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Abstract

Electromagnetic interaction of colliding beams along with other nonlinear fields in many cases
limits beams lifetime and luminosity. Nonlinearities result in spread of betatron frequencies (foot-
print) and, thus, may enhance dynamic diffusion of particles due to high order resonances. One of
possible ways to eliminate nonlinearities and overcome the difficulties is compensation of nonlin-
ear forces, but, in practice, it’s hardly possible to obtain exact linearity of the system. The com-
pensation with a single nonlinear lens can’t cope with distributed nonlinearities, nonlinearities due
to parasitic crossings, etc. In the article we present a method to compute parameters of nonlin-
ear element (lens) that eliminates both the footprint and resonance strength without achieving full
compensation.

1 Introduction

Use of opposite charge particles for compensation of a kick due to counter bunch in colliders is an
attractive idea[1], although there are several issues to be solved for its successful realization (see e.g.
[2]). One of them is provision of proper non-linear electron charge distribution. For example, Fig.1
demonstrates the effect of the ideal “electron compressor” on the 2-D tune diagram. The largest “leaf”
is the pbar footprint due to “head-on” collisions with round Gaussian proton beam with charge distri-
bution ρp(r) = C · exp(− r2

2σ2 ). The smaller one shows the footprint in case when electron beam with
charge density profile proportional to ρe(r) = −C · 0.83

1+(r/σ)8 is installed on the pbar orbit. For conve-
nience of presentation we have separated two plots horizontally, in fact the second one would be around
zero tune point ν(x,y) = 0. One can see a significant reduction of the tune spread with the electron
beam. It was originally thought that the electron beam with Gaussian charge density ρe(r) = −ρp(r)
can lead to complete elimination of the footprint, and thus to compensation of the beam-beam effects.

∗On leave from Budker INP, 630090, Novosibirsk, Russia.
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Figure 1: “Electron compression” of head-on footprint of antiprotons.

It was revealed then, that such an idealized picture of the compensation is not adequate to reality.
First of all, the beam-beam footprint itself can be significantly distorted by “imperfections” like cross-
ing angle at the interaction point, numerous parasitic interactions in multibunch colliders at the loca-
tions where two beams do not actually collide but still interact via long-range electromagnetic forces,
etc. The collider focusing lattice itself is not linear and this must be taken into account too. An ad-
ditional difficulty is that usually nonlinearities are not localized in one element - in contrast, they are
distributed over the collider ring - and a single thin lens even with any field distribution can not elim-
inate all nonlinearities from particle motion. Finally, it does matter what is the ratio of the electron
beam length and beta-function at its location. To create some insertion with predetermined two or
three dimensional map is an extremely complicated task even from theoretical point of view.

This article is an attempt to investigate the possibility to add a single thin nonlinear lens to some
arbitrary nonlinear lattice in such a way that the particle motion in the modified structure would become
resonance-free, though nonlinear, and the beam of the particles has zero footprint. After that we apply
our results to experimental project of the beam-beam compensation with electron beam (BBCEB) in
the Tevatron which is currently under way at FNAL ([3]).
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2 Resonance-Free Nonlinear System.

Here we present some of earlier results on the nonlinear systems without resonances [4]. These systems
form a subset of integrable systems, i.e., systems with regular motion, and some of them are applicable
in colliding beams. As an example, we consider nonlinear (de)focusing due to some specially prepared
electron beam.

Let us consider particle motion in the three elements lattice: 1) drift space with a unity length (for
simplicity); 2) an axially symmetric thin lens, as a representation of the angular-momentum-preserving
linear optics in between interactions; and 3) radial beam-beam kick kbb(r). 2D map for particle trajec-
tory coordinates x, y and angles x′, y′ is:

x = x+ x′

y = y + y′

x′ = x′ + kx (1)

y′ = y′ + ky,

where kx =
x

r
k(r), ky =

y

r
k(r), and r =

√
x2 + y2. Due to conservation of the angular momentum

M = xy′ − yx′, the motion can be reduced to 1D, i.e. to r and r′ = (xx′ + yy′)/r.
It can be checked directly, that if the total radial kick function is equal to:

k(r) = −2r − kbb(r) = −2r − br

1 + ar2
, (2)

where a and b are free parameters, then, there is an additional invariant of motion:

IM (r, r′) = (1 + ar2)
(
(r′ + r)2 +

M2

r2

)
+ br(r′ + r) + r2. (3)

The variables here are changed to r, r′, and we used a simple relation x′2 + y′2 = ((rr′)2 + (xy′−
yx′)2)/r2 = r′2 +M2/r2. 1

It is easy to find the corresponding electron charge distribution ρe(r) which leads to the necessary
kick kbb(r). Indeed, if the electron beam length is much smaller than the beta-function at this point,
then

kbb(r) = C

∫ r
0 f(r)rdr

r
,

1the first term in (2) together with the drift forms the linear optics in between the IPs. The optics appears to be a 90◦

lattice in bothX and Y planes, with the matrix of the period:

Tx = Ty =
(

1 0
−2 1

)(
1 1
0 1

)
=
(

0 1
−1 0

)
(4)

In order to return to the physical units in the result, one should replace 1 to β, and−1 to−1/β in the right hand side of the
last equation, β is the beta-function at the interaction point.
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thus,

ρe(r) = −2b

C

1

(1 + ar2)2
. (5)

We do not specify here the value of the constant C , since the constants a, b are arbitrary.
Since we provide two invariants of 2D problem, then the resulting motion is regular, though non-

linear (the frequency of oscillations depends on invariant of oscillations) [4].

3 Numerical Algorithm to Eliminate Footprint.

In previous section we deal with nonlinear integrable system with quite predictable motion. One can
use that or similar system in order to eliminate chaotic particle motion. Certain difficulty appears if one
takes into account nonlinearities and field errors of the real accelerator which may significantly change
the particle motion. It can cause drastic changes if the nonlinear lens brings the system close to higher
order resonances. To avoid excitation of these resonances, we need system with weak dependence of
betatron frequency on the oscillation amplitude or with no dependence at all.

Such systems are linear in some appropriate variables. Let us consider all 1D classical Hamiltoni-
ans 2

H = p2/2 + U(x)

which have the property of constant frequency of oscillations for all initial conditions.

X1 X2X

U=E

X1(U) X2(U)

0

Figure 2: Potential of classical Hamiltonian vs coordinate.

Under conditions that the potentials U(x) have only one minimum and that the oscillation period
is known function T (E) of the energy E (a particular value of the above Hamiltonian), the solution of
the problem is given by formula (see e.g. [5]):

X2(U) −X1(U) =
1√
2π

∫ U

0

T (E)dE√
U − E

, (6)

2for sake of simplicity, we put the mass of particle is equal to 1
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where X2(U), X1(U) are left and right boundary for particle’s motion for energy U(X1) = U(X2) =
E - see Fig.2. Reversion of X1,2(U) gives the potential U(X) vs coordinate for both left and right
branches of the potential energy graph. Evidently, we are free to choose only one of the functions
X1(U) or X2(U), while the second one to be determined from Eq.(6). For a constant period T (E) =
T = const in the formula yields:

X2(U) −X1(U) =

√
2

π
T
√
U. (7)

This formula has very simple meaning - while one of the branches (e.g. X1(U)) is determined, the
second branch must be adjusted to the first one to keep the same period of oscillations for all energies.

In general, symplectic maps have no appropriate ”good” invariant (like energy in the example
above), and to find general form of the maps with constant frequency is much more difficult prob-
lem. We present here a numerical method to construct such maps. It has simple physical meaning but
has no reliable mathematical foundation.

The idea is as follows: let us choose our frequency equal to a resonant one, e.g. the 20th order
resonance 3). There is a simple way to know, either the motion for every particular initial condition
has that frequency or not: one just has to calculate the squared differences of coordinates and momenta
at the beginning and at the end of 20 successive map transformations. E.g. in the normalized variables
x =
√
ε cos(ψ) and x′ = −

√
ε sin(ψ) (ψ is a betatron phase), one makes summation over some region

of initial conditions and gets a special function F :

F =
∑
j

(xf − xi)2 + (x′f − x′i)2, (8)

where symbols i and f are for initial and final normalized coordinates and angles, respectively, and
the index j denotes different phase space elements of initial conditions. When this function is equal
to zero F = 0, then we have:

1) all the frequencies are equal to the particularly chosen value (1/20 in our case);
2) strength of this resonance is equal to zero.
In fact, for resonant islands we get the same average frequency for all phase space elements of the

island, but the motion inside the island has own frequency. It gives the nonzero difference of initial and
final conditions after the number of turns equal to number of resonance (20 turns in our case). When
the function F is equal to zero, the motion inside the island is degenerate, so the resonance strength is
equal to zero.

The numerical code we developed deals with minimization of the function F . The code can find
the solution with very small F in all the important cases when there are enough parameters for opti-
mization. It means that the ”number” of integrable systems with constant frequency is rather large as
for the case of 1D motion with time-independent Hamiltonian as we have shown above. In the next
section we present the results of numerical calculations of the nonlinear lens for the Tevatron.

3we do so for simplicity. In fact, for an arbitrary frequency, there is always a rational number in its vicinity such as the
difference is negligible
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4 Application to the Tevatron Electron Beam Lens

Fig.3 shows a schematic view of the Tevatron collider, with three beams: high energy proton and an-
tiproton beams and low-energy high current electron beam.

P

  cmβ  35
E   beam

P
β=100 m

2 m

P

P bunch

e  beam

e  beam

le = .7 mm
distributed P bunch

bet.phase advance = m 2 πLp=35 cm

Figure 3: Scheme and some parameters of bunches in the Tevatron.

Evidently, it is beneficial to collide all three beams in one interaction point(IP): if the electron bunch
goes along with the proton bunch at interaction region and has the same size, speed, charge, then the
electromagnetic force due to protons can be compensated by electrons and test particles, antiprotons,
experience no total kick at the IP.

In reality, it is hard to achieve necessary electron current density (equal to the proton one at the
IP) with conventional electron sources. Moreover, often there is no space at the interaction region for
necessary additional equipment. Thus, the electron beam has to be placed somewhere else at the ring,
preferably in the location where transverse beam size is large, e.g. about 1 mm rms in Tevatron if
the beta-function is about βe = 200m - compare with about 30 µm rms at the IP β∗ = 35 cm. It is
desirable to have betatron phase advance between the IP (marked by cross in top picture in Fig.3) and
the electron beam point to be multiple of 2π. It was shown in Ref.[1] that thermionic electron gun can
provide necessary beam parameters for compensation of the proton bunch impact on antiprotons.

Nevertheless, there is another difficulty which come from the fact that the proton bunch length of
about σz ' 35cm is comparable to beta-function at the interaction point β∗. Therefore, the betatron
phase advance for antiprotons at the main IP is large φ =

∫
dz/β ' σz/β∗ ' 1. In contrast, the

electron beam length of about 2 m is much less than βe and corresponding betatron phase advance
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of antiprotons passing the electron beam is very small φ ' 0.01 − 0.02. In other words, effectively,
the electron beam kick looks like delta-function if transformed to the main IP - see low left picture
in Fig.3. Consequently, this short impact due to electrons contains a lot of resonance harmonics, al-
though the average actions due to proton and electron beams are the same. One can reduce betatron
tune spread by such a lens, but this fact alone does not assure the motion more stable than that with no
compensation. For example, if the round proton charge is uniformly distributed along the whole ring
- see low right picture in Fig. 3 - than p̄ motion is regular in spite of the nonlinear force. Introduction
of short electron beam results in time-dependent total force and stochastic dynamics in general. So,
the resonance strengths sometimes are more important than the betatron tune spread.
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Figure 4: Transverse electron charge distributions necessary for elimination of resonances and tune
spread in the antiproton motion: the curve with smaller value at 0 is the Gaussian distribution to com-
pensate very short proton bunch; the curve with higher maximum is optimized electron distribution to
compensate 75-cm long proton bunch (rms).

The numerical procedure suggested in the preceding section is used to fix the situation. We op-
erated with transverse electron charge distribution which is sum of the Gaussian distributions with
different rms values:

ρe(r) =
6∑

n=1

Cnexp(−
n · r2

4σ2
),

whereCn are variable coefficients for optimization and σ is the rms transverse proton bunch size at the
location of the electron beam. In simulations the electron beam produces a delta-function kick because
of its short “effective” length, while the proton bunch length is presented as a number of short slices.
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We used somewhat different optimization function than F introduced in previous section, namely:

F̃ =
∑
j

(xf − xi)2 + (x′f − x′i)2

x2
i + (x′i)

2
, (9)

where j is the index for different initial conditions. The denominator of this expression is added in
order to make the same weight of trajectories with small and large amplitudes.

The numerical code finds coefficients Cn depending on the proton bunch length. The synchrotron
amplitude of antiprotons is taken to be zero. In the process of optimization the value F̃ usually de-
creases in factor of 1000. For example, under conditions of zero length proton bunch, the tune shift
due to protons is ξ = 0.05, with equal horizontal and vertical beta-functions of β∗x = β∗y = 35cm we
get C1 = 0, C2 = 1.25, C3 = 0, C4 = 0, C5 = 0, C6 = 0 in some units (for normalized variables).

For the proton bunch length of σz = 2β∗, we get C1 = 0.533, C2 = .225, C3 = 0.484, C4 =
0.325, C5 = 0.194, C6 = 0.25 in the same units. Fig.4 demonstrates the resulting “optimized” distri-
bution and compares it with the Gaussian distribution C2 = 1. Significant difference is clearly seen.

5 Conclusion

We suggest a numerical method to calculate the parameters of single thin lens necessary to compensate
effects of accelerator nonlinearities. It can be applied to a problem of non-linear beam-beam effects in
collider rings if a specially prepared electron beam can be used for compensation. The primary studies
of the method have shown that it works as soon as there are enough parameters to vary non-linear
components. Though the method is valid for 1D case of round beam schemes, it can be generalized
for two dimensions.

We intend to continue these investigations for the electron beam lens in the Tevatron, and take
into account influence of synchrotron motion, the crossing angle effects, etc. on the antiproton beam
dynamics.
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