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Abstract

Bg-?g oscillations are observed in “self-tagged” samples of partially recon-
structed B mesons decaying into a lepton and a charmed meson collected
in pp collisions at 4/s = 1.8 TeV. A flavor tagging technique is employed
which relies upon the correlation between the flavor of B mesons and the
charge of nearby particles. We measure the flavor oscillation frequency to be
Amg = 0.471f8:8g§ 4+ 0.034 ps~!. The tagging method is also demonstrated
in exclusive samples of Bf — J/9¥ K™ and B} — J/$K*°(892), where sim-
ilar flavor-charge correlations are observed. The tagging characteristics of
the various samples are compared with each other, and with Monte Carlo
simulations.

PACS numbers: 14.40.Nd, 13.20He, 13.25Hw
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I. INTRODUCTION

The study of B mesons has been important for understanding the relationships between
the weak interaction and the mass eigenstates of quarks, described in the Standard Model by
the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1]. Early studies were based on branching
fraction and lifetime measurements. However, since the observations of B°-B° mixing, first
in an unresolved mixture of B} and B? by UA1 [2], and then specifically for the BS by
ARGUS [3], a new window on the CKM matrix was opened. B° mixing, analogous to K°
mixing, is possible via higher order weak interactions, and is governed by the mass difference
Am between the two mass eigenstates. Unlike the K° system, the B° mixing amplitude is
dominated by the exchange of virtual top quarks, and so provides a view of weak charged
current transitions between a top quark and the quarks composing the Bg,s.

Mixing measurements are predicated upon identifying the “flavor” of the B° meson at
its time of formation and again when it decays, where by “flavor” we mean whether the
meson contained a b or b quark. Determination of the initial flavor is the primary difficulty,
as knowledge of the decay flavor is usually a byproduct of the B reconstruction, even if it is
only partial.

The effective size of flavor tagged B samples is a critical limitation of current measure-
ments, especially for exclusive B reconstructions. This fact has motivated efforts to develop
a variety of tagging techniques to fully exploit existing data. There has been considerable
progress in recent years in utilizing a variety of tagging methods and B° samples, as illus-
trated by the diversity of mixing measurements [4]. Even though a new generation of high
statistics B experiments will soon come on-line [5], many tagging-based studies—such as
C P violation in B mesons—will still be statistics limited. Thus, improvements in tagging
capabilities will be valuable in the next generation of B experiments as well as for the current
ones.

We have reported in an earlier Letter [6] the development and application of a “self-
tagging” method based on the proposal [7] that the electric charge of particles produced
“near” the reconstructed B meson can be used to determine its initial flavor. Such corre-
lations, first observed in efe™ — Z° — bb events by OPAL [8], are expected to arise from
particles produced from decays of the orbitally excited B** mesons, as well as from the
fragmentation chain that formed the B. We refer to this approach as “Same Side Tagging”
(SST), in contrast to other tagging methods which rely upon the other b-hadron in the event.

We applied SST to a large sample of B, 4 — £D™) X decays: the expected time depen-
dent flavor oscillation was observed, and its frequency Amg was measured with a precision
similar to other single tagging results. In addition to the intrinsic interest of obtaining a
supplementary measurement of Amg, this result also demonstrated that this type of tagging
method is effective even in the complex environment of a hadron collider. A variant of this
approach has also been studied by ALEPH [9] in exclusively reconstructed B’s at the Z°
pole.

In this paper we describe in detail the SST method we have developed and its previously
reported application to B,g — £D™*)X decays. Experimental complications surrounding
the use of these decays are described in detail, i.¢e., both the cross-talk between B and Bj,
and the contamination from tagging on B decay products. The value of Amy, as well as the
purity of the flavor-charge correlations, are reported.



This paper extends the application of SST to two fully reconstructed B decays which
offer another test of its effectiveness: B — J/¢K* and B — J/¢K*°(892).! Although
our samples are too small to yield precise tagging results, they are the largest currently in
existence and serve as a prototype for tagging B) — J/v¥ K3 [10,11], the centerpiece of future
C P violation studies with B mesons [5]. The tagging results from the J/¢ K samples are
compared to those from £D®*), and also to Monte Carlo simulations. The simulation offers
further insights into the behavior of this SST method.

This paper is structured as follows. We review the relevant aspects of our detector and
data collection in Sec. II. Section III summarizes B°-B° mixing, and is followed by some
remarks on tagging and a description of our specific SST method in Sec. IV. Same Side
Tagging is applied to the £D(*) sample in Sec. V, which includes discussion of B recon-
struction, sample composition, proper decay time measurement and corrections, the tagging
asymmetries, and finally extraction of Amg4 and tagging dilutions. This completes our main
result.

Having established the technique in £D(*), we extend SST to the exclusive J/% K modes
in Sec. VI. We discuss the sample selection, the fitting method, and the resultant tagging
dilutions. Special attention is given to handling tagging biases. Finally in Sec. VII we
present some checks of our measurements and compare the behavior of this tagger in these
two different types of B decays. Aspects of the data are also compared to Monte Carlo
simulations, and the behavior of this SST method is discussed. We close with a few remarks
concerning future applications of this type of SST method.

II. THE CDF DETECTOR AND DATA COLLECTION
A. Apparatus

The data discussed here were collected using the CDF detector in the Tevatron Run
I period during 1992-1996, and comprise approximately 110 pb~! of integrated luminosity
of pp collisions at /s = 1.8 TeV. Details of the CDF detector have been previously pub-
lished [12,13], and only the features relevant to this analysis are reviewed here: the tracking
system by which charged particles are identified and their momenta precisely measured, the
central calorimeters for electron identification, and the muon chambers for muon identifi-
cation. Our coordinate system is such that the (spherical) polar angle 6 is measured from
the outgoing proton direction (+z-axis) and the azimuthal angle ¢ from the plane of the
Tevatron.

The tracking system consists of three detectors immersed in a 1.4 T magnetic field
generated by a superconducting solenoid 1.5 m in radius. The innermost tracking device
is a silicon microstrip vertex detector (SVX) [13], which provides spatial measurements
projected onto the plane transverse to the beam line. The SVX active region is 51 cm long
and composed of two 25 c¢m long cylindrical barrels. Each barrel has four layers of silicon

!Reference to a specific particle state implies the charge conjugate state as well; exceptions are
clear from the context.



strip detectors, ranging in radius r from 3.0 to 7.9 cm from the beam line. The impact
parameter resolution of the SVX is o4(pr) = (13 4+ 40/pr) pm, where pr is the transverse
momentum of the track relative to the beam line in GeV/c. The geometrical acceptance
of the SVX is about 60% for the data presented here due to the ~ 30 cm RMS spread
of the pp interactions along the beam line. Outside the SVX is a set of time projection
chambers (VTX) which measure the position of the primary interaction vertex along the z-
axis, and is in turn surrounded by the central tracking drift chamber (CTC). This 3 m long
chamber radially spans the range from 0.3 to 1.3 m, and covers the pseudorapidity interval
In| < 1.1 (n = —In[tan(6/2)]) relative to the nominal pp interaction point. The 84 radial wire
layers of the CTC are organized into nine “superlayers.” Five “axial” superlayers consist
of wires strung parallel to the beamline. Interspersed between these five are four “stereo”
superlayers in which the wires are turned 3°; the two types of superlayers used together yield
three-dimensional charged track reconstruction. Within each superlayer the wires are further
organized into “cells” which are rotated 45° relative to the radial direction. This rotation
assists the resolution of left-right ambiguities in track reconstruction. The CTC and SVX
combined provide a transverse momentum resolution of o, /pr &~ \/(O.QpT)2 + (6.6)%x 1073,
with pr in GeV/c.

Outside the magnet coil, and covering the pseudorapidity range of the SVX-CTC system,
are electromagnetic (CEM) and, behind them, hadronic (CHA) calorimeters. They have a
projective tower geometry with a segmentation of A¢ x Anp = 15° x 0.11. The CEM is a
lead-scintillator stack 18 radiation lengths thick. It has a resolution of 13.5%/+/E71 plus a
constant 2% added in quadrature, where Er = Esin(f), E is the measured energy of the
cell in GeV, and § is its polar angle. A layer of proportional chambers (CES), embedded
near shower maximum in the CEM, provides a more precise measurement of electromagnetic
shower profiles both in azimuth ($) and along the beam (z) direction. The CHA is an iron-
scintillator calorimeter 4.5 interaction lengths thick, and has a resolution of 50%/+/Er plus
a constant 3% added in quadrature.

The calorimeters also act as a hadron absorber for the muon chambers which surround
them. The central muon system (CMU), consisting of four layers of drift chambers covering
In| < 0.6, can be reached by muons with pr in excess of ~1.4 GeV/c. These are followed by
60 cm of additional steel and another four layers of chambers referred to as the central muon
upgrade (CMP). The central muon extension (CMX) covers approximately 71% of the solid
angle for 0.6 < |n| < 1.0 with four free-standing conical arches composed of drift chambers
sandwiched between scintillator (for triggering).

The data samples of interest in this paper, inclusive electrons and muons, and dimuons
in the mass region around the J/v, were collected using CDF’s three-level trigger system.
The first two levels are hardware triggers, and the third level is a software trigger based
on offline reconstruction code optimized for computational speed. Different elements of the
trigger have varying efficiency turn-on characteristics, generally dependent upon track pr’s
or calorimeter Er’s. The behavior of the trigger has been extensively studied. Since the
analyses presented here are largely insensitive to trigger behavior, we refer the interested
reader to Ref. [14,15] for detailed discussion of the triggers and their performance.



B. Inclusive lepton data set

The inclusive lepton data set is composed of electron and muon triggers. Electron identi-
fication is based on energy clusters in the CEM with an associated CTC track. The principal
single electron trigger required a Level-2 trigger Er threshold of 8 GeV, and an associated
track with pr > 7.5 GeV/c. The offline reconstruction requires tighter matching between
the position of the CES cluster and the associated track (i.e., 7|A¢| < 3.0 cm and |Az| < 5.0
cm). The CEM cluster is also required to have a shower profile consistent with an electron
shower, i.e., a longitudinal profile with less than 4% leakage in the hadron calorimeter, and
a lateral profile in the CEM and CES consistent with electron test beam data.

Muon identification is based on matching CTC tracks with track segments in the muon
chambers. The inclusive sample is based on a Level-2 trigger with a nominal pr threshold of
7.5 GeV/c. Each muon chamber track is required to match its associated CTC track. Track
segments in both CMU and CMP are required to reduce backgrounds.

The inclusive lepton triggers are the dominant contribution to our sample. However, the
offline selection does not explicitly require that these triggers be satisfied. All events with
a lepton track of pr > 6.0 GeV/c, and passing the above identification quality cuts, may
enter this sample. The contribution from other triggers is small, and the bulk of events with
lepton pr below the nominal 7.5 GeV/c threshold arise when the lepton pr reconstructed
offline is lower than that estimated by the trigger system. Finally, only lepton candidates
using SVX tracking information are considered, so as to be able to do precision vertexing.

C. J/9 data set

The J/+ sample is based on a dimuon trigger. The trigger and selection on each muon
are similar to that for the inclusive muons described above, except for a lower nominal pr
threshold of ~2 GeV/c [15]. The CMU-CMP requirement is also relaxed: the muon candi-
dates may be in any of the muon chambers (CMU, CMP, or CMX), and in any combination.
The Level-3 trigger requires the presence of two oppositely charged muon candidates with
combined invariant mass between 2.8 and 3.4 GeV/c?. In offline reconstruction we further
impose tighter track matching and require pr > 1.5 GeV/c for each muon. We also require
a minimum energy deposition of 0.5 GeV for each muon in the hadron calorimeter, as ex-
pected for a minimum ionizing particle. Again, the dimuon sample is not explicitly required
to have passed the dimuon trigger.

At this stage, no SVX tracking requirement is imposed, and there are about 400,000
J/1’s reconstructed, with a signal-to-noise of about 10:1. Only about half of these are fully
contained within the SVX.

III. B°-B° MIXING

The phenomenon of B% B° mixing, analogous to K°-K° mixing, occurs via higher order
weak interactions. Starting with an initially pure sample of B°’s at proper time ¢ = 0, the
numbers of B® and B° mesons decaying in the interval from t to ¢ + dt are dN(t)go_,go and
dN(t)go_,p5o respectively; and they are given by



dN(t)popo _ N(O)po__ym,

dt 27’0

(1 + cos Amt) (1)

AN Doz NO)so o
o = o, e (1 — cos Amt), (2)

where 7j is the average lifetime of the two neutral B meson eigenstates, and Am is the mass
difference between them.

To observe mixing one must experimentally determine the flavor of the neutral B me-
son at the times of formation and decay, a process referred to as “flavor tagging.” The
flavor at decay is usually well known from the observed decay products. The initial flavor
determination is more difficult and is discussed in the next section.

In an experiment with no background and perfect flavor tagging and lifetime reconstruc-
tion, the mixing frequency Amy can be determined from the asymmetry

%N(t)BO_,BO - %N(t)Bo_’Eo
SN (t)poope + EN(t)po_ 50

Ao(1) = cos Amt. (3)

If the flavor tag correctly identifies the B° flavor at production with only a probability
Po, then the amplitude of the measured asymmetry Agmeu)(t) is reduced by a factor Dy =
2Py — 1, called the “dilution,” 7.e.,

A(()meas)(t) — (27)0 _ 1) cos Amt = Dy cos Amit. (4)

A parallel series of expressions may be written when tagging BJ’s, but there is no time
dependence, so

Almeed(4y = (2P, — 1) = D,.. (5)

Tagging charged B’s can be used to infer the flavor of the other b hadron in the event, but
in this paper it is principally of interest as a test of the tagging method. The charged and
neutral dilutions need not be equal, and D, can not in general be used as a measure for D,.

The uncertainty on a measurement of the asymmetry A from a sample of N (background-
free) events is

o = (1 — A*D?)/NeD? ~ 1/NeT?, (6)

where ¢ is the efficiency to obtain a flavor tag for the method being employed. The figure
of merit, eD?, is called the “effective tagging efficiency” of the method.

IV. FLAVOR TAGGING
A. Tagging methods
There is now a considerable inventory of B} mixing measurements available [4]. Most

rely on determining the flavor of the second b-hadron in the event to infer the initial flavor
of the originally reconstructed B meson. Examples include lepton tagging [2] and jet-charge



tagging [16]. We refer to these as “Opposite Side Tagging” (OST) methods. Reliance on
the opposite-side b-hadron can have several disadvantages.

At the Tevatron, once one B meson is produced in the central rapidity region covered by
CDF, the second b-flavored hadron is present only ~ 40% of the time in this region. In the
other ~ 60% of events the second b-hadron is unavailable for tagging. For lepton tagging,
there is the additional inefficiency arising from the semileptonic branching ratio of the B, as
well as the confusion from daughter charmed particles decaying to leptons. For jet-charge
tagging, the purity of the flavor-tag decision is reduced by the presence of charged tracks
from the proton-antiproton remnants and possible confusion with gluon (or light quark) jets.
Finally, tagging based on OST suffers from the inevitable degradation arising from mixing of
the second b-flavored hadron when it is a B°. In spite of these complications, OST methods
have proven to be powerful tagging methods in previous mixing measurements [17,18].

A contrasting approach is “Same Side Tagging” (SST), which ignores the second b-
flavored hadron and instead considers flavor-charge correlations of charged particles pro-
duced along with the B meson of interest.? Such correlations are expected [7] to arise from
particles produced in the fragmentation chain and from decays of B** mesons.

A simplified picture of the possible fragmentation paths for a b quark is displayed in
Fig. 1. If the b quark combines with a u quark to form a B;, then the remaining % quark
may combine with a d quark to form a 7~. Alternatively, if the b quark fragments to form a
BY, the correlated pion would be a 7. These correlations are the same as those produced
from B** decays, such as B3*® — B or Bt — B((i*)ow"'. We do not attempt to
differentiate the sources of correlated pions.

In this simple picture of B-m correlations, naive isospin considerations imply that the
tagging dilutions for BY’s and BJ’s should be the same. However, this need not be the
case [21], and we make no such assumption. Furthermore, we generically refer to the tagging
particle as a pion, although we do not attempt to experimentally identify it as one.

B. Same Side Tagging algorithm

General considerations of correlations between B flavor and particles produced in frag-
mentation offer only qualitative guidance in constructing an SST algorithm. String frag-
mentation models indicate that the velocity of fragmentation particles are close to that of
the B, and similarly for pions from B** decays. Motivated by this observation, a number
of variables were studied for selecting a tagging track using data and Monte Carlo simula-
tions, among them: (7) the maximum pr track, (7) the minimum B-track mass (using the
pion mass), (i) the minimum AR = 1/(An)? + (A¢)? between the B and track, (iv) the

minimum of the track momentum component transverse to the combined momentum of the

2Jet-charge tagging has been extended by combining the opposite and same side jet-charges in
Z° — bb [19]. A same side jet-charge tag is clearly correlated with the SST approach of this paper,
but the philosophy is different. The jet-charge method is based on a weighted average of charged
tracks reflecting the primary quark’s charge [20], while the proposal of Ref. [7] is based more on
selecting a specific charged particle to determine the flavor.
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B (ﬁB) plus track (ﬁTR) momentum (p}¥, see Fig. 2), and (v) the maximum of the track
momentum component along the B-track system momentum (p5%), as well as several others.
We found that these five variables have similar performance, and moreover were highly cor-
related in selecting the same track as the tag. Future studies with higher statistics samples
may enable one to optimize the choice, but we were unable to identify one method as clearly
superior. We chose to use p}’, as this variable was among the best for correctly identifying
the flavor (z.e., had a large D), and it seemed less vulnerable to tagging on B decay products
missed in partial B reconstructions (Sec. VE).?

For our specific SST algorithm, we consider all charged particles that pass through all
stereo layers of the CTC and are within the 5-¢ cone of radius fractionAR = 0.7 centered
along the direction of the B meson. If the B is partially reconstructed, we approximate
this direction with the momentum sum from the partial reconstruction. Tracks are required
to be consistent with having originated from the fragmentation chain or the decay of B**
mesons, 2.e., coming from the primary vertex of the pp-interaction. This translates into the
demand that tracks must have at least 3 out of 4 SVX hits, dy/oo < 3 where dy is the
distance of closest approach of the track trajectory to the primary vertex when projected
onto the plane transverse to the beam line (r-¢ plane) and og is the estimated error on dy,
and the closest approach in z must be within 5 cm of the primary vertex.

Due to chamber design, the CTC is known to have a lower reconstruction efficiency for
negative tracks compared to positive ones at low pr (Sec. VIC3). To suppress this bias, all
candidate tracks must have a pr above a threshold of pr(SST) = 400 MeV /c.

At this point, more than one candidate tag may be available for a given B. To select the
tag, we choose the candidate track with the smallest phet.

A B is tagged if there is at least one track that satisfies these selection requirements.
The fraction of B candidates with a tag is the tagging efficiency, and it is ~60-70% for this

algorithm in our data.

V. FLAVOR OSCILLATIONS IN THE LEPTON+CHARM SAMPLE

We apply our SST method to a sample of B, 4 decays to a lepton plus charmed meson.
We form the asymmetry, analogous to Eq. (3), between the decay flavor and the charge
of the tag track, and we fit this asymmetry using a x? minimization to obtain Amg. As
a by-product, the tagging dilutions are also determined. As we are henceforth concerned
specifically with B} and BY, the subscripts are suppressed for the remainder of this paper.

The incomplete reconstruction of the B’s introduces several complications: (7) missing
decay products means that the precise fv-factor to compute the proper decay time is not
known; (i) a missed charged decay product results in a B being classified as a B® and
vice versa; and (1) a missed charged decay product may be chosen as the tag, biasing
the asymmetry. The latter two issues are the principal subtleties of this analysis, and
necessitate careful consideration of the composition of the sample. Not all the branching

3If not for this issue, our studies tended to favor p}fl, essentially the same variable employed in

Ref. [9] for tagging exclusively reconstructed B samples.
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ratio information required is well known, and when not, we rely internally on our data set.
Because the unknown sample composition parameters depend themselves on other sample
composition parameters we use an enlarged x? function to fit globally for Amg and the
unknown composition parameters.

We first describe the sample selection and then discuss issues of sample composition.
The proper time measurement, and the corrections for missing particles, is fairly standard,
but B° «» BT cross-talk introduces additional corrections. We then discuss the measured
and expected flavor-charge asymmetry given the complications of the sample composition,
including the biases of tagging on B decay products. We finally discuss the x? fit, results,
and the effects of systematic uncertainties on Amgy and the tagging dilutions.

A. B candidate selection

We use partially reconstructed B’s consisting of a lepton and a charmed meson. A
particular B reconstruction does not necessarily arise from a unique sequence of bottom and
charm decay modes when there are unidentified decay products (Sec. VB). We therefore
refer to the various B reconstructions as “decay signatures,” and use the predominant decay
sequence as a label. The samples of B%’s consist of four decay signatures, one B® — vf+ D~
signature and three B® — v{*D*:

B > uwt*D”, DO - Ktn 7. ()
B° > wttD*, D* - D%, D° - Ktzn~ (8)
B 5 vwtD*, D* - D%, D° - Ktn n 7t (9)
B° > wi*D*, D* — EOW:, D° - Ktn— 7, (10)

where we adopt the convention that a 7 from a D* or D** decay is labeled by a “x” or “xx”

subscript. For the B*’s, we use only one decay signature:
Bt - uwtD° D° —» K*tn~. (11)

As noted above, the decay signatures do not represent a specific sequence of decays; they in
fact include several sequences, for instance, Eq. (11) includes the decay chain B — v£* D*°
followed by D*® — D% and D° — K*n~, where the 70 is not identified.

The B selection starts with the inclusive lepton (e and p) samples of Sec. Il B. The tracks
of the D(*) daughters must lie within a cone of AR = 1.0 around the lepton, pass through
all nine CTC superlayers, have enough hits for good track reconstruction, and satisfy a pr
requirement (see Table I). All tracks (except one in the case of D® — KTn~7~7%) must use
SVX information, and they must also be consistent with originating in the vicinity of the
same primary vertex. The candidate tracks must form an invariant mass in a loose window
around the nominal D mass, where all permutations of mass assignments consistent with
the charm hypothesis are attempted.

The candidate tracks are combined in a fit constraining them to a D decay vertex; x* and
mass window cuts are imposed. With the D vertex established, we select the primary vertex

12



from those* reconstructed in the VIX as the one nearest in z to the D. The transverse
coordinates of the primary vertex are obtained from a z dependent average beam position,
as measured by the SVX over a large number of collisions recorded under identical Tevatron
operating conditions. We require the D tracks to be displaced from this primary vertex
(do/oo cut in Table I), and the projected transverse distance Lyy(D) between the D vertex
and the primary vertex to be greater than its uncertainty or,, (Lxy(D)/or,, cut in Table I).
The projected distance Lyy(D) is defined as

(£D - £prim) : ﬁT(D)
| pr(D) | ’

where the two vertices are given by the position vectors Zp.;m and Zp, and the D transverse

L.y (D) = (12)

momentum is pr(D).

We next find the B vertex. For the B® — v£* D*~ signature the lepton and the 7 from
the D*~ decay both come from the B decay point. We fit for the B vertex by intersecting
the lepton and the 7 tracks, and require that the D points back to it. For the B® — vf+* D~
or Bt — vf+ DO signatures there is no additional track emerging from the B vertex. The
D is projected back to the lepton track and their intersection determines the B vertex, as
sketched in Fig. 3. A loose cut is applied to the D proper decay length relative to the B
vertex (ctp in Table I). The charges of the lepton and the charm candidates are required to
be consistent with the decay of a single B, i.e., a £* K* correlation.

The B° — vé+ D*~ decays followed by D*~ — D°r also contribute to the £+ D° samples.
The separation between B® and B* is improved by removing all £* D° candidates that also
participate in the £ D*~ reconstruction. We define a D*~ candidate as a valid D° candidate
with a 7, candidate that makes the mass difference m(D°r]) — m(D°) consistent with
the known mass difference between the D*~ and D° [22]. Since the m(D%r]) — m(D°)
distribution for real D*~’s is very narrow (~1 MeV), this removal is very eflicient once the
m, 1s reconstructed.

The numbers of B candidates are extracted from a fit of the charm mass distributions.
Figure 4 shows the invariant mass distributions (solid histogram) for the four channels of
exclusively reconstructed charm. The signal components of the D mass distributions are
modeled by Gaussians, and the combinatorial backgrounds by linear functions (solid curves
in Fig. 4).

The dashed histograms in Fig. 4 represent the “D” mass distributions for B candidates
where the lepton and the kaon have the wrong charge correlation (¢ K¥). These “wrong-
sign” events can be combinatorial background, as well as cases where there was a real D and
a fake lepton. The absence of a peak in the wrong-sign “D” mass distribution demonstrates
that the right-sign sample is a clean signal of £D*) pairs coming from single B mesons.

In the case of the decay £TD*~, D° — K*tn 7° the 7° is lost, and the K invariant
mass distribution has a broad excess below the D mass. However, in the m(K77,) —m(K)
distribution a relatively narrow peak appears at the value m(D*~) — m(D°), as seen in
Fig. 5. We parameterize the combinatorial background by the shape of the wrong-sign

It is not uncommon to have multiple pp interactions in a single bunch crossing at the higher
Tevatron luminosities.
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(££K7) distribution (lower dashed curve). This shape, combined with the signal function,
is then fit to the right-sign (¢* K*) data, and is shown by the solid curve in Fig. 5.

This completes our sample selection, which has yielded almost 10,000 B mesons. How-
ever, before we can use them, several other issues must be addressed.

B. The composition of the £D(*) sample
1. B° & B%* cross-talk

As noted earlier, the SST correlation depends on whether the B meson was charged
or neutral. However, only the ground state charm mesons and one D* decay mode were
reconstructed in the previous section, and the existence of the intermediate resonances D*
and D** introduce contamination from B* decays into B° decay signatures, and vice versa,
when charged decay daughters are unidentified or unreconstructed. We disentangle this
cross-talk by relating the charged and neutral B fractions to the number of reconstructed
charm mesons through relative branching ratios and reconstruction efficiencies. This section
details this connection.

There are two causes of the B° «+» B* cross-talk in this analysis:

e Missing the 7, from the D*~ decay. For example,
Bt - wtD° (13)
can be mimicked by the decay sequence
B° — vt D*
D*~ — D% (14)
if the w_ is not part of the reconstruction.
e B decays to D**-mesons. The decay chain
B® - vitD**~
D*~ — D’ (15)

will also mimic the £t D° signature of the B* when the 7, is unidentified.

The first case is of concern as it is not unusual for the momentum of 7, to fall below our
pr cut. The 7 tends to be soft because of the small energy release in the decay, coupled
with the modest boost of most of our B’s. We identify the 7, only with some efficiency
(7).

In the other case, we do not attempt to find the =,, from the D**. There are four
expected orbitally excited D** resonances (see Table II), some of which decay into D,
others to D*m, and one to both. The total decay rate to these states is not well known, and
the proportions of the four possible D** states are almost totally unknown. There is evidence
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that the D;(2420) and D;(2460) states are produced at some level in B decays [23]. There
may also be non-resonant D®*)1 production (B — v£D®*)x) [23], which has the same cross-
talk effect. It would be extraordinarily difficult to distinguish these decays from the two
D** resonances which are predicted to be broad by Heavy Quark Effective Theory [24]. We
therefore subsume the effects of four D** resonances, as well as the four-body semileptonic
decay of the B meson, into our treatment of “D**”’s.

The complete picture of the decay chains is more complicated, since both B° and B*
decay into “D**”’s, and D**~ and D**° decay into both D*~ and D*°, as well as D~ and
D°. The full complexity of the decays is illustrated in the state diagram shown in Fig. 6. To
reiterate our terminology, a specific sequence of decays in Fig. 6 is called a “decay chain,” and
the reconstructed final state is a “decay signature.” Several decay chains may contribute
to the same decay signature. Decay chains in which the B decays directly into a decay
signature (i.e., no particles except the neutrino are missed) are called “direct decay chains.”
Equations (13), (14), and (15) are examples of decay chains; Eq. (13) is also a direct decay
chain. Each of the five decay signatures considered in this analysis consists of several decay
chains: three for every £ D*~, nine for the £* D™, and twelve for the £T D°.

2. Determining the sample composition

Due to the B° «» BT cross-talk, a simple computation of the time-dependent charge-
flavor asymmetry of Eq. (3) for a £D*) decay signature will result in a weighted average of the
B° and BT asymmetries [Eqgs. (4) and (5)]. The weighting is determined by the fractional
contributions of B® and B* decays to that decay signature; we call these fractions the
“sample composition.” The fraction of B® and B* decays in a decay signature is essentially
determined by the branching ratios and reconstruction efficiencies for each decay chain
contributing to that signature. Since only fractions are involved, it is convenient to use
ratios of branching ratios and relative efficiencies. These quantities, along with the B° and
BT lifetimes, fully describe the sample composition as a function of proper time and are
referred to as the “sample composition parameters.” We now discuss how we determine
the fractions of B° and B* mesons contributing to a signature, given our choice of sample
composition parameters.

We tabulate all possible decay chains that feed into each signature, and classify them as
originating from a B° or B*. For compactness, we label decay signatures by k, and decay
chains by A. The symbol “B° — h € k” is interpreted as “the decay chain h originates
from a B° and contributes to the decay signature k.” We write the fraction of neutral and
charged mesons contributing to a decay signature k as

AN

A0S 2w + vien 16)
Fpy Vi ()

A SR Oy o

where the dN£’+(t) are the numbers of events of signature k originating from B° or B*
which decayed in the proper time interval from ¢ to ¢t + dt. These numbers are sums over all
the decay chains h resulting in the signature k:
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dNp(t) Nge /™

0 0
= o 3" B(B°— h)e(B® - h) (18)
B hek
dN;(t) Nge /™
= Bt — h)e¢(B* — h 1
i o Y. B(B* - h)e(B* - h), (19)
Bt —hck

where we assume equal numbers of B%’s and B*’s are produced (i.e., Ng = 2Nt = 2N?);
70,+ are the BT lifetimes, and B(B%" — h € k) and €(B%* — h € k) are the branching
ratios and reconstruction efficiencies® of a B%* decaying through the chain h and resulting
in signature k. The sums for the two mesons are different since they are over a different set
of decay chains for signature k. Knowing all the branching ratios and efficiencies, we can
calculate the sample fractions f£’+.

The efficiencies ¢(B»* — h € k) share common factors across decay chains. Since only
the ratios are needed in Egs. (16) and (17), we express the efficiencies relative to the direct
decay chain d, for signature k,

D _ E(B(h) — h € k) 90
“kn = B - dek) (20)
The superscripts “(h)” and “(d)” represent the charge of the B which originated the & and
d chains; and the “D” superscript is a reminder that these relative efliciencies are largely
determined by the type of charm mesons in the decay chain. For the direct decay chain

h = d, and so ey = 1. We determine e, for each decay chain A from a Monte Carlo
simulation as discussed in the next section.

Similarly, only the branching ratios relative to the the direct chain branching ratio are
required here, i.e., B(B®) — h € k)/B(B — d € k). Rather than attempting to use each
branching ratio explicitly, not all of which are well known, we can re-express the required ra-
tios in terms of a few relative branching fractions by using a few simplifying assumptions. We
outline this process by considering a specific example using the B° signature k = “4* D*~.”
The direct chain is B® — v£T D*~, and there are two “D**” chains (7.s’s are unidentified):
B° — vt D**~ followed by D**~ — D* 7%, and Bt — vt D**° with D**° — D*~x} . If
we index these three chains by d, a and b respectively, then the branching ratios relative to
the direct chain are:

B(B°—>a€k) B(B°—vitD*")B(D* — D* 7l,)

BB Sdch) B(B° = vt D) (21)

and

B(B* ->bek) B(B"— vltD*°)B(D*° - D* x},) (22)
B(B° —-dck) B(B° — vf+D*) '
The ratio of semileptonic B decays can conveniently be re-expressed using ratios rela-

tive to the inclusive branching fraction to the lowest-lying D state, including decays via
intermediate D* and D** states, B(B — v£{DX):

5We apply the term “reconstruction” only to those parts of the decay we identify; neutrinos and
decay products which are not part of the decay signature are not included.

16



B(B%* — viD)

Jor = B(B%*+ — v{DX) (23)
., _ B(B% — viD*)

fo = B(Bo+  EDX) (24)
*k — B(B0,+ - VED**) (25)
o+ = B(B%t — viDX)’

We assume that all the charged and neutral ratios are equal, e.g., f = fo = fi. Since
the D* and D** decay strongly they all ultimately result in a DX signature, and thus
f+ f*+ f* = 1. Because the B — vfD** fractions are the least well known, we elect as

our two independent parameters:
Ry =f*/f =25+0.6, (26)
f=1—-f—-f=036+0.12, (27)

where the values are derived from world averages [22] and the f+ f* average from CLEO [25].
We may now express Eq. (21) as

B(B® —»ack) f*

_ *ok— *x— 0
BB Sdek)  po0T = DUm), (28)

solely in terms of f’s and D branching ratios. On the other hand, in Eq. (22) we can use

B(B* — vt D**0) _ f*B(Bt* — v+ DX)
B(B® — v+ D*~)  f* B(B® — v+t D-X)’

(29)

where the ratio of the inclusive branching fractions to semileptonic decays of BT relative to
B° must be taken into account.

The ratio B(B* — v£*D°X)/B(B°® — v£* D~ X) can be approximated by the ratio of
the Bt and B° inclusive semileptonic branching ratios By(B%)/Bs(B®). According to the
spectator model, the semileptonic width T'; is expected to be the same for the B° and B*.
The ratio of the semileptonic branching ratios (Bg = I'y/Tot) for the BT and B° is then
proportional to the ratio of their lifetimes, z.e.,

Ba(B™) _ La(B*)/Tewt(B7) _ T'iot(B°) _ T+

= = = —. 30
Bu(B®) ~ Tu(B)T(B%) ~ Tua B) (30)
This allows us to also rewrite Eq. (22) in terms of f’s and D branching ratios as
B(Bt - bck Ra—
( - € ) — T_+f B(D**O N D*—ﬂ_;};)) (31)

B(B®—>dek) 1o f*

with the B lifetimes as the only additional parameter. We use the B° lifetime and the ratio
of B lifetimes as our two independent parameters, with the values

cTo = 468 + 18 pm (32)
T+ B
— =1.024+0.05 (33)
To
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obtained from world averages [22].

The final branching ratios required are those for the charm decays. For B(D** — D*m,,),
we need the fraction of D** states that decay via D*w,, or Dm,,. Isospin symmetry gives
relative exclusive branching ratios for a particular D** species decaying to a D or D*, such
as

B(D*~ — D(*)_WS*) B(D*° — ﬁ(*)owf*) 1

— = —= = —. 34
B(D**— N D(*)Oﬂ';) B(D**O s D(*)_ﬂ'j;) 2 ( )

As noted before, we use the symbol “D**” to represent the sum over all four D** states
(Table IT) as well as two non-resonant channels. The various “D**” states, however, decay
differently to D and D*. Reference to a B — D** — D) decay chain implies summing over
all possible “D**” states. We use Py to denote the inclusive probability that a D** decay
yields a D* as opposed to a D, and it is given by

B(B — D** — D*ﬂ-**)

Py = .
v B(B —» D** — D*m,.) + B(B — D** — D)

(35)

Py also depends upon the relative fractions of the various B — D** decays since Py is an
effective average over all the D** states.
Equation (28) then becomes

B(B°—ack) f*/[1
B(B° >dek) f* <§> P, (36)

where the “1/3” is the isospin factor [similar to Eq. (34)]. A parallel expression may be
written for Eq. (31). Py is poorly known and is often assumed to lie between 0.34 and
0.78 [26]. However, it can be (weakly) constrained by our data, and we therefore let it vary
as a free fit parameter in our Amyg fit (Section VF).

For the £ D~ and £+ D° decay signatures, we also need D* branching fractions. The D*°
always decays to a D° with a 70 or photon, and the signature is always £t D°. On the other
hand the D*~ has two decay channels which feed into different signatures. These ratios are
well known [22]:

B(D*~ — D°r;) = (68.3 £1.3)% (37)
B(D*™ — D™ 7% = (31.7 + 0.8)%. (38)

From this £ D*~ example we have seen the basic ingredients for determining the sample
composition. In order to use a general notation, we define the relative ratio:

bon = B(B(h)ﬁhek)ﬂ
kh = B(B@ — viDX) 7’

(39)

where by B(¥) we denote the B charge state for the direct decay chain, and by 74 its lifetime.
7p is the lifetime of the B from which the chain A originates. In Eq. (39) the 74/ ratio is
included in order to cancel out the lifetime ratio that may appear in the branching ratios B
by Eq. (30) (e.g., in Eq. (31)) so that the ¢xs’s depend only on branching ratios averaged over
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both B meson species. The ¢g’s are compiled in Table IIT along with the 7, reconstruction
efficiency factor, which is discussed in the next section.
We then determine the sample composition fractions f£’+(t) for signature k from the

numbers of Bt mesons dN."*(t) [Egs. (18) and (19)] as,
dNp(t)

5 = ./\/lkde_t/TO Z ¢kh5th (40)
BO—hek
AN/ (¢
;t( ) = ./Mkde_t/T+ Z ¢khEth7 (41)
Bt —hek

with the normalization factor
NpB(B@ — v4DX)e(B@ — d € k)

./M =
kd 27',1

(42)

When calculating the ratios for ,""(¢) this factor cancels out. It is with the 7" (¢) fractions
that we fully quantify the sample composition.

3. Reconstruction efficiencies

We use a Monte Carlo simulation to calculate the relative reconstruction efficiencies
€D, for each decay chain h contributing to signature k relative to the direct decay chain
for k. Many systematic effects cancel out in these ratios of lepton+charm reconstruction
efficiencies. In fact, these ratios depend almost exclusively on the decay kinematics, which
are reliably simulated.

We use our single B Monte Carlo generator (App. A 1) to produce and decay B mesons,
and we pass them through the standard CDF detector simulation. We then apply the
selection cuts and calculate the relative efficiencies. The eb, vary from about 0.2 to 1.5,
with most of the variation arising from the effects of the fixed lepton pr threshold on the
reconstruction of the various D states [27].

One last efficiency is needed. The D*~ — D°r] reconstruction efficiency includes a
contribution for the efficiency of finding the 7, , which cancels out in the ratios €b,. Loss of
the 77 makes D*~ — D% look like a D°. Since D°r] candidates are removed from the
DP° sample, we need to know the absolute efficiency e(m,) to quantify the separation of the
D*~ and D° signatures.

We use data rather than Monte Carlo to determine €(7,), since the absolute detector
response for such low pr particles is difficult to model. We use a related quantity, which
can both be calculated from €(7,) and other sample composition parameters, as well as be
measured in data. This quantity is the fraction of £ D*~ candidates reconstructed out of
the entire D° — K*7~ sample (i.e., before the D* removal),

+ x—
oo D) "
N(&+D(n))
where £+ D°(7) signifies £* D° candidates before D*~ removal. The measurement in data,
R*(meas) is accomplished by fitting the £t D*~ and £+ D° (without D*~ removal) mass dis-
tributions simultaneously, and returns R*(™2s) = 0.249 + 0.008.
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The calculation of R* consists of summing over all the decay chains which give the desired
signatures. Each term is weighted by reconstruction efficiencies. The denominator sums over
all decay chains which have a D° in their final states, including D*~ decays:

d
NMED (i) = [N epert) + GV (e
_ Npe(vf*D°)B(B* — v+ D°X)
- 27'_|_

D
X |7+ E Prh€ph

B+ hettDO

+ 7o Z Prnein | » (44)

BO—hett+ DO

where the lifetime factors result from integrating the exponential factors over time.

The numerator of Eq. (43), on the other hand, only sums over those decay chains which
give a D*~, and is then multiplied by €(7.) to make it the number of D*~’s which are fully
reconstructed, i.e.,

> d d
N({TD* :/ NS o () + —N& . (t)dt
(€D = | [N p-x(t)+ N pex(?)

B Npe(vftD°)B(Bt — v£tD°X)
- 27'+

< |l 2P ol 4 £ Pre?)]
x B(D*~ — D°x] )e(m.). (45)

We have explicitly substituted the sample composition parameters ¢gs’s from Table 11
in the square bracket term since it is relatively simple in this case. The subscripts on
the relative efficiencies refer to the following chains: (a) B* — £+*D**°, D**° — D*r};
(6) B® — £*D*; and (c¢) B® — £tD**~, D*~ — D* 72, All D*~’s decay to D°n,. We
see that the ratio of these two expressions, the prediction for R*, is directly proportional to
e(m.), and only depends upon previously defined sample composition parameters. When the
sample composition dependent prediction for R* is constrained to the value R*(™e2*) in the

Amyg fit, we find that e(7,) ~ 0.85 (Sec. VF 2).

4. Summary of the sample composition

The fractions of the B® and B* decays in each of the five decay signatures are described
by a set of sample composition parameters. Among them, Rs, f**, and 7, /7, are obtained
from other experiments, and the €D, are calculated from Monte Carlo simulation. The
parameter €(,) is expressed in terms of the other sample composition parameters (via R*)
and R*(™e%) (obtained from the data). The final parameter, Py, will be a free parameter to
be determined in the Amy fit.
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Measuring B°-B° oscillations also requires the determination of the proper time of the
B decay. This will be discussed next, but sample composition effects must be included there
as well.

C. Proper time of the B decay

The true proper time ¢ of a B decay may be determined by using its projected transverse
decay length relative to the primary vertex L,y (B) (following Eq. (12)), by

m(B)
pr(B)’

where m(B) is the mass of the B and pr(B) is its transverse momentum. Since the B is only

A~

ct = Lyy(B) (46)

partially reconstructed here, we use Monte Carlo-derived average corrections Kgp relating
the reconstructed parts of the transverse momentum pr(£D) to that of the complete pr(B),

Go= (250 ). ()

for decay chain h contributing to signature k.
The K-factors are determined from the same simulation (App. A 1) as the efficiencies €p),.

i.€.,

An example of a pr(£D)/pr(B) distribution is shown in Fig. 7. The distribution is relatively
well concentrated because the lepton trigger threshold favors decays where the neutrino takes
only a small portion of pr(B), thereby making the £D system a fair representation of the B.
The direct decay chains have means of ~85%, and RMS’s of ~10%. Also shown in Fig. 7
is the mean of pr(£D)/pr(B) as a function of the £D mass m(£D); less of a correction is
needed the closer m(£D) is to the B mass. We improve our resolution by using a m(£D)
dependent correction on an event-by-event basis.

The correction factor varies with decay chain, so the complete scale factor, E2’+, for
signature k is a sample composition-weighted average of the Ka's,

KO _ EB°—>h ¢kh5thKkh
E— D
EBO_.h ¢kh€kh

for B”s, and an analogous expression for K,—: In order to simplify averaging over the

(48)

sample composition and cancel systematic uncertainties, we replace Kgn in Eq. (48) by
Kra X (Kkn/Kra), where d is the direct chain contributing to k. We factor Krq outside the
summation leaving the ratio Kgn/Krs behind. The set of factors we then use are the Kiq
with the m(¢D) dependent corrections, and the Kxn/Krq averaged over m(£D) (where the
m(£¢D) dependence largely cancels out).

The factors KZ and E;: are different by virtue of the summation over different decay
chains for B”’s and B*’s. The dependence of the sample composition F, on the lifetimes is
accounted for by using the corrected times,

m(B) EO,_}_ ~

0+ _ ~
ety = Lyy(B) pr(eD) ct (49)
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as an estimate of the true proper time ¢ in the sample composition fractions, e.g., for Eq. (16)
we write

5 VR (et?)
w{N(ct) + Ny (et}

The use of pr(£D) rather than the true pr(B) smears the ¢t distribution in addition to
the average shift considered above. The difference between the reconstructed proper decay

fg(ctz,ct:) = (50)

distance ct2’+ and the true distance ct is (suppressing most super- and subscripts)

Act = ct%+ —ct = A(Lyxy(B)/Br)- (51)
Approximating 1/Bry with its mean value (1/8ry) gives
/b . A(1/Br)
At = <ﬁT7> Alnl(B)+ (1/Brv) ’ (52)

which illustrates the effect of the reconstruction resolution via the AL,y (B) term, and the
additional smearing due to our average corrections by A(1/87r7).

An example of the simulated A L,,(B) distribution is shown in Fig. 8. It has a Gaussian-
like shape and an average resolution of a few hundred microns. Also shown is the fractional
Bry distribution, which is sharply peaked (RMS ~ 14%), and is essentially a mirror image
of p%P /pE (Fig. 7). The combined effect of both factors is shown by the Act distribution in
Fig. 8, it has an RMS of 140pm.

Given the linear dependence of Act on the proper time in Eq. (52), we parameterize the
ct resolution as

UCt(ct) = O'Ct(O) + b X ct. (53)

We use the RMS spread of the Act distribution for bin ct as the resolution o“(ct), and
fit the RMS values of the various ct bins for the slope and offset of Eq. (53). The linear
model works well as seen for the sample chain shown in Fig. 8. This process is repeated
for all five direct decay chains, and the results are listed in Table IV. Each chain has a
somewhat different slope, but the intercepts are similar to the intrinsic detector resolution
of ~40-50 pm obtained when vertexing pairs of high pr tracks at low ct [15].

The different decay chains that compose a decay signature are topologically similar.
Simulation shows that the ¢t dependence of the ct resolution among the decay chains within
a signature are very similar. We make the (small) sample composition correction to the ct
resolution for signature k& by approximating it as

oy (ctra) = Tl Ctea), (54)
where o(ctrq) is the parameterization of Eq. (53) for the direct chain d, and the bar
indicates an average over contributing chains while the angle brackets denote an average
over ct. Thus (oq4)c: is the ct-averaged ct resolution for direct chain d, and (o), is the
sample composition-weighted average, over all decay chains contributing to k, of the ct-
averaged resolution. The parameter (oy)_, not only reflects the different ct resolutions of the
various decay chains, but also the fact that the earlier use of the average correction factor

E2’+, rather than K,,, introduces additional smearing [27].
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D. Tagging £D®*) and the sample composition

We apply the SST algorithm to the £D®*) sample and find that ~70% of the events are
tagged. We classify events for each decay signature as having the “unmixed” lepton-tag
charge combination (e.g., £t7t for B%’s and £t7~ for B*’s), or the “mixed” one with the
inverted 7 charge. Each set is further subdivided into 6 ctzq bins,® where ctyq is the proper
time obtained using the direct decay chain d correction factor for signature & (like Eq. (49),
but only using Kgq).

The charm mass distribution for each of these ctyg subsamples is fit to a Gaussian signal
plus linear background. The mean and width of the Gaussian, and the background slope,
are all constrained to the same value for all the subsamples of a given signature. The fitted
numbers of unmixed (N7 (ctxq)) and mixed (N} (ctrq)) events for signature k in the discrete
ctrq bin are then used to compute the measured asymmetry,

Ng(ctkd) — N,ﬁ\/[(ctkd)
Ng(ctkd) —|— N,ﬁ\/[(ctkd) '

Almeeo) (e ) = (55)
Numerically, the value of the ctgg bin center is chosen as the average over the candidates’
ctrq’s in the bin, thus accounting for the nonuniform ct distribution from the exponential
decay.

Denoting the true asymmetries for B® and B* as .A° and A*, one has for a pure, perfectly
identified B® sample the “predicted” asymmetry Agj(ct) = A°(ct), where “k[0]” indicates
that k is a B? signature. When k also includes B* decay chains, one has

Anpo)(ctra) = Fi(ety, et ) A (cty) + Fif (et eti){—A* (et} (56)

for the prediction. The true asymmetries are combined in a sample composition-weighted
average, with the fractional contributions f£’+ from Egs. (16) and (17). Furthermore, the
observed proper time must now be corrected for the sample composition by using the cti’+
from Eq. (49). The A' term appears with a negative sign since the charge of the flavor-
correlated tag is reversed when a B* is mistaken for a B°. A similar expression, albeit with
signs reversed, holds for a BT signature.

A further correction for Ay is necessary because there is the possibility of selecting the
7% from a D** decay [see Eqn. (15)] as a tag by mistake. No attempt was made in the sample
selection to identify 7’s. The lepton and a 7% tag almost always” have the right charge
correlation for an unmixed B, given the apparent charge of the reconstructed B. The 7%
contribution is quantified by the relative number of D**’s present ( f**) and the probability
¢ of selecting the 7%, as a tag in a tagged event in which a 7% was produced. With this

* ¥

definition of ¢ the effect of the tagging algorithm is separated from the D** branching ratios.

8We cannot use ct2’+ to bin the data because the sample composition is not completely known
until after the binned data have been fit (Sec VF).

"The Bt chain that cascades through D**° — D*~ — DO, tags on the 7}, and loses the 7 in

*% 2
the reconstruction, is an exception. However, this has a small contribution, i.e., F7** ~0.5% in

Eq. (57).
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We split the B® and BT decays into those with and without a 7r**7 and define ]:0+**
as the fraction of decay signature k in which a 7% was produced. .7: 1s calculated in
the same way as F}? in Eq. (16), except that here the numerator is a sum only of the decay
chains involving a 7ri from B°. F;** is calculated analogously. Only a fraction ¢ of 72 ’s are
selected as tags, and we split the BO components into F— 5,7:0 ** and {.7:0 **, and similarly
for B*’s. We then generalize Eq. (56) to include 72, tags in the predlctlon for the measured

asymmetry:

= {FL — EFYIA + R -1
+A{FRE — RS H- AT+ EF {1, (57)

where the —1 (+1) asymmetry factors in the second (fourth) term reflect the perfect corre-
lation of 7% tags.

All relevant effects for a mixing measurement using SST are contained in Eq. (57); it
describes the observed asymmetry ./le[o] given the true asymmetries A%, the 7 tagging
probability £, and the sample composition F’s.

E. Determination of the 7, fraction ¢

The 7% tagging probability ¢ depends on the tagging algorithm, the kinematics and
geometry of the B and D** decays, as well as the characteristics of the fragmentation and
underlying event tracks. We use a full event simulation (App. A2a) to model the decay
kinematics and geometry—which it does reliably—to obtain the ¢t dependence of ¢, denoted
by éac(ct). The decay kinematics and geometry determine the € shape, whereas the relative
competition between the 7% and the other tracks to become the tag affects the overall 7%
tagging probability. This observation enables us to use our data to determine the global
normalization of ¢, instead of relying on the simulation’s modeling of nearby tracks. We
therefore define

£(Ct) = gnorm ' é-MC(Ct); (58)

where §,0rm is the normalization needed to scale the simulation to agree with the data.

The topology of a B — vfD** decay chain is shown in Fig. 9. The ¢t dependence of
¢ is the result of the impact parameter significance cut (do/oo < 3.0) in the SST selection
(Sec. IVB). By removing this cut, we remove the ¢t dependence from ¢. Figure 10 shows
Emc(ct) with the do/og cut removed (top), and with the cut applied as normal (bottom).
Without the cut the distribution is flat, as expected, and corresponds to a 33% probability
to tag on a 7%, given that one is present. Applying the dy/cq cut rejects most of the 7%, tags,
especially once ct is beyond a few hundred microns. The ¢ shape is modeled by a Gaussum,
centered at zero, with a constant term.

To determine the normalization, {,orm, Wwe remove the do/oq cut from the data (analogous
to Fig. 10, top), thereby eliminating the ¢t dependence as well as enriching the sample in
7% tags. We divide the tagged events into right-sign and wrong-sign tags, and make the
distribution of the impact parameter significances with respect to the B wvertez (dg/op of
Fig. 9). An example of such a distribution is shown in Fig. 11. The excess of right-sign events
near dg/op = 0 is due to the 7% tags. Their number, N(7%9), is determined by fitting the

24



distribution to a Gaussian (centered at zero and with a unit RMS) for the 7&’s, plus a 7%,

background shape obtained from the wrong-sign distribution. The wrong-sign distribution
renormalized to the fit result is overlaid onto the right-sign distribution in Fig. 11. It is
seen to agree very well with the right-sign distribution at large dg/op, and displays a clear
€Xcess near Zzero.

We also count, again without the do/o¢ cut, the total number of tags N(tags) and

compute the fraction of B decays where 71 ’s are tags,
N(rtas )
R= —*>—-. 59
k N(tags) (59)

for signature k. The measured ratios are given in Table V. We extend our notation so that
fuc is Emc(ct) when the impact significance cut, do/oo < 3.0, is removed. ¢uc is then
independent of ct. The R**’s are simply

B = toorm farc / TR )+ Bt} b, (60)

for decay signature k. Thus, &.0rm 1s simply related to R;*, the other sample composition pa-
rameters, and {i¢. Rather than attempting to compute an average &.orm, we will constrain
the five R;* predictions to the measured ratios in the Amy fit (Sec. VF1).

F. Fitting the asymmetries
1. The x? function

The observed tagging asymmetries can be predicted in terms of the sample composition
parameters and the true asymmetries. The true asymmetry for the B™ is constant in ct,
while for B° it follows a cosine dependence, and accounting for the ct resolution one has

At(ct) =Dy (61)
G(ct;ct', o) ® {e /™Dy cos(Amyct')}

0 +) = 2
Aet) G(ct;ct!, o) Q e~t'/m ’ (62)

where ® denotes convolution of the physical time dependence (cosine and/or exponential
functions) with the ct resolution function G(ct; ct’, o) over ct’. The latter function is a nor-
malized Gaussian of mean ct’ and RMS 0. However, the measured ct, and associated reso-
lution, depends upon the sample composition. Therefore, the proper times used for the pre-
dicted asymmetries are the ct2’+ [Eq. (49)] obtained using the sample composition-averaged
K-factor. For the resolution o we use the composition-weighted resolution ait(ct2’+) from
Eq. (54).

We form a x? function to simultaneously fit Amg, D, and D, over all ct-bins of all
decay signatures by comparing the predictions Apg(ctrq) calculated via Eq. (57) against the

measured asymmetries Agcme”)(ctkd), where ctrq 1s used for Agcme”) since we were restricted

to the direct chain ctzg when binning the data (Sec. VD). The A(ctrq) asymmetry depends
not only upon the parameters Amy, Dy, and D, which are of direct interest, but also on
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T0, T+ /7o, f**, Py, €(m.), and &norm through the F%*’s. The last two parameters are also
expressed as functions of R* and R}*, as well as the other composition parameters. The

comparison of Agcmws) and A; corresponds to the first summation in our x? function:
A (ctg) — Au(ctra) |
2 = Z k .:d k(Clkd
e 0% (ctra)
_ 2
Fimee) _F (£ Py Ry e(m,)...)
oy (" . 7 &
E 3

where k is an index that runs over the five decay signatures, and ctgg symbolizes the sum-
mation over the proper time bins.

The second summation is over the set of fit input parameters: Fj(mws) is the
F

measured input value for parameter j, o}

F;(f**, Py, Ry,€(m,),...). This prediction is a function of the sample composition parame-
ters, and in most cases it is a trivial substitution, such as F,;(f**, Py, Ry, ¢(7.),...) = 7o for
the B? lifetime. However, €(m,), énorm, and Py are not directly measured but are constrained
in the fit by their appearance in the predictions for other measured quantities, namely R*
and R;*. Allowing €(7.), énorm, and Py to float in the fit constrained by the measured
sample composition parameters was one of the motivations for extending the x? function

is its error, and the “predicted” value is

with the second summation.

The reconstruction efficiency for the D* pion €(7,) can be obtained (Sec. VB3) from
R*(meas) measured in the data to be 0.249 & 0.008. Since the prediction R* is a function of
the sample composition parameters, (7, ) depends on them also [Egs. (43)-(45)] and must be
recomputed whenever the sample composition parameters change. This recomputation nat-
urally occurs in the x? minimization by allowing the composition parameters that determine
R* to float, coupled with the constraint of the “F. term

<R* (meas) _ Rx(e(m,), f**, .. .))2 (64)

O-*

in the 2.

A similar approach holds for £,0rm and Py using the R**’s. In this case there are five
R;*’s, one for each decay signature, and a F; term for each. The prediction for Rp* is
proportional to &uorm by Eq. (60). Because &norm is common across decay signatures, it
is essentially determined by the average of all five R} (meas)s, Py, the relative D** decay
rate to D* vs. D [Eq. (35)], is treated as completely unknown. However, it is also related
to the R;*’s. If Py = 0, there would be no D** — D* decays, and consequently no 7_’s

k%)

in the £t D*~ signatures, resulting in the corresponding R}* = 0. The values of the R}*’s

*xx (meas)

relative to each other determine Py. While the errors on R, are large (Table V), and
therefore Py is not tightly constrained, this method is preferable to just using a theoretical
estimate for Py. Its incorporation into the x? function automatically enables it—Ilike the
other parameters—to vary within the allowed experimental constraints and propagates the
associated uncertainty to the fit parameters.
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2. Result of the fit

The x? function is minimized over the six ct bins for all five decay signatures simulta-
neously, letting the unknown parameters float freely, and the known inputs to vary within
their errors. The fit results in the following values

Amg = 0.47115-0%3 ps™?
D, = 0.26713:93°
Dy = 0.181+0:93
e(m,) = 0.845%5:073
Enorm = 074770279

Py = 033175355,

with the nominal fit errors quoted. The x? of the fit is 26.5 for 30 degrees of freedom.

The 7, efficiency is quite high, thereby limiting one source of the B® «» B* cross-talk.
The D** contribution to cross-talk is quantified by Py, which is on the low side of what is
sometimes assumed [26]. Our value could be biased by our sample selection, but in any case
the errors are large. The final sample composition yields: ~ 82% of the £ D°X signature
comes from BT decays, while ~ 80% of the £t D~ X and ~ 95% of the £* D*~ X originate
from B°.

Figure 12 shows the result of the fit overlaid on top of the measured asymmetries, where
all three £ D*~ signatures are combined. Figure 13 gives the three £* D*~ signatures sep-
arately. The cross-talk is relatively modest, and the signatures dominated by B° gener-
ally show a fairly clear oscillatory behavior in the raw observed asymmetries. For the
Bt-dominated signature, £* D°, the raw asymmetry is compatible with being a constant
(Fig. 12), but the residual effect of the B? cross talk is visible in the fitted curve in the form
of a slight oscillation. The effect of the B* contamination in the B° signatures amounts to
a constant shift in the asymmetry and is therefore not readily apparent.

The fit parameters constrained to a prior: measured values are shown in Table VI along
with the value and error output by the fit. Except for f**, these parameters are largely
decoupled from the other fit parameters, and are virtually unchanged from their input
values. The data are more sensitive to the value of f** because it governs the amount of
cross-talk between B° and B™.

The correlation coefficients of the fit parameters with Amy, Dy, and Dy are shown in
Table VII. We see that the lifetimes are largely decoupled from other parameters. On the
other hand, f**, {,0rm, and Py are strongly coupled to Amg, D, and Dy, underscoring the
importance of the 7 corrections to the analysis. The correlation between Amgy and D, is
stronger than between Amg and Dy. The reason for this stronger corrrelation is that the
effect of D, enters via the B* contamination of the B° signatures and is manifested by a
downward translation of the B° oscillation in Fig. 12. As the oscillation is translated down,
the intercept with zero asymmetry moves to shorter times, thereby decreasing Amgy. On the
other hand, if Dy is varied, the oscillation amplitude varies symmetrically about the vertical
axis and Amy is weakly affected.
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G. Statistical and systematic uncertainties

We fit for Amg, D,, and D, using a x? function which also incorporates the sample
composition parameters. The errors it returns are a combination of statistical and systematic
effects, yet the errors only partially account for the systematic uncertainties. The sources of
the uncertainty can be divided into statistical and three systematic categories:

e Statistical: the error that is directly correlated with the £D®*) sample size.

e Correlated Systematics: parameters of the fit (f**, Ry, 7. /7o and 75), coupled to
Amyg, D, and Dy through the sample composition [Eq. (57)]. These parameters are
not correlated among themselves; only their effects on Amy D, , and D, are.

e Uncorrelated Systematics: systematic uncertainties caused by imperfect simulation
models of the physics processes or the detector.

e Systematics from Physics Backgrounds: uncertainties due to other physics pro-
cesses that contribute to B — v£D®*) data samples that have been hitherto neglected.

We determine the uncertainties from each of these four categories in turn to estimate the
statistical and systematic uncertainty for our final result.

We separate the statistical and correlated systematic errors of the original fit by repeating
the fit with the sample composition parameters fixed to the results of the original fit, and
only six variables (Amg, Dy, Do, €(7s), €norm, and Py ) floating. The errors from the six-
variable fit are just statistical (ogq¢), while the errors from the full fit are the combined
statistical and correlated systematic errors (ogatrc.5.). In a Gaussian approximation, we
estimate the correlated systematic error, o¢.s., by

_ 2 2 .
gc.s. = \/U.qtat-}—C.S. — Ostat s (65)

and find, for example,
Ama = 0ATLITE HO st

where the first error is purely statistical and the second is the correlated systematic. This
correlated error is listed in Table VIII under “Sample Composition,” and is by far the
dominant systematic uncertainty.

The “uncorrelated” uncertainties include the contributions from the uncertainty in the
Monte Carlo modeling, which are also listed in Table VIII. An uncertainty in the b-quark
production spectrum (App. A1) carries over into the determination of the K-factor dis-
tributions. The systematic uncertainty was estimated by weighting the generated pr(B)
distribution by a power law factor whose range was obtained from a b cross section analy-
sis using an inclusive electron sample. The shifts in fit parameters using this weighted pr
spectrum are taken as the associated uncertainty.

The isolation requirement of the inclusive electron trigger (i.e., no matching cluster
in the hadronic calorimeter), could, if poorly simulated, bias the decay kinematics of the
selected B’s, and result in an erroneous K-factor. Since this requirement is not present in
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the inclusive muon trigger, we use the difference obtained in the fit when using the electron
sample composition parameters versus those of the muon for this uncertainty.

Various calculations (e.g., of efficiencies, K-factors. .. ) are sensitive to the differences in
the B decay dynamics to a D, D*, or D**. The systematic uncertainty due to the decay
model is obtained by repeating the analysis where the decays are governed by phase space
instead.

The L., resolution used in this analysis is from the CDF detector simulation. The
systematic uncertainty is obtained by varying the intrinsic resolution by +20%, and the
resultant shifts are taken as the uncertainty.

The last uncorrelated systematic error is due to the shape of éxr¢(ct), the time depen-
dence of the probability to tag on a 7., from D** decay. An alternative shape for {p¢(ct)
is obtained by using the £D*~ signature instead of /D™, and using a variant of the CDF
detector simulation. The €épc(ct) is again well described by a Gaussian plus a constant, but
the new RMS of the Gaussian is 400 gm, which is twice the nominal value. The shifts in the
fit resulting from this wider {a¢(ct) are taken as the systematic uncertainty.

Our results may also be affected by physics backgrounds not included in the sample
composition which result in #£D®*) X with the correct correlation of £ and D™):

e B— DS,*)D(*)X, followed by D vl X,
e B, — vfD**, followed by D** — D¥K;
e gluon splitting g — cg, followed by ¢ — £X and ¢ —» DY

The fractional contributions of the first two processes to our sample are estimated [27] by
Monte Carlo simulation (App. A 1). The fractions, listed in Table IX, are small.

Because of the uncertainty in accurately predicting the rate and other characteristics of
gluon splitting, we use data rather than simulation to set an upper bound on this contribu-
tion. For this background the apparent B vertex is reconstructed from two different charm
decays, so the reconstructed D will have a broad ctp distribution, including cases where the
D apparently decayed before the “B.” There is some (statistically marginal) evidence of
right sign (£* K¥) signal in the ctp < —1 mm region in the data. We use the size of the far
negative ctp tail to constrain the potential size of the gluon contribution [27]. Because of
the large statistical uncertainty, we take as the upper bound on the gluon contribution the
central value of our fitted fraction plus twice the statistical error on the fraction (Table IX).
Doubling the statistical error is ad hoc, but we wished to be conservative in accounting for
this poorly constrained process.

The effect of each physics process on the asymmetry is accounted for by adding two
new terms to the predicted asymmetry of Eq. (57), one for tagging on fragmentation tracks
A3 and another for tagging on decay products .A9*°®¥. We can determine each of these
asymmetries, or their upper bounds, and combined with the composition fractions repeat
the fits to the observed asymmetry [27]. The shift in fit output under each of these processes
is taken as their contribution to the systematic uncertainty.

Examination of Table VIII shows that by far the largest contribution to the systematic
uncertainty comes from the input sample composition parameters. The combined systematic
uncertainty is obtained by adding the individual contributions in quadrature. The combined
systematics are still smaller than the statistical uncertainties, especially in the case of Amyg.
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As a mixing measurement, the application of Same Side Tagging on the £D*) sample is still
limited by statistics.

H. Summary of the £D(*) analysis

We have applied our SST method to a partially reconstructed B — £D(*) sample and
accounted for the effects of B® «<» B* cross talk in the sample composition. The flavor
oscillation is readily apparent, and the oscillation frequency and dilutions are found to be

Amg = 0.47175028 +0.034 ps™* (66)
D, = 0.267 £ 0.032 F2:92 (67)
Do = 0.181 £ 0.028 5923 (68)

where the first error is statistical and the second is the combined systematic. Our Amy
value compares well with a recent world average of 0.484 + 0.026 ps~* [29]. We will discuss
the dilutions further in Sec. VII.

VI. TESTING SST IN B — J/vK SAMPLES

Having demonstrated that our SST algorithm is capable of revealing the B°-B° fla-
vor oscillation in a large lepton+charm sample, we extend its use to the exclusive modes,
B — J/¢YK* and J/¢K*°(892), where one may further test this method. The SST dilu-
tions should, ignoring some experimental biases, be independent of decay mode, and the
J/$ K samples should yield results comparable to the £D(*) analysis. These J/4 K samples
are too small to provide precise tagging measurements, but they provide an experimental
opportunity to study flavor tagging in this type of exclusive mode. This study is especially
interesting because it serves as a model for tagging B® — J/4 K3, which we consider in

Ref. [11].

A. Reconstruction and tagging of B — J/¢Y K

Our J/4 K samples have appeared in a number of previous publications, in whole or part,
on measurements of B masses [30], lifetimes [15,31], branching ratios [32], and production
cross sections [33]. The reconstruction criteria are somewhat different here; we wished to
maximize the effective statistics and were less concerned about accurately modeling efficien-
cies or triggers.

B reconstruction begins by forming charged particle combinations with J/1 candidates
(Sec. IIC). Since we require a well measured B vertex, at least two particles of the decay
must be reconstructed in the SVX with loose quality requirements (principally that the track
used hits on at least 3 out of 4 SVX layers). For the J/% K™ a single particle, assumed to
be a kaon, with pr > 1.75 GeV/c is combined with the J/v. The J/¢K*° reconstruction
uses pairs of oppositely charged particles, each with pr > 0.5 GeV/c. The pair is accepted
as a K*° candidate if a vertex-constrained x? fit—considering both permutations of K
and 7T mass assignments—yields a mass within 80 MeV/c? of the K*° mass (896 MeV/c?),
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and has pr(K*°) > 3.0 GeV/c. The fit includes dE/dz energy loss corrections appropriate
for the mass assignments. If both permutations satisfy these requirements, the assignment
closest to the K*° mass is selected. The high pr(K*°) cut is necessary to reduce the larger
combinatoric background for J/+ K*°.

The particle(s) making the Kt (K*°) are combined with the p* p~ pair in a multiparticle
x?2 fit for the B with the y*u~ mass constrained to the world average J/1) mass, all daughter
particles originating from a common vertex, and the entire system constrained to point to
the pp interaction vertex. A run-averaged interaction vertex is used as was done for the
£D™) sample (Sec. VA). The RMS spread of the transverse beam profile is taken to be 40
pm. The resulting B candidate must have pr(B) > 4.5 GeV/c.

Rather than cutting on the x? from the multiparticle fit, we cut on only the portion
coming from the transverse (r-¢) track parameters (i.e., curvature, azimuthal angle, and
impact parameter [30]). The B pointing resolution to the primary vertex in the -z plane is
very coarse in CDF, providing little separation between signal and non-pointing backgrounds.
Including the z-cot # contributions to the x? tends to smear the separation that is available
from the precise transverse measurements. We require the transverse tracking terms of the
x2 sum to be less than 20, and similarly that the transverse components of the vertex x?
sum to be less than 4. Although formally ad hoc, we found these cuts to be a little better at
discriminating signal from background than the full x2. However, the final tagging analysis
is insensitive to the type and value of the x? cuts used in the B reconstruction.

Finally, if there are multiple B candidates in the same event, the one with the smaller
transverse track parameter x? is taken.

These B samples are used in a likelihood fit (Sec. VIB) employing a normalized mass
variable My, and so we discuss the selection results in terms of this variable. My is defined
as (Mpir — Mo)/orir, where Mprr is the mass of the B candidate from the fit described
above, M, is the central value of the B mass peak (5.277 GeV/c?),® and opr is the mass
error from the fit. Over the range of | My |< 20 we have a total, signal plus background, of
12564 events in the J/4 KT sample and 2339 for the J/4 K*°.

Figure 14 shows the normalized mass distributions for candidates with reconstructed
ct > 0 [Eq. (46)]. Also shown is the result of the likelihood fit performed in Sec. VID, where
the mass is modeled by a Gaussian signal plus linear background. The fit yields 846 + 35
B*’s and 365 + 22 B%s (for all ct).

Events with ¢t < 0 are dominated by background (see Fig. 16 in Sec. VID), and the
mass distributions show no clear signal. However, these events help constrain the background
behavior and are kept as part of the analysis.

These two samples are then tagged with the SST criteria of Sec. IVB. We find about
63% of the J/% K™ and J/¢ K*° signal events are tagged.

8The mean is systematically low by 2 MeV /c? compared with the world average mass because we
do not make all the detailed corrections of Ref. [30].
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B. Likelihood function for the J/¢¥ K samples

The tagging correlations of the B — J/¥ K samples have the same physical time de-
pendence as the £D*) samples [Egs. (4) and (5)] but without the complications of sample
composition and average Bv-corrections. Maximal use of the smaller J/¢¥ K samples moti-
vated a more sophisticated approach than used to fit the £D(*) data.

An unbinned likelihood function is devised to simultaneously fit over various measured
event properties and obtain the SST dilutions for the J/ K samples. The likelihood function
incorporates the candidate’s proper decay time and invariant mass to facilitate separation of
signal and background. It is also generalized to consider tagging biases. These are relatively
unimportant in mixing measurements which only use the relative flavor-charge asymmetry
but are critical for C'P violation measurements where the effect appears as an absolute
charge asymmetry of the tag. Although our focus is on the charge-flavor correlations of
SST, this generalized approach serves as a prototype for C P violation studies [11].

The likelihood function to be maximized is given by

L=]lfsls + (1 - fB)(frle + (1 — fL)Lp)] (69)

=1

where the product is over all N events in the mass window |My| < 20. The subscripts
B, L, and P respectively indicate terms associated with the B-meson signal, long-lived
backgrounds, and prompt backgrounds. The fraction of events that are B signal is fp.
The backgrounds are subdivided into two classes: “long-lived,” which are those consistent
with a non-zero lifetime, and “prompt,” which are those consistent with zero lifetime. The
fraction of long-lived backgrounds, which are predominantely real B’s that have been mis-
reconstructed, is given by fr.

The L4 (¢ = B, P, and L) are functions describing the relative probability for obtaining
the following measured values in an event: the normalized mass (My), the proper decay
time and its uncertainty (¢ and o;), the reconstructed decay flavor r (r is +1 for BT and
B° and —1 for B~ and B°), and the tag track sign s (s is +1 for a positive track, —1 for a
negative track, and 0 if there was no tag).

The density function for the J/¢¥ K™ signal describing the mass and ¢ dependence, the
relative numbers of BT and B~, the flavor-charge tagging correlation, and the tagging
efficiency is

Ls = G(My;0,X) G(t:¢,Y0,) @ E(t';75) x
<1 +2TRB) <1 _’"’“s(s)DB> En(s). (70)

G(z; p, o) is a normalized Gaussian distribution in z € (—o0, +00) with mean y and RMS o,
and E(z;7) is a normalized exponential distribution in z € [0, +00) with mean 7. The first
factor in Lp is the shape of the mass distribution (My), where X is a scale factor for the

mass error. The second factor is the Gaussian resolution of the reconstructed ¢, including a
resolution scale factor Y. The ® denotes convolution over ¢, in this case with an exponential
distribution E of lifetime 75 = 7. The resolution scales, X and Y, are extra degrees of
freedom to monitor our description of the errors.
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The density function next contains two asymmetry factors. The first is the probability
of reconstructing the observed meson flavor r, and depends upon
N(Bf) - N(B")

Bs = §en 1B (1)

This first factor decouples other flavor-related asymmetries from a “reconstruction asym-
metry” Rp by accounting for the different numbers (N) of B™’s and B~’s that may be
reconstructed due to a detector bias, or simply a statistical fluctuation in the relative yield.

The second asymmetry factor represents the probability of obtaining a tag of sign s given
the reconstructed flavor r. The strength of the flavor-charge (r-s) correlation is the usual
dilution, Dg = D,. The effective tag for a track of sign s is kg(s). Since the B-7 correlation
is between BT (r = 41) and 7T (s = F1), the rkp(s) term appears with a negative sign.
Finally, the efficiency to obtain such a tag is £g(s).

This formulation with Dg, kp(s), and Eg(s) is able to account for the general situation
where the tagging method suffers from intrinsic tagging asymmetries, as might be caused by
detector biases. Tagging asymmetries may result in different dilutions and efficiencies for the
two B flavors. We define Dp to be the flavor-averaged dilution, and we are able incorporate
all tagging asymmetry effects in kp(s) and Eg(s). In the absence of tagging biases, kp(s) is
simply the charge of the tagging track (kp(s) = s), and Eg(+1) = Eg(—1) = €p, where €p
is the flavor-averaged tagging efficiency.

The “charge asymmetry corrected” tag xkp(s) and efficiency £p(s) are determined using
two new parameters: ap, which is the charge asymmetry in selecting a tag track, i.e., a
bias in selecting positive vs. negative tags; and ép, which is the b-flavor asymmetry in
finding a tag track, i.e., having different efficiencies to tag b vs. b mesons. For convenience
we sometimes normalize the latter by the dilution, v = é5/Dp. The derivation of kp(s)
and £p(s) may be found in App. B, along with a complete characterization of a generic
tagging method. The actual determination of the tagging biases in our detector is discussed
in Sec. VIC3.

The density function for the J/¢% K*° signal takes the same basic form as for J/9 K™,
but it now incorporates the time-dependent flavor oscillation A%(¢') = cos(Amgt’). Since
no particle identification is used, some J/1K*° events enter the sample with the correct
K-m mass assignments “swapped” (Sec. VIC), for which the apparent flavor is inverted.
The density function is divided into unswapped and swapped parts, with the reconstructed
flavor r for the swapped events appearing with a reversed sign. The complete expression is

Ls=(1-fs)G(My;0,X)G(¢;¢t',Yo:) & [E(t;78) X
<1 —I—'r'RB) <1 —I-TKB(S)DBAo(tI)> ¢ 1

2 ) B(‘S)_

—|— st(MN;;Ls,Xs) G(t;t’,YO't) ® E(t’;TB) X

[
<1 _;RB> <1 — mB(sz)DBAo(t')> 53(3): , (72)

where fg is the fraction of swapped events, and ps and Xg are the mean and RMS of the
normalized mass distribution for the swapped events. The rest of the parameters parallel

those of the J/% K™, but with Dg = D,.

33



The density function for the long-lived background for both decay modes is similar to
the signal except for a linear mass distribution, the presence of three exponential lifetime
distributions, and the lack of mixing:

_(1+ My o
Ly = <W) Gt Yaor) &
{fNE(—t";702) + (1 — fn)[fr2E(t; 702) +
(1= fr2) E(t); m10)]} ¥

<1 +2rRL) <1 + m;:(s)DL> Er(s). (73)

The linear mass distribution is parameterized by a slope (1 and the width of the mass
window |My| < W = 20. The long-lived background consists of positive- and negative-t
components, with a fraction fy in the negative exponential (with lifetime 775). The positive-
t background is described by two exponentials, one with a large lifetime 77;, plus a short
one of 775. The latter lifetime is fixed to be the same as for the negative-¢ tail. The fraction
of positive-t events (1 — fy) which compose the short lifetime exponential is f,.

The background may also possess a reconstruction asymmetry Ry, or a charge correlation
between the tag and what is assumed to be the K+ or K*°, i.e., a dilution Dr. The
background asymmetry description parallels that of the signal with Ry, Dy, 4, and &
defined independently for each event class (¢ = B, L, and P).

The prompt background density function is

Lp = <1+C7PAMN> G(t;0,Y0;) X

<1+2:;p> <1_|_TI€P(S)'DP) £n(s) (74)
5 9 pP\S),

with the same variable definitions as before except that they apply to the prompt back-
ground. There is only a dependence on the proper time through the ¢ resolution, and thus
no convolution is needed.

When summed together and multiplied over all the selected events in a particular dataset,
the density functions form a properly normalized likelihood function.

C. Input likelihood parameters
A number of the likelihood parameters are more accurately obtained from sources other

than our J/¢¥ K data. In this section we will discuss which parameters are fixed in the fit,
and their sources, values, and uncertainties.

1. B meson parameters

The likelihood function relies on the temporal properties of the B decay, and these are
best obtained from world averages. Since we wish to measure the tagging dilution, and not
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the oscillation frequency, we include Amy in this list. We use the following averages from
the Particle Data Group [22],

Amg = 0.474 £0.031 ps~*
T+ = 1.62 £ 0.06 ps
To = 1.56 £ 0.06 ps.

2. Incorrect K — 7 assignment

The J/9K*° events include real B® — J/%K*® decays, but with the incorrect K-m
mass assignment. A Monte Carlo sample of B® decays (App. A1) was generated and then
processed as data. The reconstruction tries both assignments, and if both versions pass
the selection criteria, the one with the K7 mass nearest the K*°’s is chosen. The events
with the K and 7 swapped have an My distribution which is roughly Gaussian with mean
ps = —0.5 and RMS Xg = 4.9. The area of the swapped Gaussian is 9.8% of that for the
unswapped distribution. The kinematic dependence of the swapped events on pr(B) has
also been studied [34]. The fraction of swapped events is constant within a few percent over
our range of pr(B), but the mean and RMS of My show some systematic variation.

The swapped component is difficult to fit in the J/%K*® data because it is difficult to
distinguish these events from the combined shapes of the narrow central Gaussian and linear
background. The likelihood fit therefore fixes the input parameters pg, Xg, and fs to the
values from the simulation. We allow for a 100% variation in the fraction, fs = 0.1 & 0.1,
and assign uncertainties to the other swapping parameters which covers the range observed
when spanning the pr(B) interval of the data, i.e., ps = —0.5 £ 0.5 and Xg = 5.0 £+ 2.0.

3. Tagging biases

A tagging method may display two sorts of inherent asymmetries (App. B): selecting
one charge more often than the other as a tag (a), or having a greater efficiency to tag on
one b-flavor over the other (6).

The charge asymmetry of the tags for a flavor symmetric sample is

N, -N_
N, +N_’

a (75)
where N, (N_) is the number of positive (negative) tags. Since we reconstruct the decay
flavor, we can correct for any flavor asymmetry in our samples and determine a from the
data. This is done for the backgrounds by letting oz, and ap float in the likelihood fit.
However, o appears in the likelihood function partly as a factor D/(1 + «) [Egs. (70)
and (B7)]. We can essentially eliminate the influence of the Dg-ap coupling in the fitted
Dp by fixing ap to an independently measured value; we obtain a better constraint on apg
as well. We do this by using a large inclusive sample of non-prompt J/%’s, i.e., a flavor-
symmetric b sample. This is the sample of J/¢’s described in Sec. IIC with the following
additional requirements: both muons are in the SVX, and the J/v projected flight distance
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Lyy(J/%) [Eq. (12)] exceeds 200 pm. This last cut results in a sample which is more than
90% pure b hadron decays. We also require pr(J/9) > 4 GeV/c so that the pr’s are similar
to that of the J/1# K samples.

We have looked for tagging asymmetry dependencies in a variety of variables, including
the pr and Ly, of the J/t, and found only two variables of interest. First, there is an
a-dependence on the pr of the tagging track, with more positive tracks reconstructed than
negative ones at low pr. This is due to the charge asymmetry inherent in the design of the
CTC (wire planes are oriented along the direction of positive tracks). Proton spallation from
the beampipe might contribute an additional pr-dependent asymmetry, but this effect has
been largely eliminated by the impact parameter significance cut on the SST candidates.
The second variable is the number of good pp interaction vertices ny found by the VTX. The
number of vertices is an indicator of the total hit occupancy in the CTC, which influences
the tracking efficiency.

Characteristics of the J/1 K samples, or the criteria of the tagging method, could modify
the biases in the tracking asymmetry. We therefore compare the charge asymmetry in four
types of J/v (Lxy > 200 pm) subsamples (the J/v is used for the b direction): (%) the SST
tags, (41) SST candidates (i.e., no pi¢ selection), (i) SST candidates passing a b-vertex
veto, and (7v) all tracks satisfying the SST cuts except for being in a “side cone” away
from the J/tv-axis. The first case is the most direct extension of our analysis, but it is
contaminated by tagging on B daughters. The second case has greater statistics as there
are multiple track entries per J/1, but more importantly there is no bias associated with
the pj¥ cut. The third sample suppresses tagging on B daughters—such tags are impossible
with the exclusive J/¥ K signal—by requiring that the SST candidate impact parameter
significance relative to the J/1 vertex, dy/oy, is greater than 2. In the final case we select
tracks with the basic SST cuts, but which are divorced from the b by using all tracks in a
1.0 < AR < 2.1 “side cone” relative to the J/4.

Since we wish to study a pr dependence, and only sample (%) selects a unique track per
J /v, we relax the 400 MeV /c SST cut on samples (4)-(v). The upper plot in Fig. 15 shows
the charge asymmetry as a function of the track’s inverse pr for these four samples. The
asymmetry is fairly small at 1/pr = 2.5 (GeV/c)™! (the nominal SST pr cut of 400 MeV/c)
but then rises significantly. The asymmetry as a function of number of vertices ny is shown
in the lower plot in Fig. 15. Neither variable shows any significant differences across the
four samples.

With all four samples so similar, we consider the asymmetry to be independent of the
tagging, and choose sample (%) to determine a parameterization for the tag asymmetry ap.
The pr dependence of the asymmetry is well described by pz* and a linear function for the
number of vertices. In terms of both variables we write

ap(pr,nv) = {a1(nv —no) + b1 }(p7" — pro)
+ {az(nv — no) + b2}, (76)

where we have included offsets prg and ng, fixed to 20.0 (GeV/c)™* and 3.0 respectively, to
remove the correlation between the a’s and b’s when fitting for them.

We determine these parameters by making subsamples for each integer value of ny, and
fitting them for the coefficient of the p7* — pra term and a constant offset. The series of
these coefficients and offsets are then fit for the linear ny dependence. We obtain the values
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=(3.9+1.8) x 107* (GeV/c)*
= (1.340.4) x 107 (GeV /c)*
( )
( )

1.4 +0.4) x 1072
=(2.6+0.8) x 1072,

ay
by
a2
by
which give the curves in Fig. 15. If we consider the tags in the J/i¢ data [case ()], we
find the average tag asymmetry is (1.6 £ 0.7)%. In the limit as 1/pr — 0 the asymmetry
parameterization gives (0.14 +0.86)%. We use this parameterization to describe the tagging
asymmetry for the B signal ap in the likelihood fit (Sec. VID).

As well as an intrinsic bias towards positive or negative tags o, the SST could also have
a bias 8 to tag b and b mesons with different efficiencies (see App. B), i.e.,

5= <) = elb) (77)
e(b) + €(b)

where € is the efficiency to tag on a given flavor. It is more convenient to express its ratio

relative to the dilution in the likelihood, so we often use v = §/D. We can constrain é from

the data, and do so for the backgrounds by letting é6pr, float in the likelihood.

In the likelihood function g appears partly as a factor (1 + v5)Dp. As with ap, an
independent determination of g is preferable in order to decouple it from the dilution.
The inclusive J/9’s cannot be used since we have no knowledge of the b flavor. The higher
statistics £D(*) data indicate that g is less than 15%. However, as discussed in Appendix C,
we can improve upon this constraint by about a factor of three by considering the behavior
of y8/ap. We find yp/ap spans the range from 0.0 to about 2.5, and we use yg/ap = 1.07]5
in the likelihood fit.

This completes the list of input parameters fixed in the likelihood fit, and we now proceed
to fitting the data.

D. Fitting the J/¢K* and J/¢K*° samples

We use the likelihood function to fit the J/¢¥ K samples with the parameters discussed
in the last section fixed, and allow the others to float freely, i.e.,

e fp, the fraction of events which are signal,

o fr, the fraction of background which is long-lived,

e fn, the fraction of the long-lived background in the negative lifetime tail,

e f.o, the fraction of positive long-lived background with lifetime 75,

e (p and (g, the slopes of the prompt and long-lived backgrounds in normalized mass,

e X, the error-scale factor for the normalized mass,

Y, the error-scale factor for the decay time,

Tr1, the large lifetime of the positive long-lived background,

37



® 775, the small lifetime used for positive and negative long-lived backgrounds,

e cp, €p, and ¢r, the efficiencies for tagging signal, and prompt and long-lived back-
grounds,

e Rp, Rp, and Ry, the reconstruction asymmetries of the signal, and prompt and long-
lived backgrounds,

e ap and oy, the tagging asymmetries of prompt and long-lived backgrounds,

e 6p and 6z, the tagging efficiency asymmetries of prompt and long-lived backgrounds,
and

e D, Dp, and Dy, the dilutions for the signal, and the prompt and long-lived back-
grounds.

Each decay mode is separately fit by minimizing the negative log-likelihood function.

The fit results are compared to the My distribution in Fig. 14. The fitted proper decay
lengths are shown in Fig. 16 for the J/¢ K*°, where we have defined—for display purposes
only—the signal region as |[My| < 3, and 3 < |[My| < 20 as sidebands. The data are well
described by the fits.

To display the flavor-charge asymmetries, we compute the mass sideband subtracted
asymmetry (analogous to Eq. (55)) for the data in ¢t bins. The results are shown in Fig. 17
with the likelihood fits superimposed (solid line). The J/ K™ plot shows a clear correlation,
consistent with being constant, and the J/¢ K*® data is in good agreement with the mixing
hypothesis. Also shown in the figure insets are —2In(L/L,,,x) as a function of the dilution,
where L is the value of the likelihood for a given Dp after maximization with respect to all
other free parameters, and Lpr4x 1s its value at the global maximum. We see a well behaved,
approximately parabolic, shape. The 1, 2, and 30 errors of the likelihood are indicated in
the inset by the three horizontal dotted lines.

As a simple check, the binned and mass sideband subtracted asymmetries of Fig. 17 were
fit to a constant for J/1 K *, and Dy cos(Amgt) for J/p K*°, using a simple x? fit without any
additional corrections (e.g., tagging asymmetries, ¢ resolution, etc.). The results (dashed
line in Fig. 17) agree very well with the likelihood fits, indicating that the fits are driven by
the basic asymmetries in the data and are not significantly influenced by the refinements of
the likelihood fit. Of course, the fits are strongly dominated by the statistics.

The principal results of the likelihood fits are the dilutions Dg given in Table X, along
with the other fitted parameters. A few remarks may be made on this table in passing. The
t error scales Y are virtually unity, indicating that the lifetime modeling and error estimates
describe the data well. The X scales (the RMS of the signal My Gaussian) are not 1.0,
but are instead close to the known scale of 1.3 [30]. The tagging asymmetries o for the
background terms are generally consistent with the (1.6 +-0.7)% found as the average value
from inclusive J/4’s (Sec. VIC 3), with ap for the B%’s about 2.5¢ high. The reconstruction
asymmetries R are also not statistically significant beyond 1-2¢0. The background dilutions
are, not surprisingly, consistent with zero when selecting pairs of tracks with no net charge

(K*°) from the event, but significant, and anticorrelated, when selecting single charged
particles (K ¥).
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As a subsidiary check, we replace the ag(pr,ny) parameterization in the likelihood by
ag(pr,nv) + o', where o' is a free parameter. The fit returns o/ = —0.001 + 0.079 for the
B%s, and o = 0.036 + 0.052 for the B™ result. If ag(pr,nv) is a good description of the
data, then o' should be close to zero, as indeed they are.

The systematic uncertainties of the dilution measurements are determined by successively
shifting the parameters fixed in the fit up and down by 1o and repeating the fit. The resulting
shifts in the fitted dilution are taken as the high and low systematic uncertainties due to
that input parameter. Section VIC discussed the uncertainties assigned to these input
parameters. The results are shown in Table XI for J/4K™* and in Table XII for J/¢K*°,
beginning with the uncertainties associated with the B decay properties.

Next are the systematic uncertainties arising from the uncertainty in the parameters
(a’s and b’s of Eq. (76)) describing the signal tagging asymmetry ap. Because we used the
constraint on yg/ap (App. C), we cannot vary ap and g independently. We vary ap by
varying the a and b parameters individually by 1o for fixed “central” values of yg/ap = 0,
1, and 2.5, and remaximizing. In this case the dilution shift is from the difference between
the nominal and shifted values where both use the same fixed value of yg/ap in the fit.
The maximum excursion of the dilution among the three vg/ap combinations is selected for
each a (b) parameter as the uncertainty for that a (b), irrespective of the yg/ap value used
for the other a’s and b’s. The tables list all variations, including those not used. While this
mixing of yg/ap’s is nominally inconsistent, it provides a conservative estimate.

The contributions from the uncertainty on yg5/ap follow in the tables using the nominal
ap. Table XII also includes the effects from the K-7 swap parameters.

The J/4 K" systematic uncertainty is composed of roughly equal contributions from the
B lifetime, tagging charge asymmetry, and tagging efficiency asymmetry, but overall has
a small systematic uncertainty. The largest effects for the J/1 K*° are due to the tagging
asymmetry and the width of the swapped K-m mass distribution Xg, which has a strong
asymmetric effect. If the swapped My distribution is broad there is little effect; however, as
it gets narrower it is more difficult to distinguish the swapped from the unswapped events
and a larger uncertainty ensues.

The positive (negative) shifts of the dilution due to each parameter are added in quadra-
ture to obtain the positive (negative) “combined uncertainty” of the dilution in the Tables.
We thereby obtain the result,

D, = 0.185 + 0.052 70993 (78)
Do = 0.165 4 0.112 15333 (79)

These results are similar to the £D(*) results of Eqs. (67) and (68). In the next section a
detailed comparison will be made between the two sets of measurements.

VII. CHECKS AND COMPARISONS BETWEEN /D*) AND J/%K DATA AND
MONTE CARLO SIMULATION

This section presents checks on the robustness of our results and makes a closer compar-
ison between tagging in our £D®*) and J/¥K samples as a means of furthering our study
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of Same Side Tagging. Although the physics processes believed to be responsible for the
observed flavor-charge correlations should not depend upon the B decay mode, potential
experimental biases could influence them differently, for instance the fact that the B’s in the
£D™) data tend to have higher pr’s than those in the J/#K data. Given the limited statis-
tical power of these measurements, we complement the comparisons by also showing some
results from Monte Carlo simulations. The simulation provides a further means to study
possible systematic differences between the two data samples, and to gain some insight into
underlying mechanisms.

It is not obvious to what extent one can rely upon a given simulation to model particle
distributions from fragmentation and underlying parton interactions in a pp event. While
considerable effort has gone into developing and tuning simulations for ete™ collisions, the
state of the art is somewhat less well developed for the more complex high-energy hadron-
hadron collisions. We therefore consider several basic comparisons between data and the
simulation. We find reasonable agreement and conclude that the simulation is a fair model
of the data, although our comparisons are necessarily rather coarse. Having developed some
confidence in the simulations, we proceed to compare £D®*) and J/4K dilutions. It should
be stressed that prior to this point of comparison the analyses described in this paper have
not depended upon accurately simulating the tagging (though we have used simulations to
model decay kinematics, where the models are well established), and indeed, the analyses
were designed with this independence in mind.

For the simulations discussed in this section we have used the PYTHIA Monte Carlo
generator, albeit tuned to match the charged particle distributions in the £D° mode as
described in Appendix A 2b. Samples of B® and Bt mesons were generated for the £D®*) and
exclusive J/1 decay modes. The B decay modes were forced via specific channels for efficient
generation, and the £D®*) events had a sample composition approximating that found in the
data. The events were passed through the CDF detector simulation, reconstruction and
selection code, and finally the SST algorithm.

A. General comparisons

We begin our comparison of data and simulation by examining distributions of some
basic variables. In all these comparisons we use mass sideband-subtracted data samples,
and we average over the decay modes according to their contribution to the £D(*) or J/¢ K
sample. Within each class of sample, the decay-mode specific distributions are very similar
to one another.

The multiplicity distribution of SST candidates per B (i.e., tracks which satisfy all
SST cuts except for the criterion of minimum pfi¢) is shown in Fig. 18 for both data and
simulation. There is general agreement between the simulations and data for both £D(*)
and J/v%K. The £D™) channel tends to show on average slightly more tagging candidates
per B than the J/¢ K. This difference is due to the higher energies which characterize the
£D™) candidates and to the extra tracks present from B daughters which are not used in the
partial B reconstruction. We note as a point of contrast that the corresponding distributions
for the sidebands show some significant variations across the decay modes, so the agreement
seen in Fig. 18 is not a trivial result.
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We impose the full SST criteria and show the pr distributions of the SST tags in Fig. 19.
Again, there is good agreement between the data and simulation for the two types of data.
The tag pr distributions of the two types of modes are also very similar to each other.
The pr distribution for tagging candidates (not shown) have a somewhat harder track pr
spectrum in the higher-energy £D*) sample than in the J/1% K mode, but in both cases the
data and simulation agree well there, too.

Finally, we compare the p7¢ distributions for the tag tracks in Fig. 20. The simulation
again agrees well with the data, and in this case the £D(*) and J/¥K modes are also very
similar.

Comparisons using these three variables only provide a limited test, but they are closely
related to our SST algorithm and indicate that the simulation reproduces basic characteris-
tics of the data.

B. Influence of the tagging pr threshold

Our SST algorithm demands that tag candidates have a minimum pr of 400 MeV/c as a
compromise between the low-pr tracking asymmetry (Sec. VIC3) and the declining tagging
efficiency for an increasing threshold. In this section we consider the influence of this cut, in
particular, the stability of our results when repeating the analyses for a range of pr(SST)
thresholds. This variable is also a useful vehicle for exploring some of the features of SST.

Applying a different tagging cut to the same sample means that some B’s will be tagged
by a different particle, others will keep the same tag, and others will no longer be tagged
at all. If a tag changes, the new tag is largely uncorrelated with the old, so that, with
respect to the new tags, a statistically independent subset of the data is created. Thus,
repeating the analysis with different tagging cuts produces measurements which are partially
correlated with each other. The greater the change in the tagging cut, the weaker the relative
correlation. We do not attempt to unravel this complex pattern of correlations; we merely
show variations with the pr cut to show the dependence of the tagging results on changes in
this parameter. We quote the naive statistical errors from the fits of a pr(SST) scan with
the understanding that the various points and their errors are correlated in an unspecified
fashion.

We first consider the stability of our main physics result, Amgy. Figure 21 shows the
variation of Amy as the SST pr cut is varied from 0.3 to 1.6 GeV/c in the £D™) sample.
The results are fairly typical of those where the tagging pr threshold is being scanned.
The values are reasonably stable, 7.e., smoothly varying in accordance with the subsample
correlations mentioned above, and quite consistent with a constant value.

We also examine the effectiveness of the tagging algorithm as the pr threshold is changed.
Figure 22 shows the neutral dilutions for the £D(*) and J/4K*® data. They are both
relatively constant and are consistent with each other, although the J/¢K*° values offer
little discrimination. The simulation, also shown in Fig. 22, agrees well with the data.

The B™ dilutions are shown in Fig. 23 and display a striking rise as the tagging cut is
increased. The J/¢K* data, though with sizable statistical uncertainties, show a rise similar
to £D™) but perhaps offset to lower overall dilution. There is an apparent shape discrepancy
between the simulation and the J/4 Kt data. Appendix D describes a x?-based comparison
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between the simulation and data which indicates that statistical fluctuations among these
correlated measurements can produce such disagreements (or larger) about 22% of the time.

The different magnitudes and behaviors of the charged and neutral dilutions, as seen
in Figs. 22 and 23, may at first be surprising in light of the isospin symmetry of the B-w
system. However, these differences may result from the fact that tags include not only pions,
but kaons and protons as well [21]. For instance, a K~ would be associated with a BT, while
a B° should be accompanied by a K°, which cannot be a tag. The contrast between the
charged and neutral dilutions is amplified because when the associated kaon is a K*, the final
charged kaon is always a K, i.e., B°K*° followed by K*® — K~ 7% versus BT K*~ followed
by K*~ — K m° A similar argument can be made that the tagging contribution from
(anti)protons also degrades Dy and enhances D,. We test this hypothesis in the simulation
by restricting SST to tag only on prompt pions. The predicted results are shown in Fig. 24,
where it 1s seen that this restriction makes the charged and neutral dilutions nearly identical
to one another. The ability of the simulation to reproduce the striking behavior of Figs. 22
and 23 offers indirect quantitative evidence that tagging on non-pions is the effect in play
here.® A similar computation, with the same implications, was reported in Ref. [9] for a
variant of Same Side Tagging in Z° — bb; although the measured charged and neutral
dilutions showed a difference consistent with this effect, the uncertainties were so large that
no definite conclusion was made there.

Finally, we show the tagging efficiencies in Fig. 25 as a function of pr(SST). We again
average all the modes of a given type. The data do not show a clear difference in the
efficiencies among the separate modes, but the simulation indicates that the efficiency for
charged B mesons is shifted higher than the neutrals by ~ 2% (absolute) consistently over
this pr(SST) range. The calculated shapes agree fairly well with the data, but in the case
of £D™) at least, there is a small systematic shift in the efficiency: in the simulation there
are too few cases where there is no SST candidate associated with the £D(*). This effect
can also be seen in Fig. 18 where the simulation is slightly below the data in the zero bin.
However, the shape of the efficiency curve tracks the data well in Fig. 25, reflecting the good
description of the track pr distribution. Also note that the efficiency falls off much more
slowly than the tag pr distribution (Fig. 19), because as the threshold is raised and tags
fail the pr cut, another track will often be available as a tag. The J/¢ K data shows some
tendency to have a higher efficiency than the calculations, but the difference is statistically
marginal (recall that the points are correlated and fluctuations manifest themselves over a
range of bins).

As noted in Sec. III, the error on an asymmetry measurement scales with the “effective
tagging efficiency” ¢D? [Eq. (6)]. The decline in efficiency with increasing pr(SST), along
with the relatively constant neutral dilution, imply that the optimum SST threshold should
be relatively low for B%’s and somewhat higher for B*’s. Qur a priori choice of 400 MeV /c
was a balance between the falling efficiency as the pr threshold is increased and the inherent
tracking asymmetry at low pr (Sec. VIC3). These simulations indicate that the maximum
eD? occurs for a pr threshold of about 400-500 MeV/c for our £D™*) samples, and about

®This observation indicates that the SST dilution for neutral B’s can be significantly improved
with particle identification.
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600-700 MeV /c for the J/¢)K*°. The rising charged dilutions compensate for the falling
efficiency such that eD} shows a broad plateau starting at about 600 MeV /c for the £D™),
For the J/$ K™, ¢eD? reaches a maximum around 700 MeV/c, but then declines for large
pr(SST). Except for ¢D} from £D™) | the data are not sufficiently precise to confirm these
predictions for the optimum threshold. Although our SST threshold was not based on this a
posteriors analysis, the pr cut is in fact close to the optimum suggested by the Monte Carlo
simulation.

C. Dilution comparison between £D(*) and J/¢K data

A cursory comparison of Eqgs. (67) and (68) to Egs. (78) and (79) already shows that the
dilutions measured in the £D®*) and J/# K samples are very similar. We consider here how
well they should agree.

The main difference between the £D(*) and J/¢K data samples lies in their different
pr(B) ranges. The £D(*) sample requires a single-lepton trigger which has a higher lepton
pr threshold than the two-lepton trigger used in the J/¢ K samples. The average pr of the
B mesons in the £D(*) sample (based on the corrections of Sec. V C) is about 21 GeV/c,
whereas it is about 12 GeV/c in the J/¢¥ K samples. The spectra are shown in Fig. 26.

We look for a pr(B) dependence by dividing the data samples into pr(B) bins and
repeating the analysis separately for each bin.!® The results are shown in Fig. 27. No
apparent pr(B) dependence is observed, though the statistical sensitivity of the data is very
limited. The dilution from the J/# K™ point around 15 GeV/c is anomalously low, but the
other measurements are consistent with the £D(*) values, suggesting that the low point is
simply an unusually large fluctuation.

Since the data samples are too small to be sensitive to a pr(B) dependence in the dilution,
we turn to Monte Carlo simulation. We again use our tuned PYTHIA generator; however,
in order to generate the very large samples needed for an accurate study we dispense with
the full detector simulation and instead make simple fiducial cuts and apply a pr-dependent
track efliciency parameterization. We remove all non-prompt particles from consideration
as tags in lieu of the SST impact parameter significance cut. The dilutions calculated from
this simulation are also shown in Fig. 27, and they exhibit a common shape, rising with
pr(B) up to about 15 GeV/c, above which they fall slowly. The ratio of charged to neutral
dilutions, around 1.35, shows no significant dependence on pr(B).'!

We can use the calculated pr(B)-dependent dilution along with the pr(B) spectra from
data to compare the data and simulation without having to subdivide the data into even
smaller subsamples, as was done for Fig. 27. The pr(B)-weighted average dilutions appro-
priate to each data sample are shown in Table XIII. The simulation reproduces the data
measurements quite well. We also calculate the ratios between the data and simulation

10Ty the case of the £D(*) analysis, we now fix Amg to the world average as in the J/9¥ K analysis.

1 The dilutions are also observed to be insensitive to the B pseudorapidity, where acceptance and
trigger effects could be important.
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values; we find that the ratios are all consistent with one another, and also with 1.0 (the

measured J/¢¥ K™ dilution being 1.30 low; see Fig. 27).

D. Extrapolating dilutions

The fact that the simulation agrees well with the data, as exemplified by the comparisons
between the calculated and measured dilutions in Table XIII, suggests a method by which
the SST dilution in any B sample of a similar pr range can be determined. Such knowledge
is essential for measurements involving B tagging where, unlike in the B° - B® mixing case,
the dilution is not given by the analysis itself.

The average dilution for a given sample of B’s is calculated by weighting the Monte
Carlo dilution shape by the sideband-subtracted pr(B) spectrum for that sample, as above.
The dilution extrapolation is obtained by multiplying this average by the factor Dyasa/DPurc-
Since the simulation describes both the neutral and charged dilutions well, one can incorpo-
rate both of these dilutions in determining the ratio Dyasa/Dare- This factor is 0.906 +0.101
when averaging all the ratios in Table XIII (including the correlations between the £D(*)
measurements).

The uncertainties on such a dilution extrapolation come from both the measurement
uncertainties of the £D®*) and J/4 K dilutions (shown above) and from the modeling uncer-
tainties of the simulation. To estimate the latter, we vary the parameters that control the
simulation over a fairly wide range. The variations used for the tuned PYTHIA are described
in App. A2c. We note, however, that the Monte Carlo-derived dilutions always enter the
above calculation in ratios, i.e., the relative variation of £D®*) to J/4% K, and charged to
neutral, dilutions as a function of pr(B). We have studied the variations of these ratios
as we change the inputs to PYTHIA. The largest change in the ratio of £D®*) (high-pr) to
J/YK (low-pr) dilutions is 8% from changing the fragmentation pr width to 360 MeV/c.
The ratio of charged to neutral dilutions shifts by at most 4%, also when the fragmentation
pr width is set to the low value.

We have seen (Fig. 24) that the dilutions are also affected differently by tagging on
pions and non-pions. This difference introduces another source of uncertainty, especially
when relying on D, to constrain Dy as suggested above. One could forgo this additional
constraint and accept a somewhat larger error on Dy, but the extrapolation using D, and
Dy 1s not unduly sensitive to the fraction of non-pion tags. As discussed in App. A2c, we
estimate the uncertainty due to this effect by allowing the Kt to 7t ratio of tags to vary by
+30%, and the p to 7T ratio by £50%, and find that the ratio Dy/D, changes by +0.084 due
to the kaons and +0.045 for protons. A simple extrapolation from a D, measurement to Dy
would translate into a neutral dilution uncertainty of ~ 0.02 (given a D, of 0.25). However,
since we propose extrapolating from both charged and neutral dilution measurements to a
neutral dilution, the species-sensitive scaling factor (Dy/D,) only applies to the charged
measurement. The significance of the uncertainty on the fraction of non-pion tags is thereby
reduced in this application.

As an example, if we applied the above prescription to calculate the dilution appropriate
for our J/ K*° sample using all four measurements of Table XIII, then the dilution obtained
would be Dy = 0.171 £ 0.019 4+ 0.013 [34]. The first uncertainty is from the statistical

uncertainty on the scale factor above. The other is the systematic uncertainty from the
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extrapolation. The latter uncertainty is the quadrature sum of the uncertainties obtained
from varying the PYTHIA parameters (+0.010) and from varying the fraction of non-pion
tags (+0.008). The systematic uncertainty from the non-pion contribution is one of the
larger uncertainties, and could be largely eliminated by not using the D, measurements.
This, however, would result in an overall larger uncertainty due to the increased statistical
error. On the other hand, the systematic uncertainty is relatively small even using D, , and
the dilution determination is not very sensitive to the simulation.

This general method can be used to estimate the dilutions in a variety of B meson
samples of interest for precision measurements of CKM parameters that will be performed
in the future. In the upcoming Run II, CDF expects to have tens of thousands of exclusively
reconstructed B° and BT decays through various channels, including B® — J/¢Y K2, =,
K7, and B%t — D®x. The above recipe can be applied to all of them in spite of their
likely differences in selection criteria. Moreover, further dilution measurements can easily be
incorporated into Dyaia/DPurc, thereby facilitating increasingly precise measurements. The
individual large exclusive samples will yield good dilution determinations relatively quickly
and easily, and refined determinations combining different modes can follow.

E. Comparison Summary

We have made several checks on the tagging characteristics of SST in our data. The £D(*)
measurement of Amg is largely insensitive to the pr threshold of the tagging algorithm. How-
ever, the charged dilution shows a dependence on the pr threshold of the tagging algorithm,
in contrast with the largely threshold-independent behavior of the neutral dilution. This
pattern is apparent in both £D®*) and J/+4 K analyses, and is also reproduced by the Monte
Carlo simulation. The simulation indicates that this difference is due to tagging on charged
kaons and protons.

Comparisons with other variables show considerable consistency in the characteristics
of the tagging across decay modes and with Monte Carlo simulation. The general agree-
ment with our tuned PYTHIA is good, although the current data samples are insufficient
to confirm some of the more subtle behavior suggested by the simulation. In particular,
the tagging does not appear to be particularly sensitive to the different kinematics of the
exclusive and semi-exclusive samples in the variables examined, such as the py of the B,
suggesting that SST has more general applicability than to the decay modes examined here.

VIII. SUMMARY

We have developed a Same Side Tagging (SST) method based on the flavor-charge corre-
lations between B mesons and nearby charged particles (“r*”) at production. We have used
SST to tag the initial B flavor in two classes of B reconstruction, while the (nominal) decay
flavor was obtained from the B reconstruction. Comparison of the initial and decay flavors
allows one to quantitatively study the strength (i.e., dilution) of the B-m* correlation, and
to observe the B°-B° flavor oscillations.

The first sample consisted of B — £D®X decays, which, because it is only a par-
tial reconstruction, involved additional complications. We have discussed extensively these
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complications, including the separation of BT and B° decays as well as the corrections for
tagging on B decay products. We observed B-m* correlations, used them to reveal the
time-dependent flavor oscillation of B}’s, and measured its frequency to be

Amg = 0.47175:07% 4 0.034 ps ™. (80)

This result is comparable to other single tagging measurements, and agrees well with a
recent world average of 0.484 4 0.026 ps™' from 6 measurements [29].

The dilution of the flavor-charge correlation for this £D®*) sample was found to be 0.27 +
0.03 £+ 0.02 for the charged, and 0.18 4+ 0.03 4+ 0.02 for the neutral mesons. The effective

tagging efficiencies eD? are

eD? =5.2+1.2%32 % (81)
eD? = 2.4 +0.7198 %, (82)

which are the largest values demonstrated to date for tagging methods applied to high
energy hadron collider data [18]. Although other tagging methods may actually have higher
dilutions than SST, the combination of good dilution and very high tagging efficiency for
SST results in the largest eD?.

This SST method was further tested in the exclusively reconstructed Bt — J/J K™
and B° — J/%K*° decays. The flavor-charge correlations were observed, and the flavor
oscillation was again seen with the B%’s; however, the small sample size did not permit an
accurate determination of Amg,. The dilutions measured in these samples agree well with
those obtained from the £D*) data, although with much less precision.

The behavior of SST was also studied by comparing the two classes of data samples
to a version of the PYTHIA Monte Carlo tuned to charged particle distributions from our
£D° data. Comparing the behavior of several kinematic quantities, the data and the simu-
lation both portray a consistent picture, indicating that the simulation captures the basic
features of this SST. Of particular note, the differences in the charged and neutral dilutions
are principally due—according to the simulation—to tagging on kaons. Also, despite the
different kinematics of our £ZD®*) and J/¢ K selections, the tagging largely behaves the same
way for both, as exemplified by the weak dependence of the dilutions on the pr of the B.
Furthermore, we have developed a general method to estimate the dilution in a sample of
B mesons starting from the dilution measurements in £D®*) and J/4 K samples. We also
expect this dilution to be fairly close to the dilution observed in £D(*), provided that the
average B momentum is not vastly different.

This Same Side Tagging method has been demonstrated to be a powerful means to tag
the initial B flavor, even in the complex environment of a hadron collider. In the upcoming
Run II of the Tevatron we expect to collect ~ 2fb~! of data with the upgraded CDF
detector. This should result in tens of thousands of exclusively reconstructed B® and B+
decays in various channels that can be used for precision measurements of CKM parameters.
The Same Side Tagging technique will be useful for those measurements where initial flavor
determination is critical.
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APPENDIX A: MONTE CARLO SIMULATIONS

In this paper, two types of Monte Carlo simulations are used. Calculations depending
only on the production and decay of B mesons employ a Monte Carlo generator that sim-
ulates only a single B. Situations which depend upon the fragmentation particles resulting
from the hadronization of the b quark, as well as the “underlying event” particles, use the
full event generator PYTHIA.

The entire £D(*) analysis uses the single B generator simulation, with the one exception
of the determination of the {p¢(ct) shape (Sec. VE), which uses the default PYTHIA
simulation. The J/1 K analysis also uses the single B generator, and the comparisons made
in Sec. VII rely on a specially tuned variant of PYTHIA.

1. Simulation of a single B meson

Monte Carlo simulation of only a single B meson is based on the following elements.
Single b quarks are generated using the inclusive b-quark production calculation of Nason,
Dawson and Ellis [35], and the MRSDO [36] parton distribution functions. The b quark
is then transformed into a B meson, with no additional hadronization products, using the
Peterson fragmentation model (¢ = 0.006) [37]. The B meson is decayed using the QQ
program (Version 9.1) [38] developed by the CLEO Collaboration. The sample composition
parameters governing the B decay are listed in Table XIV.

2. Monte Carlo simulation of the whole event
a. “Default” PYTHIA

The PYTHIA Monte Carlo (PYTHIA 5.7/JETSET 7.4) [39] is used in instances where
more than just a single decaying B meson is required. PYTHIA simulates a complete pp
interaction: the bb pair, the hadronization products, and the remaining beam fragments
(“underlying event”). PYTHIA uses an improved string fragmentation model tuned to
experimental data, mostly from high energy ete™ collisions.

Our PYTHIA generation uses most of the typical default parameters. The CTEQ2L [40]
parton distribution functions are used, and the b quarks are fragmented using the Peterson
fragmentation model (e = 0.006) [37]. B** states are also generated by the fractions listed
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in Table XV. However, we suppress the actual B decay performed by PYTHIA and instead
invoke the QQ program with the same parameters in Table XIV. In this way we maintain
a consistent decay model across the two different generators.

b. “Tuned” PYTHIA

The PYTHIA generator is controlled by a series of parameters whose default values
have been adjusted to achieve good agreement with, primarily, high energy ete~ data.
Discrepancies between the “default” PYTHIA (as defined above) and CDF pp data are
apparent, especially when considering particle production that does not originate from the
b hadronization, i.e., the “underlying event.” We have made a separate study [41] of the
fidelity of the “default” PYTHIA generator (after detector simulation) by comparing it to
the £D° data (Sec. VA). This comparison studied track multiplicities (with SST quality
cuts) in AR and A¢ intervals around the B direction, and in several pr bins. The data are
found to have a higher multiplicity of underlying event tracks (as measured away from the
B, e.g., AR > 0.4) than PYTHIA predicts.

We may obtain a good description of the charged particle multiplicities and pr distri-
butions by adjusting several PYTHIA parameters. The properties of multiple interactions
and beam remnants are controlled primarily through the multiple interaction cross section
[PARP(31)], the model for their generation [MSTP(82)], the ratio of gg and gg multiple
interactions [PARP(85,86)], and the width of the Gaussian pr spread of particles produced
in the breakup of color strings [PARJ(21)]. Once these parameters are adjusted to obtain
agreement with the data away from the b-jets, we assume the underlying event is well mod-
eled. We then adjust the Peterson constant PARJ(55) so that the generated multiplicity of
tracks inside the |[AR| < 1 cone around the b matches the observed one. Table XVT lists the
default and tuned values of the relevant PYTHIA parameters. More details may be found
in Ref. [41].

As an example of the effects of the tuning, we show in Fig. 28 the pr distribution of SST
candidates (i.e., tracks that satisfy the SST selection cuts except for the pi® requirement
[Sec. IVB]) in £D®*) data and the two simulations. The tuning procedure uses this distri-
bution from the £D° subsample—except that the tracks were not restricted to AR < 0.7
around the B as they are in Fig. 28—so the agreement of the tuned version with the data is
to be expected. The shape of the default PYTHIA pr spectrum shows a clear disagreement
with the data, with a large excess of tracks at low pr. While there is much better agreement
between data and the tuned PYTHIA in the shapes of the pr and the frequency distribution
of SST candidates (see Fig. 18), the tuned Monte Carlo underestimates the number of £D(*)
events that fail to tag by a few percent (see Fig. 25). The charged and neutral dilutions as
a function of the SST pr threshold (similar to Figs. 21 and 22) for the two versions of the
simulation differ by not more than ~ 20 of the Monte Carlo statistical uncertainty; despite
the better description of the data by the tuned PYTHIA, the tagging results are not much
different between the two simulations.

We then have a variant of PYTHIA tuned to our £D° data. This was done for only
one £D™) mode, and comparisons with the others, or the J/¢ K modes, are independent of
the tuning. We find the tuned version generally provides better agreement than the default
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version with all the data samples considered in this paper, in spite of the fact that the tuning
used only global multiplicity and pr distributions and did not consider particle correlations.

c. Systematic uncertainties for the dilutions derived from PYTHIA

For the study presented in Sec. VIID, we rely on the tuned PYTHIA to calculate the
dependence of the dilution on the pr of the B meson being tagged. In order to determine a
systematic uncertainty on the dilution extrapolation due to the simulation, we regenerated
Monte Carlo samples varying selected PYTHIA input parameters.

The four parameters we varied were the string fragmentation model parameter Ug;“g
which describes the distribution of particle momenta transverse to the string direction, the
underlying event cross section scale factor [PARP(31)], the Peterson fragmentation param-
eter €, and the combined contribution of the B** modes (see Tables XV and XVI). These
four were selected as parameters that most directly influence the track momentum and
multiplicity of potential tags, and hence the dilution.

We varied Ug;“g from our tuned value down to 0.36 (the default value) and up to 0.8,
though the statistical uncertainty from tuning this parameter on the data was only 0.02 [41].
Likewise, we varied the cross section scale factor from 1.0 (the default value) up to 2.5,
even though its tuned uncertainty was only 0.04. The large ranges we used for these two
parameters were chosen as conservative allowances for the applicability of this model.!? The
range was selected by varying the parameter to (approximately) span a symmetric range
about the tuned value that included the default PYTHIA value.

The parameter eg and the fraction of B mesons originating from B** have been measured
elsewhere, and their effects on the model are better understood. We varied eg from 0.004
to 0.008 and the B** fraction up and down by 25%. These ranges are indicative of the
statistical uncertainties derived from the tuning studies [41].

As an additional systematic uncertainty on the behavior of the dilutions, we varied the
fractions of kaon and proton tags in our samples. Section VII B indicates that the difference
between D, and Dy in the simulation is due to tagging on kaons and protons. We varied
the kaon fraction by +30% and the proton fraction by +50% to evaluate this uncertainty.

3. Detector simulation

The outputs of the physics simulations are passed through the standard CDF fast detector
simulation. This simulation is based on parameterizations of detector responses determined
from data, often test beam measurements. The detector simulation output can be recon-
structed using standard CDF software. These reconstructed Monte Carlo events may then
be treated as real data in the analysis.

12The PYTHIA default, 0/7* = 0.36, results from tuning to LEP data. This “string-breaking”
parameter should be, to first order, the same for eTe~ and pp colliders. The sizeable difference
with the LEP value may signal a limitation of the tuning procedure, or be a hint that the model
is inadequate.
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The inclusive lepton trigger introduces a strong kinematic bias in the £ZD®*) analysis.
This bias must be well modeled in the simulation to obtain the proper relative reconstruction
efficiencies and ct corrections, otherwise an incorrect sample composition will result. We take
an empirical approach rather than simulate the trigger directly. The trigger is modeled by
a simple error function parameterization of the ratio of the observed lepton pr distribution
in the data to that generated by the simulation [27]. Examples of such ratios and the error
function fits are shown in Fig. 29 for one signature. Only the region 0 < pr(£) < 20 GeV/c
is fit, since this is where the effect of the trigger turn-on is the most pronounced. Fits
are performed on all five decay signatures, and the sample-weighted average of the five
sets of fit parameters is used to describe the electron and muon trigger efficiencies. These
parameterizations are then applied to the Monte Carlo events to obtain simulated data sets
with the correct trigger turn-on.

A comparison of some kinematic distributions from the data and the simulation is given
in Fig. 30 for a sample decay signature. As can be seen, this procedure provides a fairly
accurate representation of the data.

For the J/¢ K we found that the pr(B) distribution that results after detector simulation
and selection cuts compares fairly well with the data without additional trigger simulation.
The trigger turn-on at very low pr(u) is largely governed by the energy loss in the material
before the muon chambers. This effect is already included in the detector simulation, and
thus no specific trigger simulation is done for the J/¢¥ K Monte Carlo samples.

APPENDIX B: CHARGE ASYMMETRY TAG CORRECTIONS FOR THE J/yK
SAMPLES

A charge bias in the SST algorithm could fake an asymmetry. The maximum likelihood
approach described in Sec. VI B provides a natural tool for the parameterization of a charge
bias and its effect on data.

A tagging algorithm is characterized by the probability, P(s|p), that a given production
flavor p yields a tag of charge s. The production flavor p follows the same convention as the
reconstructed flavor 7: p = 41 for BT and B°, and —1 for B~ and B°. The tag, s, takes
the value of +1 for tagging on a positive track, —1 for a negative track, and 0 if there is no
tag. This probability can be written in a form similar to the expression of P(s|r) used in
our likelihood function (e.g., Eqn. (70)), namely

Putsip) = (IR ey, (1)

which is characteristic of an asymmetry in pkg(s) with amplitude Dy (¢ = S, P, or L for
the type of event).

The six Pg(s|p) describing a tagging method (for a given ¢) are reduced to four by the
two constraints

Py(+|p) + Py(—Ip) + P4(0lp) = 1 (B2)

for either p. Four independent variables may be chosen to describe the tagging in terms of
these probabilities as
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Py(H|+) + Py(—|—) — Po(—|+) — Py(+]-) (83)

P Py(++) + Po(—1=) + Po(—[+) + Ps(+]-)

o, = PolrF) + ol =) & Po(= ) + Pol 1) (B4)
2

Po(+H14) + Po(+]=) = Po(—1+) — Ps(—|-) (B5)

P Py(+1+) + Po(+]=) + Po(—|+) + Po(—|-)

g, = PCHH) & Po(—l) = Pol(1=) = Pol(=I-) (B6)
Py(+|+) + Po(+]=) + Po(—|+) + Ps(—]-)

The first quantity D, is the usual dilution,’® and the second quantity €; is the charge-
averaged tagging efficiency. The charge bias in the tagging algorithm is given as ay [Eq. (75)],
and 6y is the flavor asymmetry in the tagging efficiency [Eq. (77)]. We find it more convenient
to express the latter asymmetry as v4 = 6,4/Ds.

Solving for Py(s|p) in terms of Dy, €4, oy, and 4, and then casting the expressions in
the form of Eq. (B1), one derives the following expressions for k4(s), the charge asymmetry
corrected tag, and £y(s), the corrected efficiency:

s(l—l_s%s) for s = +1

1
k()= et (B7)
1 — 64, -
[ eg(1 4 say) for s =+1
Ep(s) = { 2(1 —ep) fors=0. (B8)

Notice that the untagged events may actually have a small finite dilution since k4(0) need
not be zero. This non-zero dilution arises because the untagged events contain a greater
number of events which should have been tagged with the sign against which the tagging
efficiency is biased.

These equations provide us with a formulation to incorporate tagging asymmetries in

the likelihood function (Sec. VIB).

APPENDIX C: CONSTRAINTS ON THE TAGGING EFFICIENCY
ASYMMETRY

As discussed in the latter part of Sec. VIC 3, a tagging method may not tag on b and b
mesons with equal efficiencies. The efficiency asymmetry é4 is given by Egs. (77) or (B6),
and appears in the likelihood function via 44 = 84/Dy in Eq. (B7). We determine épp, for
the J/v K backgrounds by letting them float in the likelihood fit. However, for the B signal,

we independently constrain -4 as explained here.

13With this convention, the dilution is positive for tagging B°’s and negative for B*’s where the
sign correlation is reversed. However, we explicitly invert the sign in front of the “rkg(s)Dp” term
in Eq. (70) for J/¥ K™, so that Dp is positive in Table X for both B® and B*. All the background

dilutions follow the nominal convention of Eq. (B3).
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With an ideal detector the tagging method would be described by some “true” dilution
and efficiency, and the a and § asymmetries would be zero. A detector bias could alter this
situation by adding or losing tracks based on their charge. For example, positive tracks may
be added to the event by proton spallation from the beam pipe. This effect is actually very
small, but in any case, it adds tracks equally around both b and b mesons. This generates a
non-zero a (more positive tags than negative) in what was an ideal detector, but é remains
zero (b and b mesons have the same positive tag excess). On the other hand, preferential
loss of one charge makes § # 0. An efficiency asymmetry is created since B° events are more
likely to tag on negative tracks than B%’s—this correlation, after all, is why SST works. The
CTC has such a reduced efficiency for low pr negative tracks (Sec. VIC 3).

We consider the situation where we have a net loss of negative tracks, as is actually
observed in our data. Losing a track has one of three outcomes. First, if there was no other
SST candidate in the event, the tag would simply be lost, giving a net positive tagging
asymmetry. If, on the other hand, the SST tagged on another negative track, then the loss
has no effect, since it is only the sign of the tag which matters. However, if the SST tagged
instead on a positive track, then the tagging asymmetry would be enhanced over that from
simply losing negative tags.

If Dy and € are the nominal tagging dilution and efficiency in the absence of negative
track loss (o' = 8’ = 0), then the probabilities P(s|p) [Eq. (B1)] with the negative track loss
can be rewritten in terms of the nominal quantities as

P =& (572 4 (<2 ) (e
-7
P =6 (*52) - (©2)

1-7 1+ 7D
e;( 5 ¢)+e; <—2 ¢)77fz (C3)

P =4 (<572 ), (cy)

P(+]-)

2

where 7 is the fraction of negative tags which are lost but not counting those which re-tag
on another negative track, and fi(;) is the fraction of p = +1 (p = —1) [or B° (B°)] which,
having lost a negative tag, re-tag on a positive track.

We can calculate the ratio 4,4/a, by substituting Egs. (C1)-(C4) into Egs. (B3), (B5),
and (B6), and obtain

v {2-n(l-F+ DANHDLL - T+ A7)
a  {1+7 - DyAFH2D, —n(Dy1+f] - A}

where f = (fi + f2)/2 and Af = (f1 — f2)/2. The behavior of yg/ap is shown in Fig. 31

for values of ag = 2% and D = 16.5%, values which are close to what is observed in data.

(C5)

We also use

20&4,
(1+ag)+ (1 —ag)(f — DyAS)

n= (C6)
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obtained from Eq. (B5). The nominal dilution used is actually the observed dilution in
J/YK data after negative track loss (Section VIC), but the two dilutions are expected to
be similar in light of the small charge asymmetry of ag ~ 2% (Sec. VIC3).

The largest 74/ is achieved with f = Af = 0.5, which gives

Y% _ (D +1)(4 — (14 Dy)n) (1)
ay (33— Dt’#)(llD;, +(1 - 37%)77)'

For values of ag and D% close to what is expected in signal events, this maximal value is
about 2.5. The maximum corresponds to the unrealistic situation where all the lost negative
tags (which do not re-tag negative) always re-tag on a positive track for B’s and never re-
tag on a positive track for B®’s. For the likelihood fit we choose the nominal value of this
ratio to be 1.0, and for the purpose of evaluating systematic uncertainties this ratio is varied
between 0 and 2.5. Since ap is on the order of 2%, yp lies between 0 and 5%.

APPENDIX D: STATISTICAL SIGNIFICANCE OF D, VS. Pr(SST) SHAPE
DIFFERENCES

The variation of the J/1 K+ charged dilution versus the pr cutoff shown in Fig. 23 appar-
ently does not agree very well with either the £ZD(*) data or the tuned PYTHIA simulation
around pr(SST) ~ 0.6 GeV/c. As noted in Sec. VII B, neighboring points are highly cor-
related and it is difficult to judge the significance of trends across several points from the
drawn error bars. The correlation is complicated because events which lose their tags as the
pr(SST) cutoff is raised will sometimes re-tag on another, higher pr, track in the event.
This effect causes the fluctuations to be larger than might be naively expected. We consider
here a test to gauge the statistical significance of the shape differences.

The dilution differences between adjacent pr(SST) cut-offs (say from 0.4 to 0.5 GeV/c)
are much less correlated than the absolute dilutions. The common components largely cancel
in the differences. We estimate the probability to obtain dilution differences similar to the
J/9YK* data and use that estimate as a measure of the statistical likelihood to obtain shape
disagreements like the data.

We calculate a x? comparing the dilution differences between the data and the Monte
Carlo simulation, i.e.,

-3 (5a) 2

where ¢ is the index of the pr-cut (13 values in 0.1 GeV/c increments starting from 0.3
GeV/c), 6; = Diy1 — D;, D; is the measured dilution at 1, 6; is the corresponding difference
from the tuned PYTHIA (Sec. A2b), and o(é§;) is the statistical uncertainty on 6;. We
calculate these differences relative to the PYTHIA value §; since D, varies with pr(SST)
(Fig. 23) and would otherwise introduce an unwanted systematic contribution to (2.

We subdivide the PYTHIA sample into 100 subsamples, each with statistics equivalent
to the J/¢pK* sample, and compute (? for each [34]. These subsamples should have the
same sort of statistical fluctuations as the data. The (? distribution for the Monte Carlo
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subsamples is shown in Fig. 32. The value obtained from the J/4% K™ data, (* = 16.7, is
marked by the vertical line. The data is higher than typical, but well within the spread of
the Monte Carlo samples.

The distribution of the (?’s should, if the dilution differences are truly uncorrelated, follow
the standard x? distribution for n degrees of freedom, which in this case is the number of
differences. A fit of the y2-distribution to the 100 subsamples, with n as a free parameter, is
also shown in Fig. 32. The fit yields n = 12.71 4 0.48, in good agreement with there having
been 13 differences in the (? sum.

We compute from this fit the probability for a sample the size of the J/¢ K™ data to
yield a (? at, or above, the 16.7 observed in the data to be 22%. Thus, we conclude that
the observed differences in the dilution shape with pr(SST') are not statistically unusual.
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TABLES

Decay Signatures

Selection Cuts ¢D° LD~
Ktr~ Ktr—m~ Ktr~ Ktr—ntn— Ktn—7°
pr(0) > 6.0 6.0 6.0 6.0
pr(K) > 0.7 0.6 — 1.0
pr(m) > 0.5 — — 0.8
pr(D) > 2.0 3.0 — —
do/o0 > 3.0 2.0 1.0 1.0
Luy(D)/or,, > 3.0 5.0 1.0 1.0
|Am(D*)| < — — 3.0 —
m(¢D) < 5.0 5.0 — —
—-0b<ctp < 1.0 2.0 1.0 1.5

TABLE I. Kinematic and geometric selection cuts for the five decay signatures. The impact
parameter significance cut do/oo is applied to D daughter tracks. Lyy(D)/or,, is the D decay
length significance relative to the primary, while ctp is the proper decay length of the D with
respect to the B vertex, and Am(D*) is the mass difference between the D* candidate and the D

candidate plus pion mass.

Name JP Width Decay Modes
Dyg ot wide D~
D} 1t wide D*x
D1(2420) 1t narrow D*x
D3 (2460) 2t narrow Dr, D*x

TABLE II. The expected D** states and properties. The classification into wide and narrow
states follows the predictions of Heavy Quark Effective Theory.
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Decay Signatures

B® Decay Chains LD*~ LD~ LD°
— D™ty
D** — E*Oﬂ'*_*
D*° — D' — — F**Py(2/3)B*(D~7?)
5*0 N 507 . . f**PV(2/3) B*(EO’}’)
D**~ — D*~ 79,
D*= — D’ny f**Py(1/3)B*(D°ny e(.) - F*Py(1/3) B*(D°n;)(1 - €(m.))
D*~ — D~n® — f*Py(1/3) B (D =) —
D*~ - D™y — F*Py(1/3) B* (D7) —
D**= - D°r, = = (1~ Py)(2/3)
D**~ - D, = F(1 = Py)(1/3) —
— D*_Z+I/
D*~ - D'r; F*B*(D°n; )e(m) — B (D1 )(1 - e(r.))
D*~ — D70 — f*B*(D~79) —
D*~ - D™y = f*B*(D"7) —
— D 4ty — f —
BT Decay Chains
— 5**0£+I/
E**0 ~ D*rt
D*= - D’r; f*Py(2/3)B*(D '} )e(m.) = F*Py(2/3)B*(D°x; )(1 - €(m.))
D*~ — D~n® — F*Py(2/3)B*(D™x?) —
D* - D% — f**Py(2/3)B*(D™7) —
E**O N E*Oﬂ'g*
D" D0 - — f**Py(1/3)B(Dr?)
5*0 N 507 . . f**Pv(l/S)B*(EO’}’)
D™ - Dr, — F*(1 = Py)(1/3) —
D™ - D°xl, = — £ (L= Py)(1/3)
— 5*0Z+I/
o ﬁorf . _ f*l’)’*(ﬁorf)
D" - D'y = = f*B*(D’)
— Eof—i_l/ - _ f

TABLE III. Table of the various B decay chains and their contributions to the sample compo-
sition of the three general categories of decay signatures (£D*~, £D~, and ZEO). Dashes indicate
that a particular decay chain makes no contribution. The total contribution to a given sample is
simply the sum over the entries in a vertical column. The branching ratio of D* — XY is denoted
by “B*(XY).” Al W?*)’s, T4x'S, and 7’s are lost from the reconstruction, and 7, ’s are identified
with efficiency (7). See the text for a discussion of the other parameters.
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Signature °(0) (pm) b

(YD, D- > Ktr—=n~ 39 0.108
(*D*, D% —» Ktr~ 52 0.075
(D, D° - Ktr—ntn— 49 0.073
(*D*, D% —» Ktr— 70 62 0.070
¢+DY D° - Ktn— 45 0.092

TABLE IV. The parameters of the linear model of the ct resolution [Eq. (53)] for the five direct

decay chains.

Decay signature R** (meas)
{*D-,D- > Ktr—=n~ 0.056 + 0.022
(*D*, D° - Ktn~ 0.003 + 0.029
(*D*,D° » Kto—ntzn~ —0.016 + 0.026
£¥D*, D% - Ktr— 70 0.034 + 0.021
£¥D° D° - Ktrx~ 0.029 + 0.018

TABLE V. The fractions of tags (with no do /0o cut) identified as 7, candidates, R**, measured

in the five decay signatures.

Input Fit Input Fit Qutput
Parameter Value Error Value Error
f** 0.360 +0.120 0.309 +0.100
Ry 2.50 +0.60 2.51 +0.60
c7p (pm) 468 +18 468 +18
T4+ /7o 1.020 +0.050 1.021 +0.049

TABLE VI. The fit input and output values of the measured sample composition parameters.
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name Amg Dy Do

Amy 1.000 ~0.372 —0.172
D, ~0.372 1.000 0.372
Do ~0.172 0.372 1.000
Ry —0.020 0.126 0.007
7 ~0.385 0.406 0.504
Py —0.326 —0.284 ~0.310
e(m,) —0.031 —0.082 0.100
Enorm 0.304 —0.355 —0.445
To —0.005 0.002 —0.001
/70 —0.051 ~0.157 0.009

TABLE VII. The correlation coefficients for Amg, D4, and Dy, with respect to all ten fit
parameters.

Source o(Amyg) o(D4) o(Do)

Sample Composition T0.0310 To01a1 To01a1

b-quark spectrum +0.0060 +0.0052 +0.0017
e isolation cuts +0.0045 +0.0036 +0.0047
Decay model +0.0115 +0.0005 +0.0045
Ly resolution 40.0033 40.0003 £0.0000
&nc(ct) shape +0.0035 +0.0002 +0.0015
B — DM DX +0.0010 +0.0006 +0.0004
B, — vID¥* +0.0010 +0.0019 +0.0008
g — ¢t — D) +0.0006 +0.0012 +0.0025
Total 10,0343 00147 *0.0150

TABLE VIII. Table of the systematic uncertainties.

Decay Fractional Contribution
Signature B — Dg*)D(*) B, - viDY* g — LD
(*D-,D” - Ktr— 7~ 0.017 0.011 0.005
+D*  D° - Ktn~ 0.005 0.008 0.002
tD*, D° » Ktn—ntn™ 0.005 0.008 0.005
(+D*, D° —» K+tr— 70 0.006 0.009 0.019
(+D° D° - K+tr— 0.009 0.011 0.005

TABLE IX. Fractional contribution of B — D{D®X, B = DDM®. and g — ¢z — £D®)
to the £D™*) samples.
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Output Parameters Bt — J/4K* B — J/HK*°
Frac. Signal bi:) 0.067 + 0.003 0.156 + 0.009
Frac. L-Lived Back. fL 0.160 £+ 0.008 0.222 4+ 0.023
Mass Error Scale X 1.34 £+ 0.05 1.54 £ 0.10
ct Error Scale Y 0.99 4+ 0.01 1.06 + 0.03

Prompt:
Mass Slope (x1073) (p 11.04+0.9 44424
Back. Tag Eff. €p 0.703 + 0.005 0.830 + 0.011
Tag Asym. ap 0.033 +£ 0.013 0.092 + 0.031
Eff. Asym. ép —0.002 + 0.007 0.012 + 0.013
Recon. Asym. Rp 0.003 + 0.011 0.036 + 0.029
Dilution Dp —0.069 + 0.013 —0.003 + 0.031
Long-Lived:
1st Lifetime (um) T 595. £ 53. 371. £ 65.
2nd Lifetime (pum) TL2 135.+ 9. 99. £ 21.
Frac. Neg. Back. In 0.137+ 0.014 0.096 + 0.029
Frac. 2nd Lifetime fro 0.781 4+ 0.030 0.626 + 0.104
Mass Slope (x1073) (L -12.342.7 ~17.6+5.3
Back. Tag Eff. €L 0.771+ 0.014 0.778 £ 0.031
Tag Asym. ar, 0.015 + 0.037 —0.044 + 0.079
Eff. Asym. o1, —0.026 + 0.018 —0.029 + 0.038
Recon. Asym. Ry 0.030 + 0.034 0.095 + 0.070
Dilution Dt —0.089 + 0.038 —0.050 + 0.079
B Signal:

Tag Eff. €B 0.624 + 0.020 0.635 + 0.030
Recon. Asym. Rp 0.077 £ 0.041 —0.086 + 0.068
Dilution Dpg 0.185 £ 0.052 0.165 + 0.112

TABLE X. Likelihood fit results for Bt — J/%K* and B° — J/¢%K*°.

central interest is the signal dilution in the bottom line.
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Parameter Central Variation Shift in D,
Value Negative Positive
TB (pm) 486 +18 —0.0012 0.0011
vB/ap =1
a; x107* (GeV/c)* 3.9 +1.8 —0.0001 0.0001
by x1073 (GeV/c)* 1.3 +0.4 0.0003 —0.0003
ag x1072 1.4 +0.4 0.0001 —0.0002
by x1072 2.6 +0.8 —0.0005 0.0005
vB/ap =0
a; x107* (GeV/c)* 3.9 +1.8 0.0002 —0.0003
by x1073 (GeV/c)* 1.3 +0.4 0.0007 —0.0007
ag x1072 1.4 +0.4 —0.0004 0.0003
by x 1072 2.6 +0.8 —0.0010 0.0010
vB/ap = 2.5
a; x107* (GeV/c)* 3.9 +1.8 —0.0010 0.0009
by x1073 (GeV/c)* 1.3 +0.4 —0.0005 0.0004
as x 1072 1.4 +0.4 0.0015 —0.0019
by x1072 2.6 +0.8 0.0005 —0.0008
ap = Central Value
vB/aB 1 18 0.0015 —0.0034
Combined Uncertainty +0.003
—0.004

TABLE XI. The fixed inputs for the Bt — J/9 K™ fit, their central values, 1o variations, and
the resulting shifts of the central value of D,. The shifts are combined in quadrature (see text) to
obtain the combined systematic uncertainty.

62



Parameter Central Variation Shift in Do
Value Negative Positive
B (pm) 468 +18 —0.0002 0.0002
Am (ps~1) 0.474 +0.031 —0.0005 0.0003
vB/ap =1
ay x107* (GeV/c)* 3.9 +1.8 —0.0008 0.0007
by x1073 (GeV/c)* 1.3 +0.4 0.0024 —0.0025
as x1072 1.4 +0.4 0.0013 —0.0014
ba x 1072 2.6 +0.8 —0.0039 0.0038
v7B/ap =0
ay x107* (GeV/c)* 3.9 +1.8 —0.0008 0.0008
by x1073 (GeV/c)* 1.3 +0.4 —0.0004 0.0004
as x 1072 1.4 +0.4 —0.0002 0.0001
by x 1072 2.6 +0.8 —0.0002 0.0001
vB/ap = 2.5
ay x107* (GeV/c)* 3.9 +1.8 —0.0011 0.0010
by x1073 (GeV/c)* 1.3 +0.4 0.0063 —0.0065
as x1072 1.4 +0.4 0.0040 —0.0044
ba x1072 2.6 +0.8 —0.0092 0.0088
ap = Central Value
vB/aB 1 s 0.0031 —0.0057
fs 0.1 +0.1 0.0086 —0.0160
Xs 5.0 +2.0 0.0111 —0.0003
s -0.5 +0.5 —0.0008 0.0007
+0.018

Combined Uncertainty

—0.021

TABLE XII. The systematic uncertainties from the fixed B® — J/v%K*0 fit parameters. The
table is similar to that for J/9 K+ (Table XI) except for the addition of the oscillation frequency
Amg, and fs, us and Xg, which model the K-7 swapping in the K*° reconstruction. The shifts

in Dg are combined in quadrature (see text) to obtain the combined systematic uncertainty.

Sample MC Calculation Data Meas. Data/MC Ratio
B° — ¢D®) 0.196 0.181 + 0.035 0.923 4+ 0.179
B® — J/yK*° 0.189 0.165 4+ 0.112 0.873 + 0.593
Bt — ¢D®) 0.266 0.267 + 0.037 1.004 4+ 0.139
Bt - J/YK* 0.254 0.185 + 0.052 0.728 + 0.205

TABLE XIII. Calculated and measured dilutions for the £D®*) and J /¥ K samples. The calcu-
lated values are from the simplified simulation. The ratios are of the measured values divided by

the Monte Carlo calculations.

63



Parameter Value
Ry 2.722

it 0.231

g 0.125

** 0.356
Py 0.687

T+ /7o 1.014

TABLE XIV. The values of the sample composition parameters used in the QQ (V9.1) B decay

program. The resonant (B — v£D**) and non-resonant (B — v£D*)x,,X) fractions,

respectively, sum by definition to f**.

TES

* %k and %k

non

Parameter
o(B*)/o(B + B* + B**)
o(B* :'P)/o(B+ B*: S =0)
o(B* : 3P))/o(B*+ B** : S =1)
o(B** :3P))/o(B*+B*: S=1)
(B** :3P))/o(B*+ B*: S=1)

g

Value
0.7625
0.320
0.033
0.099
0.165

TABLE XV. The o(B) ratios represent the relative production rates used in PYTHIA for the
different B mesons. The relative ratios are labeled by spectroscopic notation or their spin 5, e.g.,

“oc(B+ B**: S =0)” represents the sum of cross sections for B and B** states with zero spin.

Parameter Default Tuned Description
MSTP(82) 1 3 model of multiple interactions
PARP(85) 0.33 1.0 fraction of color-connected

gg multiple interactions
PARP(86) 0.66 1.0 total fraction of gg

multiple interactions
MSTP(33) No Yes multiply cross-sections by PARP(31)
PARP(31) 1.00 1.66 increase cross-sections by 66%
PARJ(21) 0.36 0.6 ofras
MSTJ(11) 4 3 use Peterson frag. for b,c
PARJ(55) -0.006 -0.0063 &

TABLE XVI. The PYTHIA parameters modified from their defaults in order to agree with

B - viD°, D° - Ktr~ data.
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FIG. 1. A simplified picture of fragmentation paths for a b quark.
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FIG. 3. A typical B — v£D event topology, where a B meson is produced at the event primary

vertex, and decays after traveling a short distance into a lepton, a D meson, and a neutrino
(undetected, and not shown). The D later decays into a kaon and one or more pions.
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FIG. 4. The mass distributions of the fully reconstructed D candidates (solid histogram)
for: £¥D*~, D° — K*x~ (upper left); £tD*~, D° — Ktz ntx~ (upper right); £tD~,
D~ — K*tn~n~ (lower left) and £+ D%, D° — K+r~(lower right). The dashed histograms are the
distributions of the wrong-sign (£{* K¥) candidates. The number of signal events from the fit (solid
curve) is indicated in each plot.
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FIG. 5. The distribution of m(K7r,)—m(K ) for the signature D*~ — D°r,, D° —» K+7r~x°
(7% not reconstructed). The upper histogram is the distribution of the right-sign £D candidates,
and the lower histogram is for the wrong-sign combinations. The solid curve is the fit of the
right-sign distribution, with the fitted background component shown by the upper dashed curve.
This background shape is obtained from a fit (lower dashed curve) of the wrong-sign data.

FIG. 6. The state diagram for all possible B — £D(*)X transitions. The f, f*, and f** are
semileptonic B branching ratios to charm mesons.
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FIG. 7. The distribution of K = pr(£D)/pr(B) (left), and K vs. m(£D) (right) with a fit of
a quadratic function, for the direct decay £*D*~, D% —» K*tx~.
m(£D) plot represent the RMS spread of the K-distribution in each bin, and not the error on the

bin mean of K.
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FIG. 8. The simulation for the direct chain £D*~, with D® — K*7~: AL, (B) distribution, fit-
ted with two Gaussians with relative fractions and RMS values listed (top left); A(1/87v)/(1/BY)
distribution (top right); Act distribution (bottom left); and the RMS of the Act distribution as a

function of ct along with the linear fit for of(ctgq) (bottom right).
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FIG. 9. A schematic representation ofa B — v€D** decay. SST candidate tracks originate from
the primary vertex, while the 7 track originates from the B decay vertex. The impact parameter
of a track with respect to the primary vertex is dg while the impact parameter with respect to the
B vertex is given by dg. When the B vertex and the primary vertex are well separated, the 7
track usually has a large dp and a small dg. The converse is true for primary tracks.
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FIG. 10. Monte Carlo calculation of £37¢ as a function of corrected proper time, ctzd, for decay
signature £ D~: no dg /0o cut (top), and do/0o < 3.0 (bottom).
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FIG. 11. Impact parameter distribution with respect to the B vertex (dg/op) for the £t D,
D~ — K*n~ 7~ decay signature from the data (no do/o¢ cut, D mass sideband subtracted).
Right-sign tags are shown by the solid points. Wrong-sign tags (open circles) are renormalized to
model the right-sign continuum at large impact parameter significance, as described in the text.
The right-sign excess near zero is due to the 7 tags.
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FIG. 12. Measured asymmetries as a function of the corrected proper decay length cigq for the
decay signatures £+ D° (dominated by B*), £ D™, and the sum of all three £t D*~ (dominated by
BP). The three £T D*~ signatures are combined only for display purposes. The dashed line is the
result of the fit.
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FIG. 13. The breakdown of the measured asymmetries of £+ D*~ into the three £* D*~ decay
signatures “4*D*~, D° - Ktr=», «4+t+D*~, D° - Ktn~ntn~” and 4TD~, D~ — Ktn 77 ".
The result of the fit is overlaid.
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background parameterization.
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FIG. 15. Charge asymmetry (o) dependence on the track’s 1/pr (top) and number of primary
vertices ny in the event (bottom) for: Same Side Tags (squares), SST candidate tracks (open
circles), SST candidate tracks with b-vertex veto (solid circles), and tracks in a cone away from the
J /v direction (triangles). The solid curves are the results of least-squares fits of the asymmetry
parameterization (see text) to the SST candidates with the b-vertex veto.
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FIG. 16. The J/ K*° lifetime distributions for the signal (top) and sideband (bottom) regions.
Superimposed on the data are the likelihood fit results (solid line). In the signal region, the B
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FIG. 17. The mass sideband subtracted flavor-charge asymmetry as a function of the recon-
structed ct (points): left is BY — J/¢Y KT, and B® — J/¢%K*° is on the right. Superimposed on
the data are the likelihood fit results (solid lines). The insets are scans through the log-likelihood
functions as the dilutions are varied about the fit maxima. Also shown in the main plots are the
results of simple x? fits to the points (dashed lines, partially obscured by the solid lines).
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FIG. 18. Number distributions of candidate tagging tracks in both £D(*) and J/YK data
(points) and simulation (shaded bands). The widths of the shaded bands are the statistical errors

from the Monte Carlo sample size.
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FIG. 19. The pr distributions of the tag tracks in both £D(*) and J/4 K data (points) and
simulation (shaded bands, width indicating the statistical error).
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FIG. 20. The p4¢ distributions of tag tracks in both £D™) and J/4 K data (points) and simu-
lation (shaded bands, width indicating the statistical error).
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FIG. 21. The extracted value of Amg from the tagged £D*) as a function of the tag pr
threshold. Error bars are the naive statistical errors returned from the fit, and they are correlated
with each other, as are the points themselves (see text).
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FIG. 22. Tagging dilution as a function of tag pr cut for B®. Data are plotted with solid circles
(¢D(*)) and triangles (J/9K), and the corresponding simulations are shown by the shaded bands
(width indicates the statistical error). The various points and their errors are correlated with each
other (see text).
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FIG. 23. Tagging dilution as a function of tag pr cut for Bt data in the £D(*) (solid circles)
and J/9 K (triangles) mode. The corresponding simulations are shown by the shaded bands (width
indicates the statistical error). The various points and their errors are correlated with each other
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FIG. 27. Tagging dilution as a function of B meson pr for charged (left) and neutral (right)
mesons. The dilution measurements are plotted at the pr(B)-weighted centroid of each bin, and
the horizontal error bars span the width of the bin (arrows indicate that a bin is unbounded). The
closed circles are the £D*) data, and the open triangles are J/9¥ K’s. The dashed curves are Monte
Carlo calculations of the pr dependence, and the dotted lines mark the average dilution for the
data points.
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FIG. 29. The ratios of the pr(£) distributions of the data to the Monte Carlo simulation, for
electrons (top) and muons (bottom), for the £ D™, D~ — K*tx~ 7~ signature. The distributions
are fit with the error function, where p% is the midpoint pr(£) and o,, the “width” of the turn-on.
The overall normalizations are immaterial since the £D(*) analysis requires only relative efficiencies.
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FIG. 30. A comparison between the data and the single-B Monte Carlo simulation for the
decay signature £t D~, D~ — K+tx~7~. The distributions compared are: pr of the lepton, e and
g combined (top left), mass of the £D~ system (top right), the pr of the £D~ system (bottom
left), and pr(£D~) after correcting for the missing neutrino (bottom right). Only the agreement
in the corrected pr(£D~) distribution relates directly to the analysis.
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FIG. 31. Variation of 74/a4 versus fi and fo
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FIG. 32.
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