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1 Introduction.

Supersymmetry is a beautiful idea in theoretical physics. Unlike any conventional symmetry,

it relates bosons and fermions. It has proved important in many of the major theoretical

developments in recent times. For example, it plays a vital role in string theory.

There are phenomenological reasons that make supersymmetry attractive as well. The

standard model presents us with a puzzle: why is the electroweak scale so much smaller

than the Planck scale? This puzzle is called the hierarchy problem. Supersymmetric theo-

ries promise to solve this problem. The Higgs particle can be naturally incorporated as a

light elementary scalar in these theories. Quadratically divergent contributions to its mass

are then automatically canceled by equal and opposite contributions arising from fermions.

Moreover, in supersymmetric extensions of the standard model, the large top Yukawa cou-

pling, together with radiative e�ects, provides a mechanism to break electroweak symmetry.

But these positive features come at a price: by pairing fermions with bosons, supersym-

metry doubles the number of known particles. The extra particles must clearly be heavy,

leading to the conclusion that supersymmetry must be broken in nature.

We do not have a good understanding of how this breaking of supersymmetry might

happen. Theoretically, as we will see, this is a fascinating and challenging question. It is of

phenomenological importance as well. The phenomenology of supersymmetric extensions of

the standard model depends in an important way on the masses of the superpartners and the

other soft parameters, which are all ultimately determined by how supersymmetry breaks.

In the absence of a better understanding of supersymmetry breaking, the soft parameters are

taken to be arbitrary, resulting in a huge parameter space. This makes a thorough exploration

of the resulting phenomenology daunting. A better understanding of the mechanisms of

supersymmetry breaking can, in turn, help in exploring scenarios with restricted choices of

the soft parameters. Such explorations are useful in guiding the experimental search for

supersymmetry.

In this review, we will discuss various mechanisms for dynamical supersymmetry break-

ing. In the supersymmetric context, the electroweak scale is ultimately related to the su-

persymmetry breaking scale. Thus, the hierarchy problem can be recast in the form: why

is the supersymmetry breaking scale so much smaller than the Planck scale? Dynamical su-

persymmetry breaking provides the most attractive answer to this question [1]. The idea is

that non-perturbative e�ects in a gauge theory are responsible for supersymmetry breaking.

For these e�ects to be important, the gauge coupling must be large. Moreover, asymptotic

freedom tells us that this can happen at a scale much lower than the Planck scale. Thus we

have an appealing answer to the hierarchy problem: the electroweak scale is so much lower

than the Planck scale because gauge couplings only run logarithmically.
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Recently, there has been phenomenal progress in our understanding of the dynamical

behavior of supersymmetric gauge theories [2]-[7]. This progress in turn has lead to a better

understanding of dynamical supersymmetry breaking [8]-[28]. Our main aim is to review

some of these developments. Speci�cally, we will study theories with N = 1 global super-

symmetry in 4 dimensions. The restriction to N = 1 supersymmetry arises because of the

phenomenological requirement of chiral matter content. Considering only globally super-

symmetric theories is less well motivated. We do so here, �rst, because the recent progress

has mostly been con�ned to such theories, and, second, because it allows for constructing

models where the supersymmetry-breaking dynamics takes place at scales low enough to be

observed in the foreseeable future. The study of such models carries a certain phenomeno-

logical appeal.

A very large number of models exhibiting dynamical supersymmetry breaking have been

constructed, using the newly developed techniques, in the recent past [13]-[28]. Clearly,

it would be pointless to try and describe them all. Instead, we will attempt to build up

an understanding of supersymmetry breaking by studying a few illustrative examples. The

general progression will be from simpler to more complicated theories. As the reader will

see, many of the main ideas will recur throughout this study in di�erent contexts. Wherever

possible, we will also attempt to make contact with other examples studied in the literature

(for short reviews on the subject, see [29]-[32]).

The review is structured as follows. In Section 2, we �rst provide a very quick overview

of some of the recent developments in supersymmetric gauge theories. The discussion is

by no means complete and is intended more to remind the reader about some salient fea-

tures, which will be important in the discussion of supersymmetry breaking. Section 3 is

a brief digression, in which we study a supersymmetric quantum mechanics problem with

supersymmetry breaking. This provides a convenient setting in which to introduce some of

the important ideas. Thereafter we turn to �eld theories. First, in Section 4, some general

features of supersymmetry breaking as well as some simple examples of tree level supersym-

metry breaking are discussed. Section 5.1 then deals with calculable models of dynamical

supersymmetry breaking. In these models the low-energy e�ective theory in which super-

symmetry breaking occurs can be completely controlled. This allows a great deal to be

learned about the resulting supersymmetry breaking ground state. Section 5.2 deals with

more complicated theories. In some of these (Sections 5.2.1-5.2.3), we will be able to de�-

nitely establish supersymmetry breaking without being able to calculate in detail where the

resulting vacuum lies. In other instances (Section 5.2.4), we rely on the global symmetries

and the Witten index to plausibly argue that supersymmetry breaking occurs. Finally, in

Section 6, we describe how some of these theories of dynamical supersymmetry breaking
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might apply to nature in the gauge-mediated supersymmetry breaking scenario.

2 Key ideas in the study of nonperturbative supersym-

metric gauge dynamics.

As was mentioned in the Introduction, recently there has been a great deal of progress in

our understanding of the non-perturbative dynamics of supersymmetric gauge theories. In

this section, we brie
y discuss some of the key ideas that have played an important role in

these developments. We then also review the case of supersymmetric QCD to illustrate the

di�erent kinds of non-perturbative e�ects that can occur in a gauge theory. For an in-depth

discussion of supersymmetric gauge theory dynamics, we refer the reader to the reviews [5],

[6], [7].

The recent progress in our understanding of four dimensional N = 1 supersymmetric

gauge theories was initiated by the work of Seiberg [2], [3], [4] (for a review of important

work on the subject in the 1980's, see [33]). Two central ideas have played a particularly

important role in these developments:

1. Holomorphy. The key realization is that the superpotential of the Wilsonian e�ective

action of supersymmetric theories is a holomorphic function of the chiral super�elds.1

In addition, one can regard the couplings of the theory (the strong coupling scale,

�, or the various superpotential couplings) as expectation values of nondynamical

chiral super�elds [2]. The couplings can be assigned charges under various symmetries

(which are broken by their expectation values). This leads to certain \selection rules,"

restricting how the couplings can appear in the e�ective action. Now the Wilsonian

superpotential has to be a holomorphic function of the chiral super�elds as well as

the couplings of the theory. Holomorphy in the �elds and couplings, together with

the requirement of consistency with various limits and the above mentioned \selection

rules" allow one to exactly determine the Wilsonian superpotential of the theory in

many cases [2].

2. Duality is the second crucial ingredient in our understanding of N = 1 supersymmetric

theories. Generalizing the notion of electric-magnetic duality in Maxwell electrody-

namics, Seiberg suggested that, in many cases, the infrared limit of a supersymmetric

gauge theory (the \electric" theory) is equivalent to the infrared limit of another su-

persymmetric gauge theory (the \magnetic" theory) [4]. In some cases, both theories

1Holomorphy can, in fact, be used to prove [2] the \old" nonrenormalization theorem, that the superpo-
tential is not renormalized at any order of perturbation theory [34].
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ow to a nontrivial infrared �xed point and a description of the �xed point in terms

of either theory is appropriate (it is said then that both theories are in the \conformal

window"), although only one of the descriptions may be weakly coupled. In other cases,

there is only one description of the infrared theory, in terms of the either the electric

or magnetic degrees of freedom (in these cases the relevant theory is often infrared

free). It was also shown that often the exact superpotential in an electric con�ning

theory can be calculated by doing an instanton calculation in a weakly coupled and

completely higgsed dual theory. While there is no proof of duality in N = 1 theories,

Seiberg's conjecture has survived many nontrivial tests [4], [5], [35], most recently from

brane dynamics [36].

Let us illustrate what these insights teach us by studying an N = 1 SU(Nc) gauge theory

with Nf 
avors of quarks (supersymmetric \QCD"). By this we mean Nf chiral super�elds,

which we denote as Q�
i , i = 1; ::Nf in the representation and Nf �elds �Qi

�, i = 1; ::Nf

in the representation. It is useful to study the behavior of this theory as Nf is varied.

We start by �rst considering the case Nf = Nc � 1. Classically, the theory has a D-term

potential which is set to its minimum when the �elds satisfy the conditions:

Qy i T a Qi � �Qy
i (T

a)� �Qi = 0 (1)

for each group generator T a. These conditions do not select a unique vacuum. Instead, the

potential has a set of 
at directions. A general result [37] says that the 
at directions can

be parametrized by gauge invariant chiral super�elds. In the present case, there are N2
f 
at

directions. These correspond to the \meson " gauge invariants M i
j � �Qi � Qj. Along these


at directions the SU(N) gauge symmetry is, generically, completely broken. The SU(N)

vector multiplets are heavy and the low-energy dynamics can be described in an e�ective

theory containing only the mesons M i
j .

We now turn to the quantum theory. A non-renormalization theorem [34] states that

the 
at directions are not lifted at any order in perturbation theory. But they can be lifted

non-perturbatively. In fact, in the present case with Nf = Nc � 1, such a superpotential is

induced by instanton e�ects in the Wilsonian e�ective theory for the mesons,M i
j . It has the

form:

WNP = C
�b0

detM
(2)

Here � is the strong coupling scale of the gauge theory, and b0 = 3Nc �Nf is the coe�cient

of the one loop beta function. We note that holomorphy and the various symmetries dictate

that a superpotential can only have this form. An explicit constrained instanton calculation

then shows that its coe�cient C is indeed non-zero [8]. Note that the superpotential results
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in a potential energy that goes to zero as some of mesons go to in�nity. This is often referred

to as \runaway" behavior and results in an unstable ground state.

Now let us vary Nf . When Nf < Nc � 1, the moduli are still described by the meson

�elds M i
j for the appropriate number of 
avors. Generically in moduli space a SU(Nc�Nf )

group is left unbroken. This group con�nes, giving rise at low energies to an e�ective theory

involving only the mesons. The non-perturbative superpotential in this e�ective theory arises

due to gaugino condensation and is given by:

WNP = CNc;Nf

 
�b0

detM

! 1

Nc�Nf

: (3)

For Nf > Nc�1 things get more interesting. For example, for Nf = Nc one �nds that the


at directions include, besides the meson chiral super�elds, additional \baryons," B � QNc

and �B � �QNc. These are not all independent. Correspondingly, the quantum theory has a

constraint relating them, which is implemented by adding a term in the superpotential:

WNP = A
�
detM � B �B � �b0

�
: (4)

Here A is the Lagrange multiplier whose F term implements the constraint. In the quantum

theory this moduli space is smooth and the low-energy e�ective theory in terms of the mesons

and baryons is valid everywhere in moduli space. In particular, there is no submanifold of the

moduli space where extra degrees of freedom became massless. The theory with Nf = Nc+1

also has a smooth quantum moduli space. The main di�erence is that the \origin" is part

of the moduli space in the quantum theory too. All the global symmetries are unbroken at

the origin and the mesons and baryons satisfy the 't Hooft anomaly matching there as well.

Finally, for Nf > Nc + 1 one �nds that the theory has a dual \magnetic" description in

terms of an SU(Nf �Nc) gauge theory with Nf 
avors of quarks, qi and �qi, i = 1; :::Nf. In

addition, there are N2
f chiral super�elds M i

j which can be identi�ed with the mesons of the

electric theory. Note that in the dual description the mesons are elementary �elds present

in the microscopic \magnetic" theory. The dual theory also has a tree level superpotential

of the form:

W = �qi M
i
j q

j : (5)

This brings us to the end of our lightning review of the recent developments. To summa-

rize, holomorphy and duality help determine the appropriate low-energy degrees of freedom|

the ones pertinent to the physics below the strong coupling scale of the gauge theory|and

determine the exact superpotential of the low-energy e�ective theory.

How do these insights help study supersymmetry breaking? We note that the ideas

described above are useful in determining the low-energy dynamics of supersymmetric gauge
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theories. We will encounter many instances, during the study of supersymmetry breaking,

in which, by adjusting an appropriate coupling, the scale of supersymmetry breaking can

be made lower than the scale of strong dynamics in the gauge theory. In these cases, the

breaking of supersymmetry can be conveniently studied in a low-energy supersymmetric

e�ective theory. The ideas described above will prove very useful then in determining this

e�ective theory and studying its behavior.

The e�ective theory in these cases will usually only involve a set of chiral super�elds,

�i. The corresponding Wilsonian e�ective lagrangian is then given by a supersymmetric

nonlinear sigma model:

Leff =
Z
d4� K(�y;�) +

� Z
d2� W (�) + h:c:

�
: (6)

Here K is the K�ahler potential of the low-energy theory (a real function of the chiral super-

�elds �i), and W is the superpotential of the theory|a holomorphic function of the chiral

super�elds (and couplings). The complete component expansion of (6) can be found in [38].

Here we will only give the expression for the scalar potential of the sigma model (6):

V = W �
i� K

�1 i�j Wj ; (7)

where Wi = @W=@�i;W �
j = @W �=@�� i�, and K�1 i�j is the matrix inverse to the K�ahler

metric Kij� = @2K=@�i@�� j�; in (7) all functions are understood to depend on the scalar

components of the super�elds only.

As we will see in Sections 3 and 4, supersymmetry is broken if and only if the vacuum

energy is nonvanishing. Since the K�ahler metric Kij� (and its inverse) is a positive de�nite

matrix|so that Leff makes sense as a physical theory|the potential2 V from (7) is positive

semi-de�nite. It vanishes only if the F trem conditions, Wi = @W=@�i = 0 are met for all

the �elds �i. If, on the other hand, these F term conditions cannot all be met, the vacuum

energy must necessarily not vanish and supersymmetry is broken. Once we have found,

by holomorphy and duality, the correct degrees of freedom and the exact superpotential of

the low-energy e�ective theory, we can say with certainty whether a given theory breaks

supersymmetry.

Upon inspection of the e�ective Lagrangian (6), one sees that other important physical

properties of the low-energy theory, such as the expectation values of the �elds, the vacuum

energy, the masses and interactions of the light �elds, depend on the K�ahler potential. In

some cases, we will be able to explicitly determine it, while in other cases we will be at least

able to establish that the corresponding K�ahler metric is non-singular.

2Strictly speaking, to �nd the ground state energy one has to use the 1PI rather than the Wilsonian
e�ective action. The superpotentials of the 1PI and Wilsonian e�ective actions, however, are identical
because of the nonrenormalization theorem (for discussions see [5], [7], [39]).
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3 A toy model.

In this section, we digress from the study of �eld theories to explain some key ideas of

supersymmetry breaking in a quantum-mechanical setting. We will consider in some detail

Witten's supersymmetric quantummechanics. This example will be used to introduce several

important concepts: the order parameter for supersymmetry breaking and the Witten index.

The hope is, that by encountering them in a simpler context the reader will gain a better

appreciation for these ideas.

3.1 Supersymmetry breaking in quantum mechanics.

The quantum mechanical system is that of a spin-1/2 particle moving on the line [1]. The

state of the spin-1/2 particle is described by a two-component wave function 	(x); the two

components of 	 are the wave functions of the particle with spin projections +1=2 and �1=2,
respectively. The supersymmetric Hamiltonian is:

H =
1

2
p2 +

1

2
W 0(x)2 +

1

2
�3 W

00(x) : (8)

Here and below �1;2;3 denote the Pauli matrices, W 0(x) = dW=dx, etc. The supersymmetry

generators are:

Q1 =
1

2
�1 p +

1

2
�2 W

0(x) ; Q2 =
1

2
�2 p � 1

2
�1 W

0(x) : (9)

They obey the supersymmetry algebra:

f Qi ; Qj g = �ij H ; i; j = 1; 2; (10)

with H given by (8). The function W (x) is called the superpotential; it completely deter-

mines the interactions (in order to fully underline the analogy with quantum �eld theory, we

have slightly changed notations from [1]). Note that the Hamiltonian (8) is similar to the

one obtained in 3 + 1 dimensional renormalizable supersymmetric �eld theory with spin-0

and spin-1=2 �elds only: all interactions are derived by the derivatives of a single function,

the superpotential W (x). In the �eld theory case, the \spin-orbit" term corresponds to

the Yukawa interaction between the bosons and fermions in the supermultiplet. Also, we

see from (10) that the supersymmetry generators transform the +1=2 eigenstate of �3 to

the one with eigenvalue �1=2. Thus, these two eigenstates are the analogue of bosons and

fermions in this quantum mechanics problem. Note, in particular, that the Hamiltonian,

eq. (8) commutes with �3 and does not change \fermion number".

The �rst issue we want to discuss is the order parameter for supersymmetry breaking. The

spontaneous breaking of supersymmetry means that even though the dynamics is invariant
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under supersymmetry, the ground state is not. The noninvariance of the ground state j0i
under supersymmetry transformations implies that the supersymmetry generators Qi do not

annihilate the ground state, Qij0i 6= 0. Consider now the ground state energy of the system,

E0, and the following chain of equalities:

E0 � h 0 j H j 0 i = 2 h 0 j Qi Qi j 0 i = 2 jj Qi j 0 i jj2 > 0; i� Qi j 0 i 6= 0; (11)

where we used the fact that the supersymmetry algebra (10) relates the supersymmetric

Hamiltonian to the square of the supersymmetry generators (there is no sum over i in

eq. (11)). The inequality in (11) holds whenever supersymmetry is broken, i.e. Qij0i 6= 0.

We thus see that the ground state energy of a supersymmetric system is positive if and only

if supersymmetry is broken and zero if and only if supersymmetry is unbroken. The ground

state energy is therefore the order parameter for supersymmetry breaking. We note that

this conclusion trivially generalizes to quantum �eld theory: the relativistic supersymmetry

algebra reduces to (10) in the rest frame of the system.

At the classical level|ignoring the spin-orbit interaction and the zero-point energies|it

is easy to see whether supersymmetry is broken or not. We only have to look at the graph of

the potential energy V �W 02. We have shown three possibilities on Fig. 1. Fig. 1a shows a

potential which is everywhere positive. Thus, classically, the ground state energy is positive

and supersymmetry is broken. The potentials on Fig. 1b,c both allow for classical states of

zero energy, hence, classically, supersymmetry is unbroken.

(a.) (b.) (c.)

V

x

V

x

V

x

Figure 1: The three potentials discussed in the text: (a.) supersymmetry broken at tree level, (b.)
supersymmetry unbroken, (c.) supersymmetry unbroken at tree level, but broken due to instantons
(tunneling between the wells).

The classical approximation is, of course, not the whole story. It is natural to ask whether

quantum corrections can change the classical answer. In supersymmetric systems, as we will

see throughout this article, it is often possible to give exact answers to questions about

the ground state. As discussed above, supersymmetry is unbroken if and only if there is a

normalizable zero energy state (we assume here that the system has a discrete spectrum).
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Finding the zero-energy state implies solving the second order Schr�odinger equation Hj0i =
0. Now eq. (11) shows that E0 = 0 if and only if Qij0i = 0; hence, it su�ces, instead, to

solve the �rst order equation Qij0i = 0 (see the de�nition of Qi, eq. (9)). While a general

second order equation can only be solved numerically, the corresponding �rst order equation

can be solved for an arbitrary superpotential W (x). Using simple Pauli matrix algebra, it

is easy to check that

	0(x) = e�3 W (x)

 
c1
c2

!
=

 
eW (x)c1
e�W (x)c2

!
(12)

is the general solution for the zero-eigenvalue wavefunction. 	0 depends on two integration

constants c1; c2 and is normalizable only in two cases: either c1 = 0 and W (x) ! +1
as x ! �1, or c2 = 0, while W (x) ! �1 as x ! �1. Thus a normalizable ground

state of zero energy exists only if the superpotential W (x) is \even at in�nity," i.e. has

the same limit (+ or �1) at both x = +1 and x = �1. A smooth function W (x) with

this property will necessarily have an odd number of extrema (and its derivative W 0|an

odd number of zeros). Equivalently, since V (x) = (W 0)2=2, we �nd that the criterion for

unbroken supersymmetry is that the potential has an odd number of zeros.

We can now revisit the three potentials on Fig. 1 and �nd whether supersymmetry is

broken or not in the exact ground state. The potential on Fig. 1a has no zeros, hence

according to our criterion, supersymmetry, being broken at the tree level, remains broken

once quantum corrections are included. The potential on Fig. 1b has one minimum, hence

supersymmetry remains unbroken in the quantum theory. Finally, in the case of Fig. 1c, the

potential has an even number of zeros. Therefore, even though supersymmetry is unbroken

at the classical level, it is broken by quantum e�ects. We will see that all three cases have

counterparts in quantum �eld theory.

It is the case depicted on Fig. 1c that will be of most interest for us. The reason is that

the breaking of supersymmetry in the supersymmetric system with a double-well potential

is due to nonperturbative e�ects|it occurs because of tunneling between the two wells. We

found earlier that in the classical approximation (and, even though we did not show this,

also in perturbation theory, including the zero-point energy and the spin-orbit interaction)

the ground state energy vanishes and supersymmetry is unbroken. The e�ect of tunneling

can be evaluated in the semiclassical approximation [40]. The WKB formula for the ground

state energy splitting gives EWKB
0 = h0jĤ j0i � �h! exp

�
� 1

�h

R
dx
q
2V (x)

�
� �h! where ! is

the frequency of classical motion near the bottom of the well, and the integral is over the

classically forbidden region of x. Since, for appropriate parameters of the potential (or, in the

semiclassical �h! 0 limit), the tunneling probability is exponentially suppressed, the scale of

supersymmetry breaking|the ground state energy|is much smaller than the characteristic

frequency of motion inside the wells.
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The generation of small scales, described above, also occurs naturally in many �eld

theory models of dynamical supersymmetry breaking and is the key property that makes

them interesting candidates for explaining the hierarchy of scales in nature.

3.2 The Witten index.

In the remainder of this section we will introduce another important concept in the study of

supersymmetric theories: the Witten index [41]. As we saw in our discussion of the super-

symmetric quantum mechanical model, whether supersymmetry is broken or not depends

only on the behavior of the superpotential W (x) at large x. Consequently, any continu-

ous change of W (x) that does not change its asymptotics at in�nity will have no e�ect

on whether the model breaks supersymmetry. This is an indication that the issue of su-

persymmetry breaking has topological nature: it depends only on asymptotics and global

properties of the theory. As a measure whether supersymmetry can break or not in a given

model, Witten introduced the index, Tr(�1)F , with F|the fermion number:

Tr (�1)F � X
E

nB(E) � nF (E) = nB(0) � nF (0) : (13)

Here nB(F )(E) denotes the number of bosonic (fermionic) states of energy E. The reason for

the second equality is that in a supersymmetric system every bosonic state of nonvanishing

energy is degenerate with a fermionic state (its superpartner), hence nB(E) = nF (E) for E 6=
0, and only the zero energy states contribute to the index.3 Note that since supersymmetry

is unbroken if the theory has a zero energy state, Tr(�1)F 6= 0 implies that the vacuum is

supersymmetric.

The main utility of the index (13) is that it is invariant under changes of the Hamiltonian

that do not change the asymptotics of the potential (i.e. changing the Hamiltonian such that

the added terms do not grow faster at in�nity than the ones already present). This is because

under continuous changes of the parameters states can leave or descend to the zero energy

level, but can do so only in pairs (because of the doubling of all E 6= 0 levels), and hence do

not a�ect the index. Because of this invariance, a calculation of the index at weak coupling

(i.e. in perturbation theory) allows one to deduce information about the ground state even

at strong coupling.

We note that if a calculation of the index yields Tr(�1)F = 0, without separate knowl-

edge of whether zero energy states exist (nB(0) = nF (0) 6= 0) one can not decide whether

supersymmetry is broken. In the case of vanishing index, under continuous deformations of

3The pairing of nonzero energy states is true whether or not supersymmetry is broken|in the case of
broken supersymmetry, every state is degenerate with the state obtained from it by adding a zero-momentum
goldstino (Sect. 4.2).
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the parameters of the Hamiltonian, all states can leave zero energy, so it is possible that

supersymmetry is broken for some values of the parameters and not for others. In this case,

more dynamical information is required to �nd whether the ground state is supersymmetric.

As an example of the application of the Witten index, we can quickly calculate it in our

quantum mechanical model (we de�ne F = 1 for spin projection j + 1=2i and F = 0 for

j � 1=2i ), for the three potentials of Fig. 1. In perturbation theory, the potential of Fig. 1a

does not allow for any zero-energy states, hence the index vanishes (and, as eq. (12) shows,

there are no states of zero energy in the exact solution, so supersymmetry is broken). The

potential of Fig. 1b allows for a single zero energy state (in the harmonic approximation

near the minimum, depending on the sign of W 00, it is either bosonic or fermionic), hence

Tr(�1)F = �1 (say), and supersymmetry is unbroken, even when all quantum e�ects are

taken into account. Finally, Fig. 1c has two perturbative zero-energy states|in the harmonic

approximation to eq. (8) near each of the minima, one of them has spin +1=2, and the other

�1=2|so Tr(�1)F = 0 and supersymmetry can be broken (and, as the exact solution,

eq. (12) shows, indeed is).

We should also note that by continuously changing the parameters we can not interpolate

between the theories of Fig. 1a and Fig. 1b (or Fig. 1b and Fig. 1c) without changing the

Witten index. In order to deform, say, the potential of Fig. 1b to that of Fig. 1c, we would

have to change the asymptotic behavior of the superpotential W (x) from being even to

being odd at in�nity. This change of asymptotic behavior causes vacua to \appear" (or

\disappear") from in�nity (i.e. the second minimum of Fig. 1c). We will see examples [19]

of such behavior when we consider �eld theory models; see Section 5.2.2.

Finally, we add some comments on the Witten index, Tr (�1)F , in �eld theory. Witten

[41], [42] calculated the index in pure supersymmetric Yang-Mills theory (i.e. without mat-

ter), and found it nonvanishing. Thus, pure SYM theory does not break supersymmetry. A

corollary from Witten's result is that vectorlike gauge theories without classical 
at direc-

tions (or, which is the same, with added mass terms for all matter �elds) also do not break

supersymmetry. This is because at low energies the vectorlike theories with massive matter


ow to pure SYM, for which the index calculation gives a nonzero result. This argument

can fail in vectorlike theories with classical 
at directions (since such theories have a moduli

space which renders the index ill-de�ned at the classical level) [41, 19]. Even so, we will see

that most known theories exhibiting dynamical supersymmetry breaking are chiral.

4 Supersymmetry breaking in �eld theory.
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4.1 The order parameter.

We start this section by �rst reviewing some general features associated with supersym-

metry breaking in quantum �eld theory. The order parameter for (global) supersymmetry

breaking is simply the vacuum energy. To see this we note that the N = 1 four-dimensional

supersymmetry algebra [38] n
Q�; �Q _�

o
= � 2 ��� _� P� (14)

reduces, in the rest frame of the system, P0 = H; ~P = 0, after appropriate rescaling, to

the nonrelativistic algebra (10). Thus, the arguments following eq. (10) can be repeated in

the �eld theory case, showing that the order parameter for supersymmetry breaking is the

vacuum energy.

4.2 Goldstone fermions.

A straightforward generalization of Goldstone's theorem implies, very generally, that if global

supersymmetry is broken there must be a massless fermion in the spectrum, coupling to the

supercurrent. It is called a goldstino. The basic idea is to consider a Green's function,

G�
� _�(x) = h0jTS�

� (x)
� _�(0)j0i, involving the supercurrent, S�

� , and a fermionic �eld � _�. Since

the current is conserved, we have:Z
d4x @�G

�
� _� = h0j fQ�; � _�(0)g j0i; (15)

(the supercharge is, as usual, the integral of the zeroth component of the supercurrent,

Q� =
R
d3xS0

�(x)), or, equivalently in momentum space:

i P� G
�
� _�(P )

����
P�!0

= h0j fQ�; � _�(0)g j0i: (16)

The anticommutator above can be non-zero only if supersymmetry is broken. Further, if it is

nonvanishing, we �nd from eq. (16) that there must be a massless particle in the spectrum,

giving rise to a pole in the Green's function G�
� _� at zero momentum. By inserting a complete

set of states on the right hand side it becomes clear that this particle must be a fermion, ��,

with coupling to the supercurrent h0jS�
�j�� _�i = f��� _�.

4

There are two kinds of multiplets in an N = 1 theory in 4 dimensions|chiral multi-

plets and vector multiplets. Let us denote the corresponding fermions by  and �. Under

supersymmetry these transform as [38]:

�� = i
p
2����@�� +

p
2�F ; (17)

4Taking the supercurrent �S�
_� instead of � _� in (16) and using the supersymmetry algebra fQ�; �S�_�(x)g =

�2��� _�T
�
� (x), see eq. (14), one can also relate the vacuum energy density, E0, to the goldstino coupling,

E0 = f2 [1].
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��� = ����F�� + i�D; (18)

where F andD are the auxiliary �elds of the chiral and vector multiplet, respectively, � is the

scalar component of the chiral multiplet, and F�� is the �eld strength of the gauge �eld of the

vector multiplet. Either of these two kinds of fermions can be present in the anticommutator

in (16). The �rst two terms in eqs. (17) and (18) cannot acquire vacuum expectation values,

since Lorentz invariance is unbroken. Thus the condition for supersymmetry breaking is

that some auxiliary component, either F or D, must acquire a vacuum expectation value. In

general both F and D terms could get such vevs, correspondingly the goldstino will generally

be a combination of the fermions  and �.

One distinction between bosonic symmetries and supersymmetry is worth pointing out.

For a broken bosonic symmetry, the Goldstone boson is associated with long wavelength


uctuations (\spin waves") along the 
at direction of the potential associated with the

global symmetry. In contrast, for broken supersymmetry, a goldstino arises even when the

vacuum is unique.

4.3 Simple examples of F - and D-type supersymmetry breaking.

It is useful to begin the study of supersymmetry breaking in �eld theory by studying a

simple example, called an O'Raifeartaigh model, which does not involve any gauge �elds|in

this case supersymmetry breaking will occur because an auxiliary F component acquires

a vev. As we will see below, the low-energy dynamics in more complicated situations will

often reduce to a model of this type. The example we consider here [43], has three �elds,

�1; �2; �3, with a conventional K�ahler potential, K =
P3

i=1 �
y
i�i, and a superpotential given

by:

W = m �1 �2 + � (�21 � a2) �3: (19)

The corresponding scalar potential can then be shown to be, using (7):

V = jm �1j2 + j� (�21 � a2)j2 + jm �2 + 2 � �3 �1j2; (20)

where the three terms on the right hand side are the squares of the F components of �2, �3,

and �1, respectively. One can see immediately that the �rst two terms on the right hand

side cannot both be zero, thus the vacuum energy must be non-zero and supersymmetry

is broken. If jmj2 > 2j�2a2j, one �nds that the global minimum lies at �1 = �2 = 0,

correspondingly F3|the auxiliary component of �3|acquires a vev. The potential, eq. (20)

has a 
at direction which corresponds to varying �3; it can therefore take any value. Vacua

corresponding to di�erent values of �3 are physically di�erent; for example, the spectrum of

the theory depends on h�3i.
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Since supersymmetry is broken, we do not expect, in general, bosons and their fermionic

partners to be equal in mass. It is easy to see that this is in fact true. For example, working

in the vacuum where h�3i = 0 one �nds the following excitations. In the bosonic spectrum,

�3 has zero mass, �2 has mass m, and two real scalar �elds which arise as combinations of

�1 and �
y
1 have masses, jmj2� 2j�2a2j. In the fermionic spectrum,  3 (the fermionic partner

of �3) is massless, while  1 and  2 pair together with a Dirac mass m. We see thus that the

degeneracy between �1 and  1 is lifted. Notice further that there is one massless fermion,

 3, it is the goldstino. This is accord with the fact that F3 acquired a vev in this vacuum.

We saw above that the potential, eq. (20), does not uniquely determine h�3i and the

classical theory has a 
at direction. Since supersymmetry is broken we expect quatum e�ects

to lift this 
at direction and to pick out a unique value of h�3i. The quatum e�ects enter

through the K�ahler potential which is perturbatively renormalized. The classical vacuum

energy (20) of the O'Raifeartaigh model, in the vacuum with �1 = �2 = 0 and �3|arbitrary,

is:

Vclass = �2 a4 : (21)

The leading dependence of the quantum e�ects is incorporated in eq. (21) by noting that �

is a running coupling that depends on the scale of the expectation value. Since the Yukawa

coupling is not asymptotically free, it increases logarithmically upon increasing �3. Thus it

turns out, after a one-loop e�ective potential calculation is performed [44], that the minimum

of the potential is attained when �3 = 0. We note (and we will point out examples later)

that the stabilization of classical 
at directions by perturbative corrections to the K�ahler

potential has important model building applications [45, 46, 47, 48, 49].

Finally, we give an example ofD-type (\Fayet-Iliopoulos type") supersymmetry breaking.

D-type breaking can only occur in Abelian gauge theories|it is possible to show that (at

tree level) supersymmetry breaking in non-Abelian theories is controlled by F-terms only

[38]. We will not give other examples of D-type breaking in this review. We would only like

to stress that Fayet-Iliopoulos-type supersymmetry breaking may be of phenomenological

relevance. The occurrence of U(1) factors of the gauge group with Fayet-Iliopoulos terms

is common in string theory compacti�cations [50]. The relevant U(1) factors are usually

anomalous (the anomalies are canceled by the Green-Schwarz mechanism) and generate

Fayet-Iliopoulos terms at one loop. The model discussed below illustrates this rather generic

mechanism of supersymmetry breaking.

As an example of D-type breaking we consider a U(1) supersymmetric gauge theory with

two \electrons"|two chiral super�elds, Q and �Q, with U(1) charge +1 and �1, respectively.
The K�ahler potential and the superpotential are:

K = Qy eV Q + �Qy e�V �Q + 2 �FI V ;
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W = m Q �Q ; (22)

where V denotes the U(1) vector super�eld and �FI is the Fayet-Iliopoulos term (which has

dimension of mass squared and can be easily seen to be gauge invariant, see [38]). The scalar

potential of the model is:

V = jm Qj2 + jm �Qj2 +
1

8
jQy Q� �Qy �Q+ 2�FI j2 : (23)

The �rst two terms in V are the F terms of �Q and Q, respectively, while the last term is

the square of the D term of the vector multiplet. It is easy to see from eq. (23), that if the

Fayet-Iliopoulos term vanishes, �FI = 0 (and m 6= 0) the vacuum occurs for Q = �Q = 0 and

supersymmetry is unbroken. On the other hand, if both the mass and the Fayet-Iliopoulos

term are nonvanishing, supersymmetry is clearly broken. The breaking of supersymmetry is

D type if m2 > �FI=2 and the U(1) gauge symmetry is unbroken (the goldstino �eld then is

the gaugino, as is clear from its supersymmetry transformation law, eq. (18)). On the other

hand, when m2 < �FI=2 supersymmetry breaking is of mixed F � D type and the gauge

symmetry is broken (the goldstino �eld is then a mixture of the gaugino and the fermionic

components of Q; �Q [38]). We note that the model discussed above is an example of a model

with vanishing Witten index|it breaks supersymmetry for nonvanishing � 6= 0, while for

� = 0 supersymmetry is unbroken.

4.4 Broken global symmetries and supersymmetry breaking.

It is also useful to comment at this stage on the relation between R symmetries and super-

symmetry breaking. Symmetries which do not commute with the supersymmetry generators

are called R symmetries.5 Consider a situation where the dynamics responsible for super-

symmetry breaking can be described by an e�ective theory involving only chiral super�elds.

We denote these �elds by �i; i = 1; :::n, in the discussion below. Supersymmetry is unbroken

if

Fi =
@W

@�i
= 0 ; (24)

for all �elds �i. Eq. (24) imposes n holomorphic conditions on n complex variables (the �i).

If the superpotential W (�i) is generic, it should be possible to satisfy all these conditions

and supersymmetry is not broken.

We now investigate how things change if the superpotential preserves a global symmetry.

For a non-R symmetry one can show that that the above argument goes through essentially

5We use the convention of [38], where the R charge of the superspace coordinates, ��, equals 1. Thus,
the fermion component of a chiral super�eld of R charge q has R charge q � 1, the superpotential in an R
symmetric theory has R charge 2, the fermions in vector multiplets (gauginos) have R charge 1, etc.
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unchanged. The global symmetrymeans that the superpotential only depends on appropriate

combinations of the �i which are singlets of the global symmetry. In terms of these reduced

number of degrees of freedom, eq. (24) imposes an equally reduced number of conditions,

again leading to unbroken supersymmetry.

However, for an R symmetry things can be di�erent. In this case the superpotential is

not invariant and has an R charge 2. If the �eld �1 is charged under the R symmetry, W

can be written as (we are assuming here that �1 has a expectation value, breaking thus the

R symmetry):

W = �
2=q1
1 f(Xi); Xi = �i �

�
qi
q1

1 : (25)

Now, for supersymmetry to be unbroken we have the conditions Wi = 0, or, equivalently:

@f

@Xi
= 0; (26)

and

f(Xi) = 0: (27)

Notice, that these are n equations but in n � 1 variables. Generically they will not be met

and supersymmetry is broken [51].

The above discussion leads us to believe that a broken R symmetry is necessary for

supersymmetry breaking. One way in which this conclusion can be avoided is if, unlike

what was assumed above, the superpotential is not generic. The superpotential is, after

all, protected from corrections in perturbation theory by a non-renormalization theorem.

Corrections can be generated non-perturbatively but these are often of a very special form.

Thus in several instances the superpotential is non-generic and supersymmetry is broken

even in the absence of an R symmetry. Another way in which this conclusion is avoided

is if the underlying theory does not possess an R symmetry, but the R symmetry arises as

an accidental symmetry in the superpotential of the e�ective theory|involving the �elds

�i|discussed above [13], [26]. Once again, this can happen because non-perturbative e�ects

lead to corrections to the superpotential of restricted form. In this case the R symmetry

will be broken by higher dimensional operators in the K�ahler potential. In this context we

should also mention that upon coupling to supergravity, the continuousR symmetry is always

broken by the constant term in the superpotential needed to cancel the cosmological constant

[54]. Finally, our discussion assumed that the relevant e�ective theory only contained chiral

super�elds. This is not true in general, as we will see below in our discussion of non-calculable

models. The argument above does not apply to such situations, although in several cases of

this type an R symmetry is present and in fact the corresponding 't Hooft anomalies play

an important role in establishing the breaking of supersymmetry [11].
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Another relation between broken global symmetries and broken supersymmetry is the

following [8]: if the theory has no classical 
at directions and has a broken global symmetry,

then supersymmetry is broken. To see this, note that if a global symmetry is broken while

supersymmetry is unbroken, the Goldstone boson of the broken symmetry has a massless

scalar supersymmetric partner. Since the Goldstone boson is the phase of the order parame-

ter, its supersymmetry partner corresponds to a dilatation of the order parameter, and thus

represents a 
at direction of the theory.6 But the theory has no classical 
at directions,

and it is unlikely that strong coupling dynamics will lead to their appearance. One thus

concludes that supersymmetry is broken in a theory with no classical 
at directions and a

broken global symmetry.

5 Models of dynamical supersymmetry breaking.

In the previous section, we studied some general features of supersymmetry breaking in �eld

theory and gave some examples, where supersymmetry breaking occurred at tree level. As

was discussed in the Introduction, both from the theoretical and phenomenological points of

view it is much more interesting to explore the problem of non-perturbative supersymmetry

breaking. This is the question to which we now turn.

We saw in our discussion of supersymmetric QCD that supersymmetric gauge theories

generically have 
at directions at the classical level. Non-renormalization theorems tell us

that these directions are not lifted in perturbation theory but, as we saw in Section 2,

they can be lifted by non-perturbative e�ects. The basic idea in dynamical supersymmetry

breaking is to involve these non-perturbative e�ects in an essential way in the lifting of 
at

directions, leading to a non-zero vacuum energy and thus supersymmetry breaking.

There has been a great deal of research in dynamical supersymmetry breaking in the

recent past and many new examples exhibiting this phenomenon have been constructed [13]-

[28]. It would be inappropriate to discuss all of them here. Instead, we will talk about a

few illustrative examples and content ourselves by providing references to the rest of the

literature. In organizing the discussion, it is useful to begin by thinking about the various

energy scales involved in the problem. The non-perturbative e�ects are characterized by

the strong coupling scale, �, of a gauge theory. In studying supersymmetry breaking, it

is helpful if the scale of supersymmetry breaking can be made much lower than the scale

�. There are a few good reasons for this. First, in many cases, once the two scales are

6Unless the low energy theory is described by a compact supersymmetric nonlinear sigma model. Such
sigmamodels, however, can only be coupled to gravity if Newton's constant is quantized [52]. Renormalizable
gauge theories can be coupled to gravity for all, even arbitrarily small, values of the Newton constant. This
should also hold for their low-energy e�ective theories. Thus, we conclude that the low energy theory of a
renormalizable theory can not be a compact supersymmetric sigma model.
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separated, at energies lower than � the gauge degrees of freedom can be integrated out

giving rise to a much simpler non-linear sigma model. Second, as was mentioned in Section

2, most of the recent advances in the study of non-perturbative supersymmetric theories have

been restricted to the infra-red, i.e. energies much lower than �. Once the supersymmetry

breaking scale lies in this region, these powerful tools can be brought into play. In this review

we will mainly discuss examples where such a separation of scales can be arranged.

The separation between the strong coupling scale � and the supersymmetry breaking

scale can be arranged as follows. It turns out that in many cases for supersymmetry breaking

to occur, a tree level superpotential is required. Bymaking the coupling constant of these tree

level terms small enough the supersymmetry breaking scale can be lowered. In some cases

we discuss below, these terms will be non-renormalizable and the corresponding couplings

will be naturally small (i.e. suppressed by a small ratio of scales). In others, we will have to

adjust some dimensionless Yukawa coupling to be small instead.

As was mentioned above, once the supersymmetry breaking scale can be lowered, one

can integrate the gauge degrees of freedom out, at the scale �, giving rise to a non-linear

sigma model. In Section 2, we saw that such a sigma model is characterized by both a

K�ahler potential and a superpotential. In all the cases we study, the full superpotential will

be determined. However, it will not always be possible to determine the K�ahler potential.

In Section 5.1, we will �rst study \calculable" models, in which the K�ahler potential can

be determined as well. This will allow us to explicitly determine where the supersymmetry

breaking vacuum lies and ask more detailed questions about it. We study calculable models

where supersymmetry breaking occurs due to instanton-induced superpotentials (Sections

5.1.1 and 5.1.2) or gaugino condensation (Sections 5.1.3 and 5.1.4). Finally, we brie
y

mention the calculable models with 
at directions (\plateau" models) in Section 5.1.5.

In Section 5.2, we will then turn to theories where the K�ahler potential cannot be deter-

mined, but where we will still be able to establish that supersymmetry is broken. In Sections

5.2.1-5.2.3, we consider examples that demonstrate how the techniques of holomorphy and

duality come into play in studying supersymmetry breaking. Finally, in Section 5.3, we

consider some models where the scale of supersymmetry breaking is of the same order as the

strong coupling scale. By using the global symmetries and 't Hooft anomaly cancellation

arguments, we will see how supersymmetry breaking can be established in these cases as

well.

5.1 Calculable models.

We begin our discussion by considering models where the low-energy e�ective theory respon-

sible for supersymmetry breaking can be completely determined. In turn this will allow us

18



to explicitly �nd where the supersymmetry breaking vacuum lies, ask how the other global

symmetries of the theory are realized, and calculate the masses of the low-energy excitations.

Because of the detailed information that can be extracted from such calculable models, they

have played a very useful role in phenomenological studies, see Section 6. They have also

served as an important starting point for constructing entire new classes of supersymmetry

breaking theories.

We will consider two examples in detail here. They have an SU(3)�SU(2) and SU(4)�
U(1) gauge symmetry, respectively, and are referred to as the (3; 2) and (4; 1) models. In

both cases by adjusting a Yukawa coupling we will make the supersymmetry breaking scale

low compared to the relevant strong coupling scale of gauge dynamics. The K�ahler potential

will be calculable in both cases, although the reasons behind this will be somewhat di�erent.

We will also comment on various generalizations of these examples.

5.1.1 Instanton-driven supersymmetry breaking: the (3; 2) model.

The (3; 2) model was �rst studied by A�eck, Dine and Seiberg [8, 9]. It consists of a

theory with an SU(3) � SU(2) gauge group. In addition, the theory has two anomaly free

global symmetries, U(1)Y and U(1)R. Under these various symmetries the matter content

transforms as follows ( �Qi
� � ( �Di; �U i)):7

SU(3) SU(2) U(1)Y U(1)R
Q�
i 1=6 1
�U i 1 �2=3 0
�Di 1 1=3 0
L� 1 �1=2 �3

(28)

Let us �rst study the classical behavior of this theory. The SU(3) and SU(2) D-
atness

conditions are given by:

Qy m
� Q �

l � �Qm
�
�Qy �
l = 0; (29)

and,

Qy i
� Q �

i + Ly� L
� =

1

2
� �
� (Qy Q + Ly L); (30)

respectively. These conditions do not select a unique vacuum, rather there are 3 (com-

plex) 
at directions in the theory which can be parametrized by the gauge invariant chiral

super�elds ("moduli"):

X1 = Q �D L; X2 = Q �U L; X3 = det �Q� Q
� : (31)

7The reader might have noticed that this theory is quite similar to the one generation standard model,
with two di�erences: U (1)Y is a global symmetry and the positron �eld is missing. In fact, the theory has
U (1)Y and U (1)3Y anomalies.
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At a generic point along these 
at directions the SU(3) and SU(2) gauge symmetries are

completely broken, the corresponding gauge bosons and their superpartners are heavy, and

the low-energy dynamics can be described by an e�ective theory containing the Xi chiral

super�elds.

Now let us turn to the quantum behavior of this theory. One �nds that instanton e�ects

lift the 
at directions and give rise to a superpotential in the low-energy e�ective theory of

the form:

Wdyn =
�7
3

X3
: (32)

Eq. (32) is determined in the following way. It is the only term that is allowed by holomorphy

and the symmetries of the theory. Further, an explicit (constrained) instanton calculation

shows that it does arise. The non-perturbative superpotential, eq. (32), gives rise to a

potential energy that is minimized when some �elds acquire large expectation values and

"run away" to in�nity. Thus we �nd that the quantum theory does not have a stable ground

state.

To avoid this problem, we can add a tree level superpotential, preserving the U(1)Y �
U(1)R symmetry, of the form:

Wtree = � Q � �D � L = � X1 : (33)

Classically, one now �nds that the F term conditions following from this superpotential,

along with the D term conditions, (29), (30), lift all the 
at directions giving rise to a

unique vacuum with all the �elds set to zero.

The behavior of the quantum theory is much more interesting. One can show that in

this case the exact superpotential in the low-energy e�ective theory is given by a sum of the

two terms, eq. (32) and (33), to be:

W = Wdyn + Wtree =
�7
3

X3
+ � X1 : (34)

To show this, one uses, following [3], holomorphy, symmetries, and various limits. Note

�rst that when � ! 0 and X3 ! 1 the superpotential is reliably given by eq. (34). By

holomorphy and symmetries, the most general form of the superpotential is Wdyn � f(t),

with f an arbitrary function of t � �X1X3=�7
3. Now, we see that any value of t can be

obtained by taking �! 0 and X3 !1 appropriately. Thus, eq. (34) should be exact.

From eq. (34) it follows that the F -
atness condition for the �eld X1, dW=dX1 = � = 0

can not be satis�ed. Thus one concludes that supersymmetry is broken in the quantum

theory.

We have assumed in this analysis that an e�ective theory in terms of the three �elds Xi

correctly describes the low-energy dynamics. If extra massless degrees of freedom were to
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enter the low-energy theory at some points in moduli space, the description in terms of the

�elds Xi would break down. This would manifest itself, for example, in singularities in the

K�ahler metric Kij� . At points where these singularities are present, the energy which goes

like W �
i�K

�1i�jWj could go to zero and supersymmetry would not be broken.

In fact, as we will see in a moment, for small enough � the vacuum lies in a region of

�eld space where both the SU(3) and SU(2) groups are higgsed and weakly coupled. Thus,

we will be able to explicitly compute the spectrum and show that it is consistent with the

absence of extra massless particles. But before doing so, it is worth noting that this result

also follows quite generally from duality. The (3; 2) model (for small enough �) can be shown,

by adding extra vectorlike 
avors, to be dual to a weakly coupled magnetic theory. This dual

theory is completely higgsed and one can show that the low-energy spectrum corresponds to

the Xi �elds with no additional massless particles.

Let us now study the supersymmetry breaking vacuum in more detail. As was mentioned

at the outset this model is calculable|one can determine the expectation values of the �elds

and the low-energy spectrum explicitly. We will not be able to provide the full details

here, see refs. [9, 54], and will content ourselves with sketching out the general picture and

providing some of the steps in the calculations.

The basic idea is to do a self consistent analysis. One begins by assuming that the �eld

expectation values break both the SU(3) and SU(2) groups at energies much above their

strong coupling scale. This allows us to compute the K�ahler potential and determine the

full non-linear sigma model. The energy can then be explicitly minimized to determine

these expectation values and verify that the starting assumption was in fact correct. Before

going further, let us note that the assumption one begins with is very plausible. The non-

perturbative superpotential pushes the vacuum out to large �eld strengths. In contrast, the

tree level superpotential results in a contribution to the energy that grows at large �eld

strengths. The minimum should lie where these two terms balance each other (see Fig. 2).

From eq. (34) it follows that the corresponding vacuum expectation value, v, should roughly

go like

v � �3

�1=7
: (35)

For small enough �, v can be made large and if enough �elds get expectation values both

SU(3) and SU(2) should be broken.

The K�ahler potential in terms of the �elds Xi can be calculated. At tree level it can be

determined to be:

K = 24
A + B x

x2
; (36)
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Figure 2: The scalar potential in the 3-2 model: instanton vs. tree-level contribution.
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B cos

�
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Arccos

A
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�
: (37)

Although its form is complicated there is a straightforward way to determine the K�ahler

potential. One starts with the canonical K�ahler potential for the Q; �Q;L �elds and projects

onto the D-
at directions, (30), (29), see [9]. Equivalently, one can integrate out the vector

�elds that become heavy along the 
at directions [53], [54].8

Let us stress that the tree level K�ahler potential will in general receive both perturbative

and non-perturbative corrections. However, if v is large enough, eq. (35), and both the

SU(2) and SU(3) gauge groups are broken, these can be neglected.

With the K�ahler potential and superpotential, eqs. (36), (34), at hand, the non-linear

sigma model is completely determined. The energy can now be found from eq. (7) and mini-

mized. We omit some of the details here. On doing so one �nds that the full SU(3)�SU(2)
gauge symmetry is indeed broken at a scale or order v, eq. (35). Thus the starting assump-

tion is validated. Furthermore, as expected from the above discussion, supersymmetry is

broken. The vacuum energy is of order E � �10=7�4, as one expects from eqs. (35) and (34).

It is also worth discussing brie
y how the other global symmetries are realized in this

vacuum. It turns out that the U(1)Y global symmetry is unbroken in the ground state, while

the R symmetry is broken. The reader might recall that once the tree level superpotential

(33) is added the theory has no 
at directions at tree level. Thus from the general consid-

erations of Section 4.4 we expect that once the R symmetry is broken, supersymmetry is

broken as well. This is indeed what we have found.

The massless spectrum consists of a massless goldstino, an R-axion (goldstone boson of

8In the mathematical literature the above procedure of constructing the tree-level e�ective theory of the
D-
at moduli is known as the \K�ahler quotient," see, e.g. [55].
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the spontaneously broken R symmetry), and an additional massless fermion, with charge �1
under U(1)Y (its existence can be inferred from 't Hooft anomaly matching for tr U(1)Y and

tr U(1)3Y ). Note that all these �elds arise from the Xi �elds; as promised above, there are

no additional massless particles. Further, all other components of the Xi chiral super�elds

have masses of order �v. Finally, by considering the full SU(3)�SU(2) theory, one can also

determine the spectrum and supersymmetry-breaking mass splittings of the heavy vector

multiplets.

Finally, we note here that our consideration of the (3; 2) model applies to a limited

region of parameter space|our considerations are valid whenever the expectation value (35)

v � �2;�3, i.e. �� 1 and,

�3 � �1=7 �2 : (38)

The analysis above showed that the Witten Index vanishes. This is of course true more

generally, and so the theory could break supersymmetry for other values of the parameters

as well. In fact, for �2 � �3 (with �still� 1), when (38) is not obeyed, the description

of supersymmetry breaking changes [19], but supersymmetry remains broken. Later we

will discuss an example of how sometimes di�erent (in the case described in Section 5.2.4,

\electric" and \magnetic") descriptions of supersymmetry breaking are relevant in di�erent

in regions of parameter space.

5.1.2 Generalizations of the (3; 2) model.

The (3; 2) model has a number of interesting generalizations. One can think of constructing

this model by starting with two 
avor QCD, gauging an SU(2) 
avor symmetry and adding

an extra L lepton �eld to cancel anomalies. Some generalizations of this construction are

the SU(N) � SU(2) models in [14], the SU(2M + 1) � SP (2M) models discussed in [14]

and in [19], the SU(N) � SU(N � 1) models of [22], the SU(N) � SU(N � 2) theories of

[23], and the models of [37]. While these are analogous, in their �eld content, to the (3; 2)

model, the dynamics leading to supersymmetry breaking in many of them is quite di�erent.

We will have more to say about some of them in the following sections.

We should also comment on some other calculable models in the literature, which are

analogous to the (3; 2) model, and which break supersymmetry. One example is the SU(5)

model with two and two representations. This SU(5) \two generations" model has

dynamics that is very similar to that of the 3-2 model [10]. Its ground state has been recently

analyzed in detail [56]. Using the recent work [57] on classifying N = 1 supersymmetric

gauge theories with a simple gauge group and with �matter < �adj (where �matter(adj) is the

index of the matter (adjoint) representation), one can show that among the theories with

a simple gauge group (including both classical and exceptional groups) and \purely chiral"
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matter content (i.e. such that no mass terms can be added for any �elds), the SU(5) \two

generations" model of [10] is the only one with completely calculable dynamics.9

Another example in this class, which can be constructed using product groups is the

SP (4) � U(1) model of [18]. Finally, additional calculable models can be found upon \de-

forming" noncalculable chiral models by adding the \right" amount of massive vectorlike

matter (see the discussion in the Section 5.3).

5.1.3 Supersymmetry breaking by gaugino condensation: the (4; 1) model.

We now turn to considering another example of a calculable model with supersymmetry

breaking. It is based on a gauge theory with SU(4) � U(1) gauge symmetry [14], [17]. The

(3; 2) model we discussed in the previous section was calculable because one could arrange

for the vacuum to lie in a region of moduli space where the full SU(3)� SU(2) gauge group
was completely higgsed and weakly coupled. In contrast, as we will see, in the (4; 1) model

the SU(4)�U(1) gauge symmetry is only partially broken to an SU(2) subgroup which gets

strongly coupled and con�nes. Nevertheless, we will argue that at low enough energies the

resulting sigma model is weakly coupled and calculable.

The model has the following matter �elds and charge assignments:

SU(4) U(1)
A�� 2
Q� �3
�Q� �1
S 1 4

(39)

In studying the quantum behavior of this theory it is convenient to �rst ignore the e�ects of

the U(1) gauge symmetry. The SU(4) 
at directions can then be described by the following

moduli:10

M = �Q �Q � � 4 ; PfA � 4 ; and S � 4 ; (40)

where for later convenience we have also shown the U(1) charges of the SU(4) moduli. Along

a generic 
at direction the SU(4) gauge symmetry is broken to an SU(2) subgroup. There

is no matter charged under the unbroken SU(2). In the quantum theory, non-perturbative

dynamics in this SU(2) theory leads to con�nement. At scales below the SU(2) con�ning

scale the con�ned degrees of freedom, e.g., the glueballs and their superpartners, can be

intergated out. The e�ective theory below the SU(2) strong coupling scale involves the

moduli M;PfA, and S. Gaugino condensation in the SU(2) theory gives rise to a non-

perturbative superpotential in this e�ective theory, proportional to the scale of the unbroken

9We thank W. Skiba for a guided tour of ref. [57] and discussions.
10We are using a notation where Pf stands for the Pfa�an. For example, Pf A = �ijklAijAkl=8.
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SU(2):

W � �3
SU(2) =

�5
SU(4)p
M PfA

: (41)

The U(1) gauge symmetry can be incorporated in the e�ective theory by "turning on" its

gauge coupling. In terms of the moduli, S, M , and Pf A, one �nds that the 
at directions

of the U(1) D-term potential are described by two moduli, MPfA and SM . From this

point onwards the analysis has many similarities with that of the (3; 2) model. We will

consequently only sketch out the details.

The non-perturbative superpotential, eq. (41), only involves the �rst modulus, MPfA.

It results in an energy which is minimized when some �elds are pushed out to in�nity; thus

the quantum theory has a runaway vacuum. To cure this problem we introduce a tree level

superpotential:

Wtree = � S �Q �Q = S M : (42)

One can show that this tree level superpotential lifts all the SU(4) � U(1) 
at directions.

The full superpotential in the low energy e�ective theory is now given by the sum of eqs. (41)

and (42):

Wexact =
�5
SU(4)p
M PfA

+ � S M: (43)

From eq. (43) it follows that the F term condition for SM (which is one of the two moduli)

cannot be met and thus supersymmetry is broken.

In fact, the resulting vacuum can be explicitly determined since the e�ective theory

is weakly coupled in the relevant region of moduli space. This might come as a bit of a

surprise to the reader. What about the surviving SU(2) gauge theory which, as we have

mentioned above, has strong dynamics associated with it and con�nes? The corrections to

the superpotential were incorporated in eq. (43). In the K�ahler potential one expects non-

perturbative e�ects associated with the strongly coupled SU(2) to give rise to corrections

that go like �SU(2)=v. Here v is the scale of a typical expectation value, which can be

estimated by balancing the two terms in eq. (43) and goes like,

v � �SU(2)

�1=3
: (44)

Thus, for small enough �, �SU(2)=v � 1 and the corrections to the classical K�ahler potential

are suppressed.

The resulting ground state and spectrum of low-energy excitations can now be explicitly

calculated, in a manner very similar to the (3; 2) model. We will not go into the details here.

Let us instead brie
y review the picture of the underlying physics that was responsible for

supersymmetry breaking. One starts with an SU(4) � U(1) theory in the ultraviolet. At a
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scale of order v, eq. (44), this is broken to an SU(2) gauge group. The SU(2) theory con�nes

at the scale �SU(2) � �SU(4)�
2=15 giving rise to the low-energy sigma model. In particular,

gaugino condensation in the SU(2) theory gives rise to a non-perturbative superpotential

in the sigma model. Finally, supersymmetry breaking takes place in this sigma model, at a

scale, E � �3=10 �SU(4).

We end with one remark. The tree level superpotential (42), which lifts all 
at direc-

tions, preserves an R symmetry. Thus, provided the R symmetry is broken, we could have

concluded at the outset from the general considerations of section 4.4, that supersymmetry

breaking must occur.

5.1.4 Generalizations of the (4; 1) model.

The (4; 1) model can be generalized in a straightforward way to an entire class of theories

with SU(2l) � U(1) gauge symmetry and with matter consisting of a single antisymmetric

tensor representation, A � , 2l�3 antifundamentals, �Q, one fundamental �eld Q and 2l�3

�elds, Si, which are uncharged under the SU(2l) symmetry but carry an U(1) charge [14],

[17]. In all these theories an SU(2) gauge symmetry is left unbroken. Gaugino condensation

in this group, together with an appropriate tree level superpotential then lift all 
at directions

giving rise to supersymmetry breaking. For reasons analogous to the (4; 1) case by adjusting

appropriate couplings one can arrange for the resulting supersymmetry breaking dynamics

to be governed by a calculable theory.

In turn, the SU(2l) � U(1) models can be further generalized. The matter content in

these theories can be thought of [14], [17] as arising by starting with an SU(2l + 1) theory

with an antisymmetric tensor, A � and 2l � 3 antifundamentals, �Q, and breaking the

gauge symmetry down to SU(2l) � U(1). There are, of course, other possible breakings of

SU(2l+1). It is natural to ask if they give rise to supersymmetry breaking theories as well.

This question was addressed by [26]. They added a heavy adjoint �eld super�eld � to the

theory, with a superpotential, W � Tr�k+1. This allows the SU(2l + 1) to be generically

broken to SU(2l + 1) ! U(1)k�1�k
s=1SU(ns), with

P
s ns = 2l + 1. The matter content

of the U(1)k�1�k
s=1SU(ns) theory can be obtained by decomposing the and 2l � 3 s of

SU(2l+1) into representations of the unbroken gauge group. The authors of [26] performed

a comprehensive analysis of supersymmetry breaking in this class of models. A description

of their analysis would take us far from the objective of this article; we only note that the de-

con�nement method of [58] and the duality in SQCD with adjoint matter and superpotential

Tr�k+1 [59] were essential in understanding supersymmetry breaking. Ref. [26] concluded

that for k = 2, supersymmetry is broken, once appropriate Yukawa couplings are added to

the superpotential (to lift the 
at directions), while for k > 2, supersymmetry is generically
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(for exceptions, see [26]) not broken. We see that this construction relates many seemingly

di�erent models, for which supersymmetry breaking can be studied in a uni�ed manner.

For example, in the simplest case for l = 2; k = 2, starting with the SU(5) model, one

obtains, choosing n1 = 4; n2 = 1, the SU(4) � U(1) model, discussed above, while choosing

n1 = 3; n2 = 2, the SU(3)� SU(2) model of Section 5.1.1 is obtained.

Many other models of dynamical supersymmetry breaking exhibit behavior, similar to

the SU(4)�U(1) model. Examples are the SU(N)�SU(N � k) theories [22], [23] (see also
Section 5.2.3), with k = 1; 2 (whose light spectrum has been analyzed in detail along the

above lines in [60], [61]), the models of [16], and many of the models in [14], [26].

5.1.5 Calculable models with classical 
at directions: \plateau" models.

These calculable models are based on some of the models considered in Section 5.2.2, in par-

ticular the models based on quantum-modi�ed moduli spaces of [19],[20]. The models have

classical 
at directions and have been shown to break supersymmetry. However, the vacuum

expectation value can not be calculated in a controlled approximation. The models can be

made calculable by weakly gauging a global symmetry and using the perturbative corrections

to the K�ahler potential to stabilize the 
at direction [46], [47] at a large expectation value,

in a variant of the \inverse hierarchy" mechanism [62].

5.2 Noncalculable models.

The calculable models are the simplest class of theories breaking supersymmetry. They form

an important starting point in the study of this phenomenon, and as we have seen, teach us

a lot. In pursuing this study further, we would like to complicate things in stages. Accord-

ingly, in this Section, we continue to study theories in which by adjusting a parameter, the

supersymmetry breaking scale is made lower than the underlying scale of non-perturbative

dynamics. Thus below the strong coupling scale, but above the supersymmetry breaking

scale we can use a supersymmetric e�ective theory to describe the dynamics. But here, un-

like the previous examples, we will consider situations in which the non-perturbative e�ects

are important in both correcting the superpotential and the K�ahler potential. We see below

how in many cases one can still argue that supersymmetry is broken. But in the absence

of more information about the K�ahler potential one cannot �nd in detail where the vacuum

lies.

In Section 5.2.1 we consider a simple model, where supersymmetry breaking is due to

con�nement. Section 5.2.2 is devoted to models of supersymmetry breaking with classical


at directions that are lifted by nonperturbative e�ects. In Section 5.2.3, we give an example

of how duality can be used to study supersymmetry breaking.
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Finally, in Section 5.3, we turn to the case where the scale of non-perturbative dynamics

and supersymmetry breaking are comparable. This is of course the generic situation. The

full complexity of these theories makes a controlled analysis di�cult. Even so, we show how

in some cases the various global symmetries and associated 't Hooft anomalies, and criteria

like the Witten index make it quite plausible that supersymmetry is broken.

5.2.1 Supersymmetry breaking by con�nement: the ISS model.

The �rst model we look at was studied by Intriligator, Seiberg and Shenker [13]. Its simplicity

makes it a good point to begin.

The model is an SU(2) gauge theory with a single chiral super�eld in the three-index

symmetric representation (i.e. the four-dimensional \spin-3/2" representation). This theory

is chiral|no holomorphic mass term can be written for the single spin-3/2 representation.

To see this, denote the matter �eld by q��
 (with q��
 = q��
 = : : :). It is easy to see then,

that the quadratic invariant q � q (indices contracted with � symbols) vanishes identically,

because of the symmetry of q. There is no cubic invariant; the only independent invariant

is then11 u = q4.

The theory thus has a one dimensionalmoduli space and along the 
at direction parametrized

by u, the SU(2) symmetry is totally broken. Classically, the moduli space is singular at the

origin: the classical K�ahler potential is K � qyqjD�flat � (uyu)1=4 and the K�ahler metric is

singular at u = 0. When u! 0 the SU(2) symmetry is restored and extra vector multiplets

become massless.

The quantum theory is asymptotically free,12 and one expects non-trivial dynamics in

the infra-red. It is also useful to note that the model has an anomaly free R symmetry,

under which the �eld q has charge 3=5.

The authors of ref. [13] argued that quantum-mechanically, the theory con�nes in the

vicinity of the origin of moduli space. As a result, the classical singularity at the origin

is smoothned out without the appearance of any new massless particles. While one cannot

prove this assertion, it meets one non-trivial check. At the origin, the global U(1)R symmetry

mentioned above is unbroken. The u �eld saturates the 't Hooft anomaly matching conditions

for this U(1)R symmetry. This is easy to see: the relevant anomalies are TrR = 7=5 and

TrR3 = (7=5)3; these are obviously saturated by the fermionic component of u which has R

-charge 7=5.

In the following discussion we will accept the above assertion that the e�ective theory

11More precisely, u = q�1�1
1�
�1�2��1�2q�2�2
2�


1
3q�3�3
3�
�3�4��3�4q�4�4
4�


2
4 .
12For the spin-3/2 representation, T (R) = 5, the one-loop beta function of the gauge coupling is then

b0 � 3T (G)� T (R) = 1.

28



in terms of the �eld u is valid everywhere in moduli space. It follows then that the K�ahler

potential is smoothened out near the origin and can be approximated as K ' uyuj�j�6, for
u� �4. We now add a tree-level superpotential to the theory:

Wtree =
u

MUV
: (45)

This term is nonrenormalizable; the theory therefore should be considered as a low-energy

e�ective theory valid at at scales below MUV . We note that this term lifts the one classical


at direction in this theory; it also breaks the R symmetry.13 In the presence of eq. (45) it

follows that the F term condition for u cannot be met and supersymmetry is broken.

A few comments are in order at this stage. First, we cannot say with certainty where

the vacuum lies. In the vicinity of the origin the leading term in the K�ahler potential

K ' uyuj�j�6 gives rise to an energy that goes like

E0 = K�1
u�u jWuj2 ' j�j6

jMUV j4 ; (46)

and behaves like a constant. Thus, in determining the minimum, higher terms in the K�ahler

potential, which are di�cult to estimate, need to be kept. Second, regardless of exactly where

the minimum lies, eq. (46) gives a good estimate of the energy. So, the supersymmetry

breaking scale is smaller than �, justifying the use of the e�ective theory in terms of u.

Finally, as was mentioned above, the microscopic theory one starts with breaks down at

the scale MUV . However, by taking � � MUV , one can be quite sure that there is a

supersymmetry breaking minimum in the region where the e�ective theory is valid. This is

because classically the superpotential, eq. (45), lifts all the 
at directions. It follows then

that in the region � � (u)1=4 � MUV , where the classical approximation is trustworthy,

the energy must rise, leading to the conclusion that a local minimum must lie in the region

(u)1=4 � O(�). It is, of course, possible that the full theory has a global supersymmetry

preserving minimum with (u)1=4 �MUV , but that can not be decided without knowledge of

the underlying theory at scales above MUV .

The mechanism by which this model breaks supersymmetry is, in fact, more general

and occurs in more complicated theories. For example, the SU(7) "s-con�ning" theory

with matter consisting of two sets of + 3 � breaks supersymmetry after addition of an

appropriate tree level superpotential [27].

13 As an aside, we note that the superpotential in the e�ective low energy theory, eq. (45), has an accidental
R symmetry, which is a combination of the R symmetry of the microscopic theory and the accidental U (1)
of the low-energy theory; this accidental symmetry is broken by higher dimensional terms in the K�ahler
potential.
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5.2.2 Models with classical 
at directions: the ITIY model.

We now turn to discussing the theory �rst studied by Intriligator and Thomas [19], and Izawa

and Yanagida [20]. This model has two remarkable features. First, it breaks supersymmetry

even though it is non-chiral. Second, the classical theory has 
at directions, which are lifted

by non-perturbative quantum e�ects leading to supersymmetry breaking.

The ITIY model is an SU(2) gauge theory with 4 fundamentals Qi and six singlets Sij ,

with a tree-level superpotential,

W = � Sij Q
i �Qj : (47)

For further reference we note that the global symmetries of the theory include an SU(4)


avor symmetry under which the Qi transform as a and the Sij as an .

Let us begin by studying the classical behavior of this theory. The SU(2) D-
at directions

can be described by gauge invariant chiral super�elds, \mesons," which we denote byM ij �
Qi �Qj. There are six of these meson �elds but they are not all independent; classically they

satisfy a constraint:

�ijkl M
ij M jk = 0 : (48)

It follows from the superpotential, eq. (47), that all the meson 
at directions are lifted, since

the F -term equations for the Sij �elds set all the mesons to zero. However the singlet 
at

directions remain unlifted. Along these 
at directions, the mesons are zero but the singlet

�elds Sij are free to vary.

Let us now turn to the quantum behavior of this theory. As in the classical case, the

quantum dynamics is described by the mesons M ij and the singlets Sij. The di�erence is

that in the quantum case non-perturbative e�ects modify the constraint eq. (48) by the

addition of a term dependent on the strong coupling scale of the SU(2) gauge theory,[3] 14

�. This gives rise to the following full superpotential in the e�ective theory:

Weff = � Sij M
ij + A

�
�ijkl M

ij M jk � �4
�
; (49)

where A is a Lagrange multiplier that implements the constraint.

We now �nd that the theory breaks supersymmetry! The F term conditions for the S

�elds still set all the mesons, M ij , to zero, but now this is in con
ict with the quantum

modi�ed constraint (which follows from the F -term condition of the Lagrange multiplierA).

The argument above tells us that supersymmetry is broken, but it does not tell us where

the resulting ground state lies. We saw above that classically the theory had 
at directions.

14This was discussed in Section 2. In the language of supersymmetric QCD we have a situation with
Nc = Nf = 2 here.
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One might wonder if the energy goes to a minimum (which is non-zero) at in�nity, resulting

in an unstable runaway ground state. In fact, one can show that this does not happen.

Only the 
at directions in the classical theory are relevant for this discussion|along the

other directions the energy grows very large as we go out to in�nity and one does not expect

quantum e�ects to turn this around. Consider such direction along which the SU(4) global

symmetry is broken to SP (4) � SO(5) by giving a vev

Sij = s Jij ; (50)

where J = diagfi�2; i�2g is the SP (4) invariant tensor. If s is large all the quarks get a large
mass, of order �s� �, and can be integrated out at a scale much above �. At low-energies

this gives rise to a theory which contains an SU(2) gauge �eld (and superpartners) with no

matter, and the �elds Sij. The strong coupling scale of the low-energy theory is determined

by threshold corrections to be:

�6
low = �4 �2 s2: (51)

Gaugino condensation in the SU(2) group now gives rise to a superpotential, which goes like

�3
low. Substituting from eq. (51) then gives:

W = �2 � s: (52)

The energy along this direction can now be calculated; it is given by:

E =
����@W@s

����2 � j��j2: (53)

We see that the energy is a constant, independent of s. In this discussion, we have so far

assumed that the K�ahler potential for s is classical. In fact this is true, to leading order,

but there are small corrections [45], [48], [47]. For large enough s, the leading corrections

arise because the coupling � is dependent on s, and being non-asymptotically free increases

with s logarithmically. Thus from eq. (52) we see that the energy increases (although only

logarithmically) with s and the runaway behavior is avoided.15 Along other directions where

Sij gets a vev breaking the 
avor symmetry to SU(2) � SU(2) one �nds similarly that the

energy increases and there is no runaway behavior.

The running of the Yukawa coupling thus pushes the expectation value of s to small

values, where the theory is not weakly coupled. This makes it di�cult to reliably calculate

the ground state of the model. We should mention that it is possible [46], [47], to stabilize the

vacuum at large expectation values upon gauging (part of) the 
avor symmetry of the model,

15As s increases, at some point one hits a Landau pole singularity and other degrees of freedom must come
into play. However this scale can be made much higher than �. Also, we note that for the present purpose
the running of the coupling � is governed by the �� = 8�3=(16�2).
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by a variant of the inverse hierarchy mechanism [62]. This results in a class of calculable

models, the \plateau" models mentioned in Section 5.1.5.

We began the discussion of the ITIY model by noting that it was not chiral. The reader

might wonder how this is consistent with the breaking of supersymmetry. Speci�cally, one

can add mass terms for both the quarks and the Sij �elds. This lifts all the 
at directions.

For large enough masses, the low-energy theory is a pure SU(2) Yang-Mills which has two

vacua and a Witten index of 2 [41]. What happens now when the masses are taken to

zero? On adding mass terms to the superpotential and incorporating the non-perturbative

constraint we �nd:

W = � Sij M
ij + mij M

ij +
1

2
~m PfS + A

�
PfM � �4

�
: (54)

From here it follows that the expectation values are given by:

M ij � �ijkl mkl

 
�4

Pfm

! 1

2

; (55)

and,

Sij � mij

~m

 
�4

Pfm

! 1

2

: (56)

The square root above can take two values|this corresponds to the two vacua of SU(2)

SYM we expect. Now we can take ~m and mij to go to zero (keeping the relative ratio of

masses �xed). We see that M ij has a �nite limit, but Sij ! 1. Thus the supersymmetry

preserving vacua run o� to in�nity in the limit of vanishing mass. The Witten index changes

discontinuously from 2 to 0, because the mass terms change the behavior of the Hamiltonian

at large �eld strengths.

We close this section by noting that the ITIY model has several generalizations, see [19];

for simplicity we have focussed on the simplest example of this class here.

5.2.3 Supersymmetry breaking and duality: the (5; 3) model.

In this section, we will consider an example of the SU(N)�SU(N � k) models. They were

studied in [22, 23], where it was shown that a large class of these theories broke supersym-

metry. As was mentioned in Section 5.1.2, in terms of their matter content, these models

can be thought of as generalizations of the the (3; 2) model.

Here, for simplicity, we will discuss a particular model in this class. It has an SU(5) �
SU(3) gauge symmetry. In the following discussion we will often refer to this theory as the

electric theory. We will also construct another theory, based on an SU(5) � SU(2) gauge

group, which we call the \magnetic" dual theory. The electric and magnetic theories will be
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equivalent to each other in the infra-red and both are useful in learning about the low-energy

behavior, especially supersymmetry breaking. In particular, it will be interesting to study

the behavior of the theory by varying a Yukawa coupling. The electric theory will yield a

calculable theory of supersymmetry breaking in some restricted region of parameter space.

In contrast, the magnetic description will not be calculable, but it will allow us to establish

that supersymmetry is broken in a much larger region of parameter space.

The matter content of the SU(5)� SU(3) theory is given as follows:

SU(5) SU(3)
Q� _�

L�i 1

R
_�
a 1

(57)

where i = 1; 2; 3 and a = 1; : : : 5 are 
avor indices under the global SU(3)L � SU(5)R

symmetry, while dotted (undotted) greek letters denote the indices under the SU(5) (SU(3))

gauge groups. The theory has a renormalizable tree level superpotential:

Wtree = ~�ai Ra �Q � Li + ~�ab Rc �Rd �Re �
abcde : (58)

This superpotential lifts all classical 
at directions and preserves a diagonal, anomaly-free

SU(2) subgroup of the global 
avor symmetry, provided the superpotential couplings are of

the form:

~� =

0
BBBBBB@

� 0 0
0 � 0
0 0 �
0 0 0
0 0 0

1
CCCCCCA
; ~� =

0
BBBBBB@

0 � 0 0 0
�� 0 0 0 0
0 0 0 � 0
0 0 �� 0 0
0 0 0 0 0

1
CCCCCCA
: (59)

Eq. (58) with the couplings (59) can be shown to preserve a 
avor-dependent, anomaly free

R symmetry.16 Thus, since there are no 
at directions, according to the general criterion of

Section 4.4, one expects that if the R symmetry is broken supersymmetry is also broken.

This is indeed what we will �nd below when we try to understand the supersymmetry

breaking dynamics in more detail. Since the analysis is quite involved, it is useful to �rst

sketch out in words the general idea. Throughout this discussion we consider the theory for

�3 � �5. We then vary the parameter � and ask about supersymmetry breaking.17 It will

16 To see this one can start by assigning di�erent R charges to Q, L, Ra<5, and R5. These charges
have to satisfy four conditions: two ensuring that the superpotential terms are invariant, and two|that the
symmetry is anomaly free; it is easy to see then that there is a solution with nonvanishing charges of all
�elds.

17 In general, the behavior of this theory also depends on �. For simplicity, we will keep � �xed of order
� 1 here.
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turn out that the magnetic theory mentioned above will allow us to establish, for � < 1,

that supersymmetry is broken. However, the magnetic theory is not calculable and we will

not be able to learn much more about the resulting ground state. When �� 1 though, we

will see that the vacuum lies in a region of moduli space where the electric theory provides

a weakly coupled sigma model. By using this e�ective theory we will independently be able

to see that supersymmetry is broken and also learn a great deal about the resulting ground

state.

Calculable limit: \electric" description of supersymmetry breaking.

Since the calculable limit is simpler, we start with the situation �� 1 and �rst consider

the electric theory. To understand this case it is useful to �rst consider what happens when

� = 0. The \baryonic term" in eq. (58) is absent in this limit and the classical theory has 
at

directions. Let us consider one such direction along which the baryon, b45 = �45abcRc �Rd �Re

acquires an expectation value. Along this direction R _�
a = v� _�a , a = 1; 2; 3, and the SU(3)

gauge symmetry is completely broken. We will be interested in what happens for large values

of v. In particular we will assume that v� �3;�5 and discuss the low-energy e�ective theory

in this region of moduli space. The supersymmetry breaking vacuum will then lie in this

region thereby making our analysis self-consistent. If v� �3, the SU(3) gauge symmetry is

broken while it is still weak and non-perturbative e�ects coming from it can be neglected.

Furthermore, the Yukawa coupling|the �rst term in eq. (58)|gives a large mass, � �v to

the Q and L �elds, which transform under the SU(5) gauge symmetry. Thus, these matter

�elds can be integrated out, leaving a pure SU(5) group at low-energies. The strong coupling

scale of this theory is given by �15
5L = �3b45�12

5 . Gaugino condensation in the low-energy pure

SU(5) theory now gives rise to a superpotential:

Weff � �3
5L � �

3

5 �
12

5

5 (b45)
1

5 : (60)

It is easy to see that this superpotential results in runaway behavior, with the R �elds being

pushed out to in�nity. The behavior described above along the b45 6= 0 direction is in fact

true along a general baryonic 
at direction, bab 6= 0 as well.

We now return to the original theory, with �, eq. (58), (59), non-zero but small. As

was mentioned above, the 
at directions are now all lifted with the choice (59). However,

if � is small enough we still expect the vacuum to lie far out along the baryonic directions.

The low-energy e�ective theory is then described by an independent set made out of the

baryon �elds, bab, and is calculable for reasons analogous to the (4; 1) model case studied in

Section 5.1.3. In particular, gaugino condensation in the unbroken SU(5) group gives rise

to a non-perturbative superpotential of the form (60) in this theory. The resulting sigma

34



model can be explicitly analyzed, [60], and shows that supersymmetry is indeed broken. We

will not go into the details here.

Instead let us only note that the expectation values for the R �elds can be estimated

by balancing the non-perturbative term, eq. (58) with the second term in the tree level

superpotential, ~�abRc �Rd �Re�
abcde. This gives an estimate for v:

v �
 
�3

�5

! 1

12

�5 : (61)

The supersymmetry breaking scale then goes like:

MSUSY � (�3�)1=12 �5 (62)

Finally, the scale at which the low-energy pure SU(5) theory con�nes is

�5L �
 
�3

�

!1=12

�5 : (63)

We can now check that the assumptions in the above analysis are consistent. For small

enough �, v � �3;�5; moreover the vacuum energy, MSUSY � �5L. Thus, the breaking

of supersymmetry could be studied in a low-energy e�ective theory which neglects the non-

perturbative e�ects of the SU(3) group and incorporates them for the SU(5) group as

discussed above.

Now let us ask what happens when � is increased. We see from eq. (61) that as �

increases, v decreases. Thus at some point, while � is still much less than one, we come to

a situation where �5 � v � �3. At this stage we can no longer reliably use the description

above. In particular, we cannot neglect the dynamical e�ects in the SU(3) gauge theory.

The \magnetic" description of supersymmetry breaking.

We now turn to constructing the dual theory with SU(5)�SU(2) gauge symmetry. This

description will not be calculable, but it allows one to show quite generally, as long as � < 1,

that supersymmetry is broken.

Before discussing the dual theory it is important to state one assumption. Strictly speak-

ing, so far, Seiberg's duality has only been been used to relate the electric and magnetic

theories at zero momentum. Here we will assume that the two are equivalent for some range

of non-zero momentum as well. This is not unreasonable|the two theories should approxi-

mate each other for small enough values of momentum. As long as this is true our analysis

will be valid|the supersymmetry breaking can be brought within this range by tuning the

parameters �; �.
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Note that, as was described at the beginning, we take �3 � �5. Thus, it is useful in

constructing the dual theory to �rst \turn o�" the SU(5) coupling. In addition, to begin,

we disregard the tree level Yukawa couplings, eq. (58). Since the SU(3) theory has now 5


avors, i.e. Nf = Nc + 2, the appropriate description of the infrared physics is in terms of a

dual SU(2) theory, with the following matter content:

SU(5) SU(2)
q�_�
r
_�a 1

M�a 1

L�i 1

(64)

and a superpotential

W = M�a r
a � q� : (65)

Now we turn back on the \spectator" SU(5) coupling and observe that in this dual descrip-

tion, the SU(5) theory has �ve 
avors of quarks (Ma) and antiquarks (Li; q _�). It is therefore

con�ning, with a quantum modi�ed moduli space (supersymmetric QCD with Nf = Nc).

Below the con�ning scale of the SU(5) theory, the appropriate degrees of freedom are the

baryons and mesons:

Na _� � Ma � q _�; K i
a � Ma � Li; B � detM; �B � q2 � L3 : (66)

Hereafter we omit various scale factors that appear in the duality map; for details, see [23].

The superpotential (65) of the theory then becomes:

W = N � r + A
�
N2 �K3 �B �B � ��10

5

�
; (67)

where A is a Lagrange multiplier enforcing the quantum modi�ed constraint. The scale ��5

is the scale of the SU(5) theory in the dual; it can be found using the duality scale matching

and the symmetries of the problem. Below that scale, the appropriate degrees of freedom

are the mesons and baryons (66) and the SU(5) singlets ra. We see that now, upon crossing

the �5L threshold, the matter content of the SU(2) theory has changed: the SU(2) theory

has now 5 
avors, Na and ra. These 
avors, however, are massive: below the scale ��5, the

Yukawa coupling in (65) turns into a mass term. Thus, at low enough energies, the SU(2)

theory con�nes as well.

The following analysis to �nd the con�ned degrees of freedom in this low-energy theory

is straightforward, but rather tedious, and we give only the main points, omitting various

details. For simplicity, let us collectively denote the mesons of the SU(2) theory by Vij, with

i; j = 1; :::; 10 (thus, the matrix V is antisymmetric and has elements Na �Nb; Na � rb; rc � rd).
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Along the 
at directions of the SU(2) theory, the nonperturbative superpotential is

Wdyn =

 
PfV
��2L

!1=3

: (68)

This superpotential also exists in supersymmetric QCD with Nf > Nc; upon adding mass

terms and integrating out the 
avors, it gives rise to the usual superpotential induced by

gaugino condensation.18

Thus, following the intricate renormalization group 
ow, we arrive at a low-energy de-

scription in terms of chiral super�elds only. The moduli of this low-energy theory are

K i
a; (r

2)ab; (N � r)ab ; (N2)ab; B, and �B. The superpotential of this e�ective theory is the sum

of (67) and (68). We now turn on the tree level superpotential (58), written in terms of the

appropriate variables in the con�ned low-energy description,

Wtree = ~�ai Ra �Q � Li + ~�ab Rc �Rd �Re �
abcde = ~�ai K

i
a + ~�ab (r

2)ab : (69)

Note that the trilinear couplings in the tree level superpotential are mapped, by the strong

coupling dynamics, into linear terms in the low-energy superpotential. We can now analyze

the F term conditions in the e�ective theory that follow from its superpotential:

W = (N � r)aa + A
�
N2 �K3 �B �B � ��10

5

�
+

 
PfV
��2L

!1=3

+ ~�ai K
i
a + ~�ab (r

2)ab : (70)

Extremizing with respect to A,K; r2; N �r;N2; B, and �B, we �nd that there is no extremumof

the superpotential (70), establishing thus that supersymmetry is broken (for more details, see

[23]). Thus, as promised, the theory breaks supersymmetry. Unfortunately, we cannot say

more about the resulting vacuum. As mentioned above, the SU(5)�SU(2) dual description
is non-calculable.

We conclude this section with one comment. The model discussed here, like many others

in this review are based on a non-simple, product group gauge theory. In fact many of the

recently found theories with dynamical supersymmetry breaking have product gauge groups

[14, 19, 21, 22, 23, 24, 25, 26, 28]. This is in large part because the non-perturbative behavior

of such theories is reasonably well understood|for example, as we saw above, often dual

theories can be constructed by applying Seiberg duality to each factor of the product in

turn [22]. At the same time, as the examples here have shown, the interplay between the

various groups can lead to interesting non-perturbative dynamics including supersymmetry

breaking.

18 We note an additional subtlety here: the scale of the SU (2) dual theory below the con�ning scale of
SU (5) is �eld dependent, ��2L � B; for details, see [22, 23].

37



5.3 The SU(5) model and related examples.

We end this Section by discussing some examples of models where the scale of supersym-

metry breaking and strong dynamics are comparable. The particular models we study were

discovered long ago by A�eck, Dine, and Seiberg [11], [12]. Of course in many examples

discussed in the previous sections there is generically (i.e. in the absence of a small coupling)

no separation between the various scales. Some of our comments will be applicable to them

as well.

The theory we look at is a \one generation" SU(5) model. It has an SU(5) gauge sym-

metry with a single antisymmetric tensor, A � , and antifundamental, �Q � , matter

representation. A�eck, Dine, and Seiberg argued that this theory probably breaks super-

symmetry.

One can show that the theory has two anomaly free global symmetries, U(1)A � U(1)R,

under which the super�elds transform as: A � (�1; 1), �Q � (3;�9). These global sym-

metries will play an important role in the subsequent discussion. No holomorphic gauge

invariant can be constructed from the matter �elds in this theory. From this it follows that

the theory has no classical 
at directions. It also follows that no superpotential is allowed

by the gauge symmetries.

The reasoning leading to the conclusion that supersymmetry is broken in this model

goes as follows. If the global symmetry of the model is unbroken there should be massless

fermions in the spectrum to saturate 't Hooft's anomaly matching conditions. The authors of

[11] performed a search for solutions of the anomaly conditions and found that the simplest

solutions were extremely complicated. To illustrate this point, we give one of the simplest

solutions of the anomaly matching conditions, trR = �26, trA = 5, trA3 = 125, trR3 =

�4976, trRA2 = �450, trAR2 = 1500. The minimal solution [11] requires the existence

of �ve massless Weyl fermions with charges (�5; 26), (5;�20), (5;�24), (0; 1), and (0;�9)
under the global U(1)A � U(1)R symmetry (this is to be contrasted with the solution of

the nonsupersymmetric version of the model, where a single massless fermion saturates 't

Hooft anomaly matching [63]). The di�culty in satisfying anomaly matching leads to the

conclusion that some (or all) of the global symmetry is broken. Now we can apply the general

reasoning (Section 4.4) that if a global symmetry is broken in a theory without classical 
at

directions, then supersymmetry is broken. One thus concludes that supersymmetry is broken

in this theory. Additional arguments that supersymmetry is broken, based on considering

correlators in instanton backgrounds, appear in [64]. The scale of supersymmetry breaking is,

presumably, of the order of the strong coupling scale of SU(5), �5, and the massless spectrum

should include a goldstino and Goldstone boson(s) for the broken global symmetry.

There exists a whole class of models, whose low-energy dynamics reduces to that of the
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SU(5) model. These are the SU(2k + 1) theories with matter representations A � and
�Qi � , with i = 1; :::; 2k � 3. These theories have classically 
at directions, parametrized

by the gauge invariant holomorphic polynomials X ij = A � �Qi � �Qj. By studying the D-term

equations, it is easy to see that along a generic 
at direction, rankhX iji = 2k � 4, the gauge

symmetry is broken to an SU(5) with a + matter representation [9]. This theory breaks

supersymmetry at a scale �13
SU(5) � �4k+5

SU(2k+1)=X
(4k�8)=3. The potential of the theory is,

presumably, proportional to �4
SU(5), and the theory has a runaway vacuum. The runaway

behavior can be avoided if tree level terms are added to the superpotential, Wtree = �ijX
ij ,

to lift the classically 
at directions. The theory then has a stable supersymmetry breaking

vacuum.

Another theory with very similar behavior to that of the SU(5) \one-generation" model

is the SO(10) theory with a single spinor representation [12].

It is worth mentioning that the Witten index for the SU(5) and SO(10) theories can be

calculated and vanishes, consistent with supersymmetry breaking as we discussed in Section

3.2. The basic idea is to add extra vectorlike 
avors (e.g. for the SU(5) theory pairs of

and ) [16]. The resulting theory now has D-
at directions. One can add small mass

terms for the extra vector like 
avors and analyze the low-energy dynamics in an e�ective

supersymmetric �eld theory [16], [17], [65], [66]. One �nds that supersymmetry is broken

and thus that the Witten index is zero. On increasing the masses, the extra heavy 
avors

decouple but the Witten index stays unchanged. These theories with extra light 
avors are

interesting in their own right as examples of supersymmetry breaking. For example, the

SU(5) theory with two extra pairs of and is a completely calculable model [17]. The

resulting theory is very similar to the 3-2 model: the gauge symmetry is totally broken, there

is a nonperturbative superpotential due to instanton e�ects, and for appropriately chosen

parameters, the vacuum occurs for large expectation values, where the whole spectrum is

under perturbative control.

6 Phenomenological applications: gauge mediated su-

persymmetry breaking.

Finally we end this review by brie
y discussing the application of dynamical supersymmetry

breaking to the construction of phenomenological models of supersymmetry breaking. For a

detailed review, a complete list of references, and discussion of phenomenological signatures,

we recommend [47].

As we discussed in the Introduction, supersymmetric extensions of the standard model

o�er an attractive solution to the hierarchy problem. In order to explain the hierarchy
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between the electroweak and Planck scales, supersymmetry has to break dynamically and

generate the electroweak scale mW � 10�17MP lanck. Achieving dynamical supersymmetry

breaking requires the addition of a new sector of the theory|the supersymmetry breaking

sector. Some of the models we discussed in the previous sections could play the roles of such

a sector.

In order to generate masses for the scalar partners of the quarks and leptons and the

fermion partners of the gauge bosons (and the soft parameters), the breaking of supersym-

metry has to be communicated to the standard model. At present, theoretically speaking,

there exist two main candidates for this messenger interaction.

An obvious candidate for such a messenger interaction is supergravity. Until recently,

theories where supergravity is the messenger of supersymmetry breaking were the most

studied ones. There are good reasons for this: since gravity is an universal interaction, once

supersymmetry is broken in any sector of the theory, it is automatically transmitted to all

other sectors, generating soft masses to the scalar superpartners of the quarks and leptons.

The soft masses are of order

msoft � M2
SUSY

MP lanck
� 102�3GeV ; (71)

where MSUSY is the supersymmetry breaking scale. The above equation can be derived

based on dimensional grounds: the soft masses have to vanish in the limit MP lanck ! 1,

while the power ofMP lanck follows from the fact that the communication is a tree-level e�ect

in the supergravity lagrangian. The requirement that the the soft mass parameters are of

order the electroweak scale follows from phenomenological and naturalness considerations.

From eq. (71), we can deduce that the scale of the supersymmetry breaking in supergravity

mediated models is of order MSUSY � 1010�12 GeV. Thus, the supersymmetry breaking

scale is rather high, beyond direct experimental reach. We will not discuss here the pros

and cons of supergravity mediated models of supersymmetry breaking, but only mention an

important drawback: the communication of supersymmetry breaking involves dynamics at

scales of order MP lanck, which is not well understood at present (many other shortcomings,

such as generically large 
avor changing neutral currents, can be related to this fact).

An economical alternative to gravity, as the messenger interaction, are the gauge interac-

tions of the standard model. This scenario, called gauge mediated supersymmetry breaking,

has received considerable attention recently.

In their simplest incarnation, gauge mediated models postulate the existence of new

particles with standard model charges|the messenger quarks and leptons. These messenger

particles are heavy, with mass of orderMmess. They interact with the supersymmetry break-

ing sector and thereby acquire supersymmetry breaking mass splittings of order �Mmess.
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Since they carry standard model gauge quantum numbers, the supersymmetry breaking

mass splittings are transmitted to the standard model squarks, sleptons, and gauginos at

the loop level. Typically, a soft mass parameter is of order

msoft � g2

16�2
�Mmess � 102�3GeV ; (72)

where g is a standard model gauge coupling and 1=16�2 is the standard one-loop suppression

factor. We see that the scale of the messengers is a lot smaller than the relevant scale in

supergravity models: �Mmess � 104�5 GeV. A plausible possibility is that the scale of

supersymmetry breaking is of the same order as the scale of mass splittings of the messenger

supermultiplets, i.e. MSUSY � �Mmess. We see then, that gauge mediated models of

supersymmetry breaking could involve physics at scales much smaller than the scales in

supergravity; one also makes no use of the ill-understood dynamics at the Planck scale.

The lower scale o�ers hope that the supersymmetry breaking dynamics may be amenable

to direct experimental studies in a foreseeable future. We saw in our discussion in Section

4.2 that the breaking of global supersymmetry gives rise to a goldstino. In the presence of

gravity the goldstino is \eaten" by the gravitino. Because of the low-scale of supersymmetry

breaking in gauge mediated models the gravitino is often the lightest R charged particle.

This can give rise to distinct experimental signatures.

Historically, gauge mediated models provided the �rst phenomenological framework of

supersymmetry breaking. After the advent of supergravity (in the early 1980's) they were

abandoned, mostly because of the alluring simplicity of supergravity models (with the almost

automatic generation of all soft parameters at tree level), and also because supersymmetric

gauge dynamics was not well understood at the time.

Gauge mediated supersymmetry breaking was resurrected in 1994, when the �rst phe-

nomenologically viable model was built [67]. This model has served to refocus attention

on the possibility of gauge mediation and provided an important \existence proof". But it

has some drawbacks|one of them being its rather complicated structure. The supersym-

metry breaking sector in this model uses the (3,2) model discussed in Section 5.1.1. The

anomaly free unbroken U(1)Y global symmetry is gauged; it is called the \messenger U(1)"

interaction. The messenger U(1) transmits supersymmetry breaking to some other �elds,

which in turn give a supersymmetry breaking expectation value to a gauge singlet �eld (the

\messenger singlet"). The messenger singlet �nally interacts with the messenger quarks and

leptons and gives them the desired supersymmetry breaking mass splitting. One reason

for the complicated nature of this model is that at the time it was constructed only a few

theories of dynamical supersymmetry breaking were known.

As we have seen in this review, recent studies of dynamical supersymmetry breaking
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have brought many new theories exhibiting this phenomenon to light. These have proved

instrumental in constructing new examples of gauge mediated models. In particular, one idea

that has been explored is to construct models where the uni�cation of the supersymmetry

breaking and messenger sectors (thereby getting rid of the messenger U(1) gauge interaction)

is achieved. The idea is to identify the standard model gauge group with the unbroken global

symmetry group of the supersymmetry breaking sector, which had to be large enough to

accommodate the whole SU(3)�SU(2)�U(1). The states in the supersymmetry breaking

sector now also carry standard model gauge quantum numbers. Thus the messengers are

identi�ed with �elds in the supersymmetry breaking sector; their supersymmetry breaking

mass splittings are transmitted to the standard model squarks, sleptons, and gauginos at

the loop level.

The �rst \direct gauge mediation" models that were constructed used the SU(N) �
SU(N�k), N -odd, k = 1; 2 theories of [22], [23]. For appropriate choices of N these theories

have a ground state with broken supersymmetry and a su�ciently large global symmetry

group to allow for embedding the standard model gauge group in it [60], [61]. We also

mention here that the \plateau" models of ref. [46], [47] have proven useful in constructing

phenomenological models of supersymmetry breaking. For a discussion of the status of the

various models mentioned here, and other recent developments in the �eld, we refer the

reader to [49].
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