means that the soft gluon emission does not
change the spin configurations or momentum of the produced heavy quark pairs from
the tree level values. Therefore the QCD radiative corrections enter mainly through
the modifications of the vertex parts Eqgs.(I,2). The cross section for the soft gluon

emissions can be written as

do B dog
deos ™M dcosh’

(10)

where the subscript 0 denotes the tree level cross section. The soft gluon contribution

Jir is defined by

Kzumx Pk t o\
JIR = _47T02(R)a5/ (t ko = #k) s

(27)32k0



where wpay 1s the cut-off of the soft gluon energy. This integral can be easily performed
and we obtain

(148 145 4 ma

Jr = 20[5[( 3 1n1—5_2 In 32

2, 148 1480 20 L, 2145
L T R lm( >+1 H

By adding the one loop contributions Eqs.(7.8) and the soft gluon ones Eq.(1T).
one can see that the infrared singularities, In A, are cancelled out and the finite results

are obtained by replacing 2A by

2A + Jmr

1+3 148 42 2 21+
— st [( —;/ 1n1‘|‘//8_2)1n wmax_4_|_ ‘|‘361 ‘I’/

m? 3 "1-3

1452 1-p 25 20 . (1-0 L,
3 {lnl_l_ﬁ(31n—1+ﬁ+1n—1_ﬁ)—I—4L12(—1+ﬁ>—|—§7r H

in Eqgs.(7.8).

The cross sections for ezef can be obtained by interchanging L, R as well as 1, ] in
the above formulae.

Since we are interested in maximizing the spin correlations of the top quark pairs
we must vary the spin angle, £, to find the appropriate spin basis. At tree level, it is
known that there exists the “off-diagonal” basis which makes the contributions from
the like-spin configuration vanish [11]. At order O(ay), we find that definition of the
off-diagonal basis for e7e} scattering is not modified by QCD corrections, with the

spin angle, £, satisfying the tree-level relationship

ALR (frr + frr)V1 — 32 sind

tanf - BLR - fLL(COSH —|— ,8) —|— fLR(COSH — ﬁ) '

(11)

The first order QCD corrected cross sections in this basis are

do



do 3ra?

dcosd (EZEE — gy or tJT) - ( 2s ﬁ) ( Alr+ Bir ¥ DLR) (13)

X [(\/ Aip+ Bip F DLR) (1 + 51) -2 (’YQA%R + BunbBin F DLR) SH] ;

Aip+ Big

where

S[:2A+JIR+2B . SH:B.

A similar result holds for eze} scattering.
In Fig.3 we show the differential cross sections in the off-diagonal basis, Eq.(i1T),
for /s = 400 GeV.

- + - +
e e €gre
1 .0 T T T T T T i T j T T
—— UD (Tree) —— DU (Tree)
r— UD (SGA) J — DU (SGA)
DUX100 (Tree) UDX100 (Tree)
0.8 r DUX100 (SGA) T UDX100 (SGA) i
—-- (UU+DD) (Tree, SGA) —-- (UU+DD)X100 (Tree)
- 1 — (UU+DD)X100 (SGA)

do/dcoso [pb]
o o
N »

o
(V)

0.0

-1.0 -05 0.0 0.5 10 -05 0.0 0.5 1.0
coso coso

Figure 3: The cross sections in the off-diagonal basis, Eq.(11), at /s = 400 GeV, wiax =
10 GeV for the e~e™ — {1 process: {4ty (UD), tyt+ (DU) and t4¢4 4ty (UU4+DD). The
suffix “Tree” and “SGA” mean the differential cross-section at the tree level and at
the one-loop level in the soft gluon approximation. It should be noted that DU (UD)
component for the e; et (ege™) process is multiplied by 100.



The following values for the parameters of the standard model were used

m = Mep = 175GeV . My = 91.187 GeV |

1
a=—
128

as(M2)=0.118 , sin*fy = 0.2315 .

We use /s as the renormalization scale and the pole mass for the top quark. For €7 ek
scattering the up-up ({44) and the down-down ¢ 1, components are identically zero.
The total cross section is more than 99% up-down ¢4¢; and less than 1% down-up ¢{4.
For epef scattering the up-up (¢441) and the down-down ¢;{; components are non-zero
because we have used the off-diagonal basis for €7 e} scattering. However the down-up
tyt+ component is still more than 99% of the total cross section.

Although there exist a magnetic moment modification to the v/Z — ¢ — ¢ vertex
from QCD corrections, this does not change the behavior of the spin dependent cross
sections in the off-diagonal basis. The QCD corrections, however, make the differential
cross sections larger by ~ 30% compared to the tree level ones at this y/s. Thus the
off-diagonal basis continues to display very strong spin correlations for the top quark
pairs even after taking the QCD corrections into account, at least in the soft gluon
approximation.

In the previous paragraph the cut-off energy for the soft gluon has been chosen
as Wmax = 10GeV. The results, of course, depend on the value of wpax. The whax
dependence of the cross section is examined in Fig.4. The cross section behaves quite

uniformly as the value of wyayx is changed thus the above conclusions remain qualita-

tively the same for any reasonable value of wyax.



- + - +
e e e e

1 .0 T T T T T T T T T T T T
UD (=1 GeV) DU (,,,=1 GeV)
UD (0,,,,=5 GeV) I — DU (0,.=5GeV)

— UD (OJmax=10 GeV) — DU (wmax=10 GeV)

0.8 —— DUx100 (1 GeV) 7 UDX100 (o0, =1 GeV) 7

DUx100 (5 GeV) UDx100 (®,,,=5 GeV)
[ —— DUx100 (10 GeV) T —— UDx100 (®,,=10 GeV)
06 | 1 .

do/dcoso [pb]
o o
N H

o
o

-01 -05 0.0 05 10 -05 00 05 1.0

coso coso

Figure 4: The wpax dependence of the cross-sections in the off-diagonal basis
at /s = 400GeV. The DU (UD) component for the e;et (eret) process is multi-
plied by 100.
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3 Single Spin Correlations in ete™ Process

The soft gluon approximation used in the last section has two shortcomings. First, soft
gluon emission cannot change the spin of the heavy quarks and second the heavy quark
pairs are always back to back. Neither of these approximations is valid for hard gluon
emission. Hence it is possible that the full O(a;) QCD corrections might completely
change the conclusions of the previous section. Therefore, in this section, we investigate
the full O(as) QCD corrections. Since, in the presence of a hard gluon, the top and
anti-top quarks are not generally produced back-to-back, it is more sensible to consider
the single heavy quark spin correlations, namely the inclusive cross section for the
production of the top (or anti-top) quark in a particular spin configuration. We have
organized this section as follows. After defining the kinematics and our conventions,
we give the polarized cross section for the top quark using a generic spin basis closely
related to the spin basis of the previous section. The numerical analysis will be relegated

to the next section.

3.1 Amplitudes and Kinematics

The principle result of this section will be the inclusive cross section for polarized top

tem = trorty + X, where X = ¢ or {g. (The cross section for

quark production, e
the anti-top quark inclusive production can be easily obtained from the results in this
section.) Since the vertex corrections are the same as in the previous section all that is

required is the full real gluon emission contributions. The real gluon emission diagrams

to leading order in a; are given in Fig.5.

11



Figure 5: The real gluon emission contributions to top quark pair production.

This figure also defines the momenta of particles. We will use the spinor helicity method
for massive fermions [10] to calculate the squares of these amplitudes for a polarized
top quark. The top quark momentum ¢ is decomposed into a sum of two massless
momenta ¢, , t such that in the rest frame of the top quark the spatial momentum of

t; defines the spin axis for the top quark.
l=li+ty . msg=11—12,

where s; is the spin four vector of the top quark.

The amplitude for Fig.5 is given by

M(eref; = talpg) = v4(@)Luy(q)

aalt) [ 5 (Pt + “EEat) (— 4 ot mv, (1)
st o m) (g ) T os(eh)

where a.  are the spin indices for quarks and ¢ is the polarization vector of the gluon.

T is the color matrix. The coupling constants ay; are defined as follows:

The expressions for the squares of the amplitudes given below have been summed

over the spins of the unobserved particles (the anti-top quark and gluon) as well as the

12



colors of the final state particles. Let us write the square of the amplitude for the top

quark with spin “up” as

|M(epeh — ttg)|*

| ! !
= N.Cy(R) [(t-k’)Q T + (1-k)(t-k) T2+WT3] . (15)

After some calculation, we find

7= AlappP[(F k) (g k) —mPq- (T4 )] (12-9)
+ Alazal? [(T- k) (G- k) = mPq- (L4 k)] (t1-q)
— |arnai (L k) + m*) Tr(ws bt gq) + c.c.]
Ty = larcP [0 D @)tz @) + (b2 - @)Tr(ws ghtD) + (- ) Tr(w_ 1y Gk 1)

+ arr[4 (- D)t - q) + (- @) Tr(w- gk tl) + (1 @) Tr(wy tr gk 1))
+ arraip [(t ) Tr(wititagq) — (k- q)Tr(wy btz gk)
‘|‘%Tf(w+ trtiqktq) + %TI‘(WJr titaqqk {)]
+ ajgarn|(t-DTr(w_t2t1qq) — (k- @) Tr(w_tats qk)
—I—%Tr(w_ Lilyghtq)+ %Tr(w_ byt q k)]
+ cec
Ty = 2lapr|* [-m?(k-q) = 2(m* + (t- k) (t2- @) + 2((t + k) - @) (L2 - k)] (- q)

+ 2arl [=mi (k- q) = 2(m* + (L k) (b - q) + 2+ k) - q)(k - )] (2 )

m2

-5 larrapp{2Tr(wy titaqq) + Tr(wy ki2qq) + Tr(wi tik gq)} + cc]

_ 1+
where wy = =%

and that all momentum, p, under the “It” operator are understood
to be p. By interchanging the ¢; and ¢, vectors in the above expressions, we can get the
amplitude square for the top quark with spin “down”. Since we neglect the Z width
in this paper, all the coupling constants a; are real.

To define the spin basis for the top quark we naturally extend the spin definition of

the previous section to the present case. The top quark spin is decomposed along the

13



direction s; in the rest frame of the top quark which makes an angle ¢ with the sum of

the anti-top quark and the gluon momenta in the clockwise direction, see Fig.6.

Figure 6: The spin basis for the top quark in the process e~ et — tig.

To calculate the cross section from Eq.(173), we take the CM frame in which the

ete™ beam line coincides with the z-axis,

q:§(1,0,0,1) : q:§(1,o,o,—1).

We specify the variables z.y and z which are related to CM energies of the gluon, top

and anti-top quarks by

2k - q 21 - q 21 - g
El_ﬂtﬁl_ﬂtzzl_ﬂ'
S S S

The momenta of the final state particles, in terms of these variables, are

k:\/?g(l—:z;,(l—x)l%) ,t:§(1—y,a(y)f), zﬁ(l—z,a(z)%) .

where " means the unit space vector and

aly)=J(I—y—a . a(z)=(1-27—a.

with ¢ = 4m?/s. Fig.7 defines the orientation of the top and anti-top momenta and

by energy-momentum conservation the momentum of the gluon is also determined.

14



—+|
x
—t

Figure 7: The momentum (unit vectors) configuration of the top and anti-top quarks
in the CM frame. The momentum of ¢~ (¢¥) is in the +2 (—z) direction.

One can easily obtain the spin four vector of the top quark in the CM frame by boosting
the spin vector characterized by ¢ in the top quark rest frame in the direction of top
quark momentum by 3(y) (the speed of the top quark in the CM frame). The explicit

form for t1 (to =t — t1) is given by

£ = Tl - Bly)cose)] .

m

T 5[7@) (B(y) — cos &) sinb cos ¢ + sin € cosfcos ¢ | . (16)
2 = %[’y(y) (B(y) — cos &) sinfsing + siné cosfsing|
£} = 5 [9(y) (Bly) = cos€) cos b — sin&sinb] .

where
Vay(y)=1—y . Vary(y)Bly) =aly) .

If we eliminate the gluon momentum & using the energy momentum conservation
and use the angular variables y, ¢ in Fig.7 to specify the orientation of the anti-top
quark (if one eliminates the anti-top momentum, one can proceed in the similar way

by introducing other angular variables), the square of the amplitude Eq.(15) can be

15



written as
_ s
|M(e7eh — t4tg)]* = 3 N.Cy(R) {a%LMl + af g My + ClLLClLRMg} ; (17)

where M, are the functions of y. z. angles defined above and the spin orientation £.

Vi = 20 0P 4o 04 (1 2 4 ) o]
1 1 2 2 2 1 1 2 2 2
— al—+—5](—-y +a*(y)cos”0) —a —+ (1= + a”(z) cos 0)
Yz Y yz z
2 2y — 22z — .
+ 2<#—%>a(y)cos&—?(#—%>a(z)cosﬁ
Yz Yy yz z

+ é(l — z —a(z) cos ) {y(l —a(z)cos ) — z(1 — a(y) cos 9)} (6t -1)

— L(1 — 2z —a(z)cosb) [y —z4+(y+ 2)(z — a(z) cos 5)} (6t-(g+q))

2

yz
+ y_ G + 1) [y(1 — a(2) cos 0) + =(1 + a(y) cos )] (¢ - q)
_ ;—z[(1—y+a<y)cose)+<1—y—z)<1—z—a<z>cos*9>}<5t-q>:

My = Mi(cos — —cosb, cos — —cos . 6t — —dt)

My = QG{i—é—é— ), (y+z)200529k}_2a2 (Lrl)Q

’ y: oy oz yz yz v

b (2 ) et cosd et a0
— yQ_Z [a(y) cosf + (1 —y— z)a(z) cos é] (6t-(q+q))
n a(§+é) (5t.(q_q))—|-y2—z[z(y—l-z)—2(1—y—z)](&‘(q—Q))
T ;—Z {(1 —y)a(z)cosf + (3 + z)a(y) cos 9] (6t-1).

In the above equations, 8 is the angle between the z axis and the gluon momentum
(y + z) cos 0, = —a(y) cos§ — a(z) cos b

and 4t is defined as

ol = (tl — tg) .

16



Using Eq.(18) we find that the products of ¢ with momenta ¢, g and ¢ are

Stoq = {(1—y)cosf—aly)}cosé +/asinfsiné

§t-G = {—(1—y)cost—aly)}cosé — VasinBsiné ,

5t-1 = {=(1—=2)aly) + (1 — y)a(z) cos x } cos &
+/aa(z) sin € sin x cos ¢ .

The unpolarized top quark production process is given by dropping the spin dependent

parts (terms proportional to d¢) in Eq.(17). As a check we have reproduced the results

of Ref. [12] by putting arz = azp = —222Q,.

S

The cross section is given by

_ 1 _
do(ezeh = tiig) = o |M(eieh = tyig) F(PS)s (18)

where (PS)3 is the three particle phase space.

4Pt &t Pk _ )
(PS)s = (205200 (2P0 (2720 @m)stt+i+k—qg—1q) .

We introduce a small mass A for the gluon to regularize the infrared singularities. It is

easy to rewrite the above phase space integral as,

Je9s = gl

X /dﬂdcos xdo b (COSX —

y+z+yz+a—1—2m)
a(y)a(z)

where df) = dcos fd¢ is the solid angle for the top quark and a), = A?/s. The integra-

tion regions over y and z are determined by the condition |cos x| < 1,

Y+ = 1_\/6_1 : y—:\/aa/\—l_a/\:

2 a
ze(y) = 4y+a[y<1—y—§+a/\)+axia(y)\/(y—ax)2—acm

The integration over the angle ¢ is not difficult if one uses the relation

cos § = cos  cos y + sin fsin x cos ¢ .

17



The integrals we need are the following:

/cosg d¢ = 2mcosfcosy ,
_ 1
/C0820 dp = 2« [C0820+§(1—3C0820)Sin2x] ,
, 1 a*(z)
20, dp = 2 0+ -(1-3 297'2].
/cos g do W[COS 2( cos )(y—l—z)2 sin” x| .
/cosgcos¢d¢ = msinfsiny ,

/coszgcosqbdgb = 2mwsinfcosfsin ycosy .

Due to the § function in the phase space integral, the angle x is a function of y and z:

y+z+yz+a—1
a(y)a(z)
dyz(1 =z —y) —aly + 2)*
a*(y)a*(z)

cosy =

.2
sin“y =

where we have put a) to be zero since the A — 0 limit does not produce any singular-
ities in the (squared) amplitude. The remaining integrals to get the cross section are
over the variables y and z. According to the type of integrand, we group the phase
space integrals (after the integrations over the angular variables) into four distinct
classes {.J;}. {N;}, {L;} and {K;} [15]. The individual integrals of these classes are

summarized in Appendix A.

3.2 Cross Section in the Generic Spin Basis

We write the inclusive cross section for the top quark in the following form.

do 3ra’
R P —
dcose(eL k= 1 X) 4s

> (Drimn + &5Chinmn) cos® @ sin' O cos™ Esin™ €, (19)

klmn
where Dy, are the contributions from the tree and the one-loop diagrams and Ciyp

are from the real emission diagrams. Let us first write down the Dy,

Doooo = ﬁ[fz/; + fzg + 2afrr frr|(1 4 asVr)

18



with

—BR2(frr + fir)* = B*(frr — fir)*)ésVir ,
Dyoo = B*(fip + fir) 1+ & Vi) + B2(frr — for)*ésVir
Do = 28°(fir — JLr)(1 + &:Vi)
Dooro = B*(fir — Jip)(L +6V)
Daoro = B*(fir — Jip)(L +6V)
Dino = Bl(frr + frr)* + B (frr — fur)?](1 + &,Vi)
=26[(frr + frr)* = B*(frr — fir)*)ésVir .

Doion = —=(frr + fLR)Q[Cl(l +asVi) — (1 +a)as Vi

2

Diior = ﬁ(fl%L — [ir)la(l+ a,Vy) — (1 — a)a, V] .

NI

/6:/6(0):\/1—& . éjs‘/I:QA+2B , ds‘/II:B-

A, B are defined in Eqs.(4.8).

For the Cyy,p, we find,

COOOO

02000

CIOOO

C’0010

02010

01010

= 2(fip+ fir)

[ 1
+da frofir | Jg —4Js— Jo— Ji + ZRQ] .

1
T = (4 —a)ds + (24 a) s + ady + ZRI]

3
= 2(fiL+ [ir) [ (1—a)Jig — (4—a)s+ (2 —a)Jy — aty — ZRI]

[ 3
+4a frofir | 2+ — ZRQ] ;
= 2 (fir — fir) { (1 —a)Jig + aNig —2(4 — 3a) Ny
— (4 = 5a)Ns — 2N7 + 2Ns + 6N5 + 2N, |
1

— 5 C’1000

2
1
(fR = i) [ —ANs—aNi—aNy—aNy+ (4= )Ny + S Ro]

= Cooro — 2(f71 — fir)Rs .
= (f}+fE) [ 22— a) ik + 20y — 2(8 — 5a)J

19



COIOI

01101

—2a(l —a)Lls —2a(l —a)L; —2(4+3a)Le +2(4 — 3a)Ls
+ 2aLs+a(10 — a)Ls+ (8 — 6a — a®) Ly — 2(4 — 3a + a*) L

+ 2 frrfrr | 2005 = 85+ AL + 4Ls + als + aly — 2(2 — a) Ly |
Ja

5 Ul Jin) [ 4 = (84 a) s — (8= a)(1 = a) Lz — (12 + @)L
— 2aLs+2aLy+ (8 + a)Ls + (4 — 5a)Ly + 4(2 — a) Ly
+Va frofir | 405 — (16 — a)Js —a(1 — a) Ly + (4 + a) Lg

+ 2aLs +als — (4 —3a)Ly + 2aLy| ,

Crooo + Va (f7; — fj%R)

a

ol

X

L —

1
—aNm — 9GN9 + 2N7 — 2N6 — 5(12 + G)Ng + %NQ — (12 + G)Nl
—a(l4+a)Ks+a(l —a)K7 +9a(l —a)Ks — 3a(5 + a)Ks

— (124 a)Ks+ (4 —ba)Ks —3(4+ba)Ky + 3(4+ a)(1 — a) K4

where we have defined

1
JIR

2
JIR

Ry

R,

Ry

(2—a)de—als,

2(2 — a)Ni3 —alNyp — alNyq

—4a(l —a)l; —4(2 —a)Le — 8(1 —a)Ls

4+ a*Ly+a(2+3a)ls —a(2 —a)ly+ (8 —8a + 3a*) L, ,
—4Le —4Ls —als —aly+2(2—a)ly ,

a’Nyo + 3a(2 + a)Ng + 4aN5 — 2aN, + 8(1 + a) N,

+ 2a*Kg — a2(1 —a)K7 —3a(l —a)(2+4 a)Ks + 6a(l + 2a) K5

+ 2(4 4 3a)K4 + (a2 +6a —8)Ks3 +3a(8+ a)Ky — 12a(1 — a)K; .

Note that the integrals Jjs , J& namely Js, Js, Ni1, Nip and Ny3 contain the infrared

singularity. This singularity is exactly cancelled out in the sum Eq.(19) by the contri-

butions from Dyy,,,.We are now ready to discuss our numerical results.
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4 Numerical Results

We are now in the position to give the cross section for polarized top quark production
for any ete™ collider. Since we did not specify the spin angle £ for the top quark, we
can predict the polarized cross section for any top quark spin. The spin configurations
we will display are the helicity, the beamline and the off-diagonal bases for centre of
mass energies /s = 400 GeV , 800 GeV , 1500 GeV.

Table 1 contains the values of the maximum centre of mass speed, the running
as. the Born cross section. the next to leading order cross section and the fractional
O(as) enhancement of the Born cross section (x) for top quark pair production in e et

scattering.

| Vs | 400 GeV | 800 GeV | 1500 GeV |
3 0.484 0.899 0.972
a,(s) 0.0980 | 0.0910 [ 0.0854

OTotar Tree (pb) 0.8707 0.3531 0.1047
oot Olas) (pb) || 1113 | 0.3734 | 0.1084

K 0.2783 0.05749 0.03534
Table 1: The values of 3. a,, Born and next to leading order cross sections and &
for e et scattering.

At /s = 400 GeV the QCD corrections enhance the total cross section by ~ 30%
compared to the Born results whereas at higher energies, 800 and 1500 GeV, the
enhancements are at the ~ 5% level.

First we will show the numerical values for the coefficients (Dyimpn 4+ é5Chimn) in
Eq.(i19). Since the dominant effect of the O(a;) corrections is a multiplicative enhance-

ment of the tree level result we have chosen to write
Dkl'mn + d’.sc1kl'mn = (1 + K)Dglmn + Sklmn-

The (1 + x)DY,,,, terms are the multiplicative enhancement of the tree level result
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whereas the Sg., give the a; deviations to the spin correlations. The numerical value

of these coefficients are given in Table 2.

| 400 GeV | 800 GeV [ 1500 GeV |

(1 + &) Dooo 1.511 1.722 1.671
(1 + &) D% 0.2404 1.241 1.526
(1+%)Do00 0.7809 2.126 2.406
(14 &)Ddy10 0.3905 1.063 1.203
(14 &)D%10 0.3905 1.063 1.203
(14 &)D%%10 1.751 2.963 3.197
(14 &)Dgo; 1.452 1.100 0.6186
(1+&)DY,o, 0.3416 0.4650 0.2807
So000 —0.002552 | 0.0005645 0.01172
S2000 0.007655 | —0.001682 | —0.03516
S1000 0.02154 0.01224 —0.02085
Soo10 0.01094 0.01586 0.008357
Sa010 0.01059 —0.006158 | —0.03614
Sto10 0.004433 —0.02030 | —0.06134
Soto1 —0.006564 | —0.04413 | —0.04952
Stio1 0.007920 —0.01270 | —0.02047
Table 2: The values of (1 + «)DY, ~ and Sgy., for e; et scattering.

The ratios Sgimn/(1 + £)DY,,,, are never larger than 10% and are typically of order
a few percent. Hence the O(a;) corrections make only small changes to the spin
orientation of the top quark.

To illustrate the different spin bases we present the top quark production cross
section in the three different spin bases discussed in ref. [iI'l]. One is the usual helicity
basis which corresponds to cosé = +1. The second is the beamline basis in which
the top quark spin is aligned with the positron in the top quark rest frame (¢ for the
beamline basis is obtained from Eq.(11) with frp = 0). The third corresponds to
the off-diagonal basis which has been defined in Eq.(11). Note that as g — 1. all of

these bases coincide. Therefore, at an extremely high energy collider, there will be no

significant difference between these bases.
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Helicity Basis Beamline Basis Off-Diagonal Basis

Dx10 (Tree) Dx100 (Tree)

i R
12 1 g Dx10 (SGA) T Dx100 (SGA) _
= 1.0 R Dx10 (Full) 1 —— Dx100 (Full) ]
QL r L U (Tree) - U (Tree)
o 0.8 | L U (SGA) i U (SGA)
2 0.6 | L U (Full) 1 — U (Fun) g
B 04 ] ]
S02F >~ ____ oo
O-O \\\\\\\ r// \\\_,
[ N R— Sy v S
1.2 T D (SGA) -
o) ' D (Full 1 — D(Ful ]
i_ 10 L U)((1(;J(2I'ree) 1 Ux100 (Tree)
o 0.8 Ux10 (SGA) + Ux100 (SGA) .
Q 06 | Ux10 (Full) 1 —— Ux100 (Full) ]
o Yo
B 04 | by ]
-8 0.2 [ _ T — ]
0.0 | _——————————————__——”' “‘*—e_

-1.0-05 0.0 05 -1.0-05 0.0 05 -1.0-0.5 0.0 0.5 1.0
cos6 coso cos6
Figure 8: The cross sections in the helicity, beamline and off-diagonal bases

at /s = 400 GeV. Here we use a “beamline basis”, in which the top quark axis is
the positron direction in the top rest frame, for each €7 et and eze™ scattering.

In Fig. 8 we give the results for /s = 400 GeV for both e; et and ege™ scattering
using the helicity, beamline and off-diagonal spin bases. This figure shows the Born,
SGA and the full QCD results for all three spin bases. Since the SGA results almost
coincide with the full QCD results the probability that hard gluon emission flips the spin
of the top quark is very small. Clearly, the qualitative features of the cross sections
remain the same as those in the leading order analysis. That is the top quarks are

produced with very high polarization in polarized ete™ scattering. In Table 3 we give
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the fraction of the top quarks in the dominant spin configuration for e e

o (eie+ — 1+ X (¢ or fg)) /

for the three bases. Similar results also hold for egre

+

O_gotal

scattering.

‘ Vs =400 GeV H Helicity ‘ Beamline ‘ Off-Diagonal ‘

Tree

0.6636

0.9881

0.9988

O(as)

0.6681

0.9885

0.9985

+

scattering.

Table 3: The fraction of the e e™ cross section in the dominant spin at

Vs =400 GeV for the helicity, beamline and off-diagonal bases.
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Figure 9:
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cos6

cos6

The cross sections in the helicity, beamline and off-diagonal bases

at /s = 800 GeV.
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Helicity Basis

Beamline Basis Off-Diagonal Basis

0-14 T T T T T T T T T
I L U (Tree) i U (Tree)
. 0.12 L U (Full) — U (Full)
<2 0.10 R D (Tree) - D (Tree)
Z 0.08 L R D (Full) [ —— D (Full
3 o006 |
S 0.06 _
© 0.04
8 0.02 / -
R e s sy
0.14 ——t——t ——t : ——t—
| R (Tree) - - 1 D (Tree) 1 D (Tree) ]
. 0.12 r R(Ful) ©" 1 — D (Ful) —— D (Full)
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2 0.08 L—— L(Ful) 1—— U (Fun 1—— U (Fun ]
D ’ -
8 0.06 _
3 0.04 |
3 0.02 |
0.0 | T T _
-10-05 00 05 -1.0-05 00 05 -1.0-05 0.0 05 1.0
coso coso coso
Figure 10: The cross sections in the helicity, beamline and off-diagonal bases

at /s = 1500 GeV.

In Fig. 9 and 10 we have plotted the similar results for a 800 and 1500 GeV colliders.
The fraction of top quarks in the dominant spin component for €7 e™ is given in Tables

4 and 5.

‘ Vs = 800 GeV H Helicity ‘ Beamline ‘ Off-Diagonal ‘
0.8318 0.9310 0.9735
0.8350 0.9292 0.9682

Tree

O(as)

Table 4: The fraction of the e} et cross section in the dominant spin at

/s = 800 GeV for the helicity, beamline and off-diagonal bases.
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‘ Vs = 1500 GeV H Helicity ‘ Beamline ‘ Off-Diagonal ‘
Tree 0.8680 0.9022 0.9535
O(ay) 0.8671 0.8985 0.9448

Table 5: The fraction of the €7 e™ cross section in the dominant spin at

/s = 1500 GeV for the helicity, beamline and off-diagonal bases.

Our numerical studies demonstrate that the QCD corrections have little effect on
the spin configuration of the produced top (and/or anti-top) quark for any spin basis.
In particular, in the off-diagonal basis, the top (and/or anti-top) quarks are produced
in an essentialy unique spin configuration even after including the lowest order QCD

corrections.
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5 Conclusion

We have studied the O(a;) QCD corrections to top quark production in a generic
spin basis. The QCD corrections introduce two effects not included in the Born level
approximation. One is the modification of the coupling of the top and anti-top quarks
to v and Z bosons due to the virtual corrections. The another is the presence of
the real gluon emission process. First, we consider the QCD corrections in the soft
gluon approximation to see the effects of the modified v/Z — ¢ — ¢ vertex. Using this
approximation, we find the tree level off-diagonal basis continues to make the like spin
components vanish and that the effects of the included anomalous magnetic moment
are small.

Next we analyzed the full QCD corrections at one loop level. When we consider
the three particle final state, the top and anti-top quarks are not neccesarily produced
back to back. So we have calculated the inclusive top (anti-top) quark production. In
this paper we have given an exact analytic form for the differential cross section with
an arbitrary orientation of the top quark spin.

Our numerical studies show that the O(a;) QCD corrections enhance the Born level
result and only slightly modifies the spin orientation of the produced top quark. In the
kinematical region where the emitted gluon has small energy. it is natural to expect
that the real gluon emission effects introduce only a multiplicative correction to the
Born level result. Therefore only “hard” gluon emission could possible modify the top
quark spin orientation. What we have found, by explicit calculation, is that this effect
is numerically very small. The size of the QCD corrections to the total cross section
and the enhancement of the tree level results can be read off from the values of & in
Table 1 of Sec.4. At /s = 400 GeV, the enhancement is ~ 30% whereas at higher
enegies, 800 and 1500 GeV, it is at the ~ 5% level. Near the threshold, the QCD

corrections have a singular behavior in 3, the speed of the produced quark, this factor
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enhances the value of the correction at smaller energy. The size of these corrections
is reasonable for QCD, on the other hand, the change of the orientation of top quark
spin are quite small. The deviation from the enhanced tree level result is less than a
few percent. We can, therefore, conclude that the results of the tree level analysis are
not changed even after including QCD radiative corrections except for a multiplicative
enhancement. This means that for the beamline and off-diagonal bases, the top (and/or
anti-top) quarks are produced in an essentially unique spin configuration. Actually, the
fraction of the top quarks in the dominant (up) spin configuration for e; e scattering
is more than 94% at all energies we have considered.

As has been discussed in many articles, there are strong correlations between the
orientation of the spin of the produced top (anti-top) quark and the angular distribution
of its decay products. Therefore, measuring the top quark spin orientation will give
us important information on the top quark sector of the Standard Model as well as

possible physics beyond the Standard Model.
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Appendix A : Phase space integrals over y and 2

The phase space integrals necessary to derive the cross section are summarized in this
Appendix. Although many of them have already appeared in the literatures [15]. we
will list all of them below for the convenience of the reader. After the integration over

the angular variables, we are left with the following four types of integrals:

Ji = /ddefi(y:Z), NZ:/ dydz i(y,2)
V(1 —y)? —a

_ dydz dydz '
Li - /mf( : { 1_y a}3/2f2(y:z) :

The infrared divergences are regularized by the small gluon mass A and 3 =+/1 —a =

\/1 —4m?/s. For the type L; integrals, a shorthand notation w = \/(1 —Va)/(1 4 v/a)

is used. The K; integrals have a spurious singularity at the upper bound of the y

integral, y; = 1 — y/a. Since this singularity turns out to be cancelled out in the
cross section, we regularize each integrals by deforming the integration region as y. —

1 —/a — € [15). Liy is the Spence function.

Class J Integrals:

- 1 1y 1 1 145
J o= /dydz = 2ﬁ<1—|—2a)—2a<1—4a)1n(1_ﬁ)
Jy = /dydz _ /dydzf

Yy

= _iﬁ (5 - %G) + % <1 + %aQ) In (%)

Js = /dydzé /dydz lz—ﬁ—l—(l—%a)ln(%)
I = /dydz% /dydz—:—ﬁ ln(1+8)
z B
Js o= [dyd Lo /dydz =
23 it

1
— ——(1n——|—21na—4lnﬁ 41n2—|—2)—|—2<1—§)1n<ﬂ)
S a

-5
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Jo

1
dydz —
Yz

/\2
<_1n__1na+41nﬂ+21n2
S

Class N Integrals:

Ny

N,

N3

Ny

N

Ne

N7

B / dy dz

/ dy dz
Ji—pr—a
/__ﬂ&i__
Vi —y)?—a
— Cl

1-p
2ﬁ1n<1+ﬂ)

—|- ln ——\/_‘|-1‘|‘L12<

/ dy dz

z
Y
y
z

(5

yz_

/%y
V-2 —a

% [—a*Ina+2a?In(2 — va) +4(2 — Va)* =4 (2 —a?))]

e
JO—v)—a

312 lm —(2+a)’ -

/ dy dz
m

2+va ,
—J‘

z

<1 + %a) [ng (1
i (#) In (

+5
2
1-p

2

(5

(1-va)

2
a

)1n(1
)L

(1=
‘|‘L12< Qﬂ

Jon(

30

1

)

2o

) — 2Li, @\/E) +7n
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+ 3

~Va- laln(”ﬁﬁ
= —Lnatin (2 va)

+2(8 —a)a In

)+

=

2—+a
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Nsg

Ny

NIS

/

i v

dy dz

dy dz

i
z?
1
y

2 A
l ln——l—lna—l—an(l—\/_)—41n(2—\/5)—|—21n2—2]

2

|

1

B

4
| =

_|_

4+
= e

L——

dy dz

1

V(1 —y)? z?

l ln/\——lna—l—an(l—\/_)

S

dy dz

vVl —y)?—a yz

n(r55) s
2( (1-6)
Va(2 —/a)

)

5

=
o

Class L Integrals:

Ly

- /.

l—y)?—a

dy dz

2

Lig (—

1—a

20

/

-5

1+ 32

B

R

)-6--5-F]

144

4 —aq

al
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-5

p
s

)

n= %ma +4In(2 — Va) — 41n(23)
) N %m (ﬁ(QQ— ﬁ)) m(?ﬂ(l —/a)

)2

1+4
hl(l—ﬁ)—l_g

In 2]




C K
B 12 24 148 23
- (et ()
_ dy dz Y

Ly = /aiar—‘z

- 145\ [1
= §ln (ﬂ) [§lna—|—ln(2—|—ﬂ)—ln(l—l—ﬂ)—?ln?]

41 ?/E\/E[Lig(w)—l-[,ig (;jﬁw> —(w— —w)]

-|-[Li2<1—|2_w)—l-Liz (<2+f>1+w) +Li2(<2+%fl+w>)

—(w—>—w)]
o= [t B ni2s) |
dy dz 1
b= [ (e )
Le = /%Z:_Eaﬁ_ﬁa)m(
L = /# 1 (

1

z

Ly = /7—2—1 l
8 (1—y)?—a 22 n( )

Class K Integrals:

Ko dy dz
1 = {1—y —a}3/2
_ 20 -va) | 2val—va)  da (Lt Va)2 - a)
Va2 - ey dl+va)  (4-a) 2y/aa
K, — dy dz

(=g —apr?

21— V) | 2al-va) a1+ Va2 - V)

T Va2 —ar | l+va) | (A—a)? 2y/aa)
L2V
(1+Va)
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. dy dz
[Xg = /{1_y _a}3/2 z
201 = va)* | 2Va(l = va) | afa® +20a = 32) | (1 +Va)(2 — Va)*

@—Vay = dl+a) 2(4—a)? 2\/aa
Ly 2a_, (1 Va)
1+va) " (d—a)2-Ja)?

. dy dz
W= g

o1 =i 2l yE) 12T (1 a2 )
G—var " it Ve 2 —ap 3 aa

1 a2 [ (- ey

3" T+ v A%—ﬂﬁ”gq

. dy dz Yy
e = /ﬂl—wLwP”z
21— Va) | 2/l VE) (4= 30) (14 V2~ VA
a(2 —+/a) (1 + a) a(4—a) 2\/aa

Ly e AUV, (1)

Tt v e va) o« o5

. dy dz 1
fo = /ﬂl—wLwP”z

> A VE) | () | (L4 VR V)
a(2 —+/a) (1 + /a) a4 —a) 2\/aa
Ly, e A —iln(l—l_ﬁ)
v e v\
/ dy dz y_ 2 2\/_(1—\/_)
=g el =~ aga " i+ va)

[”(7 =

K. - / dy dz y_2
. {T—y —ap 22

201 - va), (2/al-va)\ 4, ( 2/a
T ava m(eu+wa)+5m@+¢ﬁ
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Appendix B : Total cross section

Let us examine the unpolarized total cross section including the top quark pairs using

our formulae. It is given by

_ 1 _ _
O'T(6_6+—>t—|—t—|—X):Z{JT(ezGE—}t—I—t—I—X)—I—JT(EEGE—>t—|—t—|—X)} )

Note that only & = 0,2 and [, m,n = 0 terms in Eq.(19) contribute to the total cross

section. Integrating over the angle 6, we get
or(efeh = t+1+ X)
ma?
= Tﬂ[(fLL + fLR)2 (3 — ;32)

. 6 2 8 8
X (1 + a, {VI — mvn + EJIR — BJS + mb})
+ 2(frr — fLR)2 3

X 2 8 2(3 — 3?) 2a
X (1+a5{‘/1+2‘/II+EJ[R_EJS‘I'TJQ‘I'@JI .
The cross section for the process epef is obtained by interchanging the coupling con-

stant L <+ R in the above expression. Parametrizing the total cross section as

R:(s)

1 _
( )JT(6_6+—>t—|—t—|—X)

th

_ REO)(S)—I- ai(rs)CQ(R)REU(S)_I_”_

where o, = 4ma?/3s, we get the following numerical results at the CM energies /s =

400, 500, 1500 GeV.

| V5(GeV) | RP(s) | GuR)RV(s) |

400 1.0083 8.9963
500 1.4190 6.0267
1500 1.7714 2.2911

These are consistent with the results in Ref. [16].
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