
F Fermi National Accelerator Laboratory

FERMILAB-Conf-98/328

Introduction to the SI Library of Unit-Based Computation

Walter E. Brown

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

October 1998

Presented at the International Conference on Computing in High Energy Physics (CHEP ’98),

Chicago, Illinois, August 31-September 4, 1998

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.

Copyright Noti�cation

This manuscript has been authored by Universities Research Association, Inc. under con-

tract No. DE-AC02-76CHO3000 with the U.S. Department of Energy. The United States

Government and the publisher, by accepting the article for publication, acknowledges that

the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license

to publish or reproduce the published form of this manuscript, or allow others to do so, for

United States Government Purposes.

Introduction to

the SI Library of Unit-Based Computation �

Walter E. Browny

Fermi National Accelerator Laboratory

September 2, 1998

Ye shall do no unrighteousness in judgment,

in measures of length, of weight, or of quantity.

{ Leviticus 19:35

Contents

1 Introduction 1

2 Underpinnings and Basic Features 2

3 Annotated Example 3

4 Additional Features 4

5 Concluding Remarks 6

6 Acknowledgements 6

7 Addendum 6

References 6

Copyright Notice: This manuscript has been authored by Universities Research Association, Inc., under

contract No. DE-AC02-76CH03000 with the U.S. Department of Energy. The United States Government

retains and the publisher, by accepting the article for publication, acknowledges that the United States

Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the

published form of this manuscript, or allow others to do so, for United States Government purposes.

Credit line: Work supported by the U.S. Department of Energy under contract No. DE-AC02-76CH03000.

Distribution: Approved for public release; further dissemination unlimited.

Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their employees,

makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that

its use would not infringe privately owned rights. Reference herein to any speci�c commercial product,

process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute

or imply its endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or reect those of the

United States Government or any agency thereof.
�An expanded version of this paper is in preparation; please contact the author for details.
yEmail: wb@fnal.gov

i

1

1 Introduction

1.1 Units-checking and type-safety

Scienti�c work commonly deals with numbers that represent amounts of physical dimensions.
Scientists are therefore trained, as a matter of routine, to be very careful with these numbers'
units, lest incompatible values be accidentally combined in calculation or lest incorrect units
be ascribed to the outcome. As Halliday and Resnick exhort [6, pp. 35-6]:

� \In carrying out any calculation, always remember to attach the proper
units to the �nal result, for the result is meaningless without this...."

� \One way to spot an erroneous equation is to check the dimensions of all
its terms...."

� \In any legitimate physical equation the dimensions of all the terms must
be the same...."

In modern digital computation, the analogous concept is known as static type-checking.
This concept lies at the core of such object-oriented programming languages as C++, and
yields among the most valuable bene�ts of such software methodology. To demonstrate the
analogy's accuracy, we paraphrase Halliday and Resnick above (di�erences emphasized):

� In programming any calculation, always remember to attach the proper
data type to the �nal result, for the result is meaningless without this.

� One way to spot an erroneous program is to check the data types of all
its objects.

� In any legitimate assignment the data types of both the sides must be
the same.

A substantial body of theoretical and applied computing research has been devoted to
type-checking. As summarized by Fagan [4, pp. ii, 2], static typing provides \... important
feedback to the programmer by detecting a large class of program errors before execution"
as well as \... a succinct, intelligible form of program documentation, making programs
easier to read and understand." Fagan further notes that \simple conceptual errors" often
manifest as type errors, that these are detectable by type-checking software (such as a
compiler) used to ensure \... the type documentation is consistent," and (citing [5]) that
\[e]xperimental results estimate the number of ... type faults as something between 30%
and 80% of all program errors." For these and related reasons, programmers have long been
taught to employ and rely on type-checking.

1.2 Prior work

There have been several earlier e�orts to attain these bene�ts. Perhaps the most useful to
scienti�c programmers is currently found in the Units subdirectory of the CLHEP library.
Two �les [9, 10] de�ne symbols for units and important constants in common use by the
high-energy physics community.

The use of these and similar symbols provides, of course, an important boost to code
readability and correctness. However, CLHEP's Units �les do not express the concepts of
the various intended dimensions to which its constants and units belong. All these symbols
have type HepDouble, typically a synonym for C++'s double. Only in a relativistic model
where the speed of light is one should it be possible to add meters to seconds; it is otherwise
highly unlikely to be a meaningful expression, and thus highly likely to reect a conceptual
and attendant computational error.

2 2 UNDERPINNINGS AND BASIC FEATURES

1.3 Current programming practice

Given modern programming languages' signi�cant expressive capabilities to design data
types tailored to the problem domain at hand, we clearly now have both ample motivation
and ample technology to embrace type-safe object-oriented techniques in all contemporary
applications of computer programming. Alas, in computer programming as practiced today,
the standard of care recommended above seems only rarely applied to numeric quantities.
Informal inspection of contemporary code samples revealed that, in numeric programming,
programmers make heavy, near-exclusive, use of a language's native numeric types (e.g.,
double). A search of representative on-line archives did not even �nd any queries on the
subject, suggesting little or no interest in, or knowledge of, alternatives.

In light of prior software art, this �nding is not surprising. However, such overly-general
practice is a common source of errors: it fails to distinguish the diverse intentions (e.g.,
distances, masses, energies, momenta, etc.) that any such purely numeric value can rep-
resent. Were such intentions routinely expressed in our computer programs, application of
contemporary compiler technology would routinely provide us the bene�ts of type-safety
in our numeric computations as a by-product of the translation process. This bene�t is
consistent with the unit-based approach so strongly advised by [6], among many others.

1.4 Scope of current project

To address current deplorable practices in numeric computation, we set out to develop
a software subsystem to provide a convenient means of expressing, computing with, and
displaying numeric values with attached units, thus obtaining the well-known bene�ts of type
safety consistent with recommended unit-based practices of long standing. An additional
requirement of this project was to ensure strict compile-time type-checking without run-time
overhead (i.e., at no run-time cost in time or in space).

More speci�cally, we sought

1. application of current software technology to numeric physical concepts,

2. convenience of expression in such application,

3. general utility rooted in existing standards,

4. use of nomenclature from our problem domain, and

5. no attendant performance penalties!

The present project, known as The SI Library of Unit-based Computation, has succeeded
in addressing these requirements. The resulting software module (known hereinafter as the
SI Library or, simply, the Library) meets (and, in many respects, greatly exceeds!) all its
goals and is intended for contribution (for non-commercial use) to the FPCLTF (\Zoom")
project library at Fermilab.

2 Underpinnings and Basic Features

2.1 International Standard of Units

Le Syst�eme international d'Unit�es (SI) [2] is the recognized international standard for de-
scribing measurable quantities and their units. SI speci�es seven mutually independent base
quantities (dimensions): length, mass, time, electric current, thermodynamic temperature,
amount of substance, and luminous intensity. The base units for describing amounts of
these are speci�ed, respectively, as the meter, kilogram, second, ampere, kelvin, mole, and
candela.

2.2 Library basics 3

In addition, SI describes a consistent system for expressing new dimensions (e.g., energy)
in terms of the seven base dimensions. In particular, it includes a list of 21 such derived
dimensions whose amounts are described in specially-named composites (e.g., joule) of the
base units. Finally, SI provides a list of pre�xes for forming units' decimal multiples and
sub-multiples.

2.2 Library basics

At its core, The SI Library of Unit-based Computation provides, in the form of data types,
all the base dimensions speci�ed by SI. Further, it provides the ability to declare additional
data types to represent derived dimensions, also as speci�ed.

For programming convenience, a very signi�cant number of derived dimensions have been
included in the Library. In particular, virtually all the dimensions described by Horvath
[7] and by Pennycuick [11] are provided. A programmer is free to use, ignore, or add to
these as may be convenient for the application at hand.

Similarly, all the base and composite units speci�ed by SI are provided in the Library,
as are forms of the SI-mandated pre�xes. An extensive collection of diverse units from
published sources (e.g., [7, 11, 3, 9, 10]) have also been included in the module; these
encompass traditional MKS, CGS, UK, and US units. Many units not in common use have
also been provided in order to demonstrate both the diversity and the exibility that the
Library enables.

A signi�cant collection of constants of nature is also incorporated in the SI Library.
Because any such constant can be used as a unit (e.g., Mach is based on the speed of sound),
these constants of nature have been internally combined with traditional units data; many
of the same published sources were used to furnish their values. As before, a programmer
may use, ignore, or extend this list.

The SI Library's infrastructure is furnished to a user program in the form of header �les
that make known all the Library-de�ned data types, units, and constants of nature. All
these identi�ers are declared within a C++ namespace so as to avoid introducing extraneous
symbols.

3 Annotated Example

The following sample code �rst illustrates the fundamentals of instantiating SI Library

objects in connection with SI's basic Length dimension. Note that, in the absence of any
explicit units, the appropriate base unit (or combination of base units) will be assumed.
Further note that any mismatch between units and dimensions will give rise to a compile-
time type error.

Part two illustrates computation and output with Length and Length-related dimen-
sions. Note in particular that the units in which values are displayed may be changed dy-
namically at will; however, no such change a�ects the internal representation of the value.
While a change in the display of any of the seven SI base dimensions may impact the sub-
sequent display of derived dimensions, no change to the display of a derived dimension will
a�ect the display of any other dimension.

#include "SIunits/stdModel.h"

#include <iostream>

int main() {

// Preparation:

using namespace si; // make most si:: symbols available

4 4 ADDITIONAL FEATURES

using namespace si::abbreviations;

using namespace std; // make all std:: symbols available

// ----- Part 1: illustrate instantiation/initialization -----

// Successful instantiations:

Length d; // initialized to 0 meters by default

Length d2(2.5); // 2.5 meters; same as 2.5 * m

Length d3(1.2 * cm); // 1.2 centimeters; recorded as .012 * m

Length d4(5 * d3); // equivalent to 6.0 centimeters

Length d5(1.23 * pico_ * meter); // 1.23e-12 * m

Length d6(d2 + d3); // all dimensions match

// Bad instantiation attempts; all detected at compile-time:

Length d7(d2 * d3); // oops: an Area can't initialize a Length

Length d8 = 3.5; // oops: 3.5 is not a Length

Length d9; // so far so good, ...

d9 = 3.5; // ... oops: 3.5 is still not a Length

// ----- Part 2: illustrate computation and output -----

// Display with default labels:

cout << inch << endl; // display "0.0254 m"

// Prefer centimeter labels from now on:

Length::showAs(cm, "cm"); // set default display units

cout << inch << endl; // display "2.54 cm"

// Compute/display:

Length len(2*cm);

Width wid(3*cm); // Width is a synonym for Length

Area a(len * wid);

cout << a << endl; // display "6 cm^2"

// Prefer to label Area in square meters:

Area::showAs(m*m, "m2"); // set default display units

cout << a << endl; // display "0.0006 m2"

cout << a*4 << endl; // display "0.0024 m2"

// But a volume reverts:

cout << a * 4*cm << endl; // display "24 cm^3"

return 0;

} // main()

4 Additional Features

4.1 Choice of data representation

By default, the Library employs the C++ native double data type as its underlying
representation. Recognizing, however, that di�erent programming projects may require
di�erent underlying data representations (e.g., float, long double, complex<float>, etc.),

4.2 No run-time overhead 5

C++'s template mechanism was used throughout this Library's implementation. This
allows a knowledgeable programmer to specify the data representation desired. The memory
requirement for each object of an SI Library type is exactly the same memory amount
that would be required for an object of the underlying native type.

4.2 No run-time overhead

Because all type-checking is handled at compile-time and because of heavy use of inlining,
there is no run-time computational overhead beyond the time taken for the necessary arith-
metic. Thus, use of the SI Library incurs no performance penalty relative to computation
on the native type.

4.3 Choice of calibration

Because di�erent users work with values of radically di�erent magnitudes, the SI Library
allows for certain user calibration. By default, each of the seven base units (meter, kilogram,
second, etc.) is calibrated to a value of one. However, for users who customarily work, say,
in microns and nanoseconds, it is possible to calibrate the Library to treat these units
as the base units instead. Such calibration, however, can only take place at the time the
Library is built; dynamic recalibration is neither currently possible nor envisioned as a
future enhancement of the Library.

4.4 Choice of model

Finally, di�erent programming projects may use di�erent models of the universe. For ex-
ample, to simplify certain computations, high-energy physics calculations often assume the
speed of light to be one. Such assumptions are also possible within the SI Library and all
consequences of such assumptions (e.g., the merging of the Length and Time dimensions)
can be accurately modeled.

The Library is supplied with �ve models; these are known, respectively, as the standard,
relativistic, high-energy physics, quantum, and natural models. The following table provides
some details as to each model's characteristics; all models use the mole as the unit of
AmountOfSubstance and the candela as the unit of LuminousIntensity:

Model De�ning Characteristics Default Units

stdModel per Syst�eme international
m (Length); kg (Mass); s (Time);
A (Current); K (Temperature)

relModel c = 1
s (Length, Time); eV (Mass);
A (Current); K (Temperature)

hepModel c = k = e+ = 1
ns (Length, Time);
GeV (Mass, Temperature); e+ (Charge)

qtmModel c = k = �h = 1
inverse GeV (Length, Time);
GeV (Mass, Temperature, Current)

natModel c = k = �h = G = 1
numeric only (Length,
Time, Mass, Temperature, Current)

An application program selects the desired model via an #include "..." directive. A
programmer pays no price for the availability of multiple models; only the code associated
with the chosen model need be linked with application code. Additional models may, of
course, be added to the Library by a knowledgeable programmer.

The Library's �ve models are designed to provide progressively more restrictive view-
points. Such \forward compatibility" in models is obtained via recompilation using a header
from any more restrictive model, and no other source change. Thus, a user may freely de-
velop code under one model, and later elect to recompile and run with any more restrictive
model.

6 REFERENCES

5 Concluding Remarks

This paper has presented the concept of type-checking as the computer analog of manual
calculation with units. The bene�ts of type-checking have been set forth, together with em-
pirical evidence that programmers do not today apply type-checking to its fullest potential
in numeric computation.

The thrust of the paper has been the general description of The SI Library of Unit-

based Computation, a software subsystem intended to apply the documented bene�ts of
type-checking to numeric computation with no run-time overhead in either time or space.
Convenience of use, economy of application, and ease of extensibility were primary objectives
of the project. Major features of the SI Library have been discussed and illustrated.

We conclude that the SI Library software project has met each of its objectives, and
has exceeded many of them. To quote sample user reaction to date, \[the SI Library] is
the �rst really good reason I've seen to switch from Fortran to C++."

6 Acknowledgements

In addition to his general support as chair of the Fermi Physics Class Library Task Force,
Mark Fischler �rst suggested applying the core of the SI Library to additional models. He
also de�ned the desired properties of the advanced physics models and assisted materially
in validating the Library's behavior in these models. Isi Dunietz also assisted with some
of this validation and with proo�ng.

7 Addendum

Several weeks after this paper was prepared and delivered at CHEP'98, a colleague pointed
out the 1994 work of Barton and Nackman [1]. Preliminary analysis of their chapter \Al-
gebraic Structure Categories" suggests some overlap with the present work, which indepen-
dently discovered some of the same techniques. While Barton and Nackman term their code
\advanced examples," their e�orts should not be overlooked.

References

[1] Barton, John J. and Lee R. Nackman. Scienti�c and Engineering C++: An Introduction

with Advanced Techniques and Examples. Addison-Wesley, 1994. ISBN 0-201-53393-6.

[2] Bureau International des Poids et Mesures. \Le Syst�eme international d'Unit�es." S�evres
Cedex, France, 1998.

[3] Caso, Carlo, et al.\Review of Particle Physics." The European Physical Journal, C3
(1998) pp. 69-70, 73.

[4] Fagan, Mike. \Soft Typing: An Approach to Type Checking for Dynamically Typed
Languages." Technical Report 92-184, Rice University, March 31, 1992.

[5] Gannon, John D. \An Experimental Evaluation of Data Type Conventions." Commu-
nications of the ACM, 20:8 (August, 1977), pp. 584-595.

[6] Halliday, David and Robert Resnick. Fundamentals of Physics. John Wiley & Sons,
Inc., 1970. SBN 471 34430 3.

[7] Horvath, Ari L. Conversion Tables of Units in Science & Engineering. The Macmillan
Press Ltd., 1986. ISBN 0-444-01150-1.

REFERENCES 7

[8] International Standards Organization, JTC1/SC22. Programming Languages { C++.
ISO/IEC FDIS 14882, 1998.

[9] Maire, Michel and Evgueni Tcherniaev. File: Units/PhysicalConstants.h. In CLHEP
v1.3, CERN, 1998.

[10] Maire, Michel and Evgueni Tcherniaev. File: Units/SystemOfUnits.h. In CLHEP

v1.3, CERN, 1998.

[11] Pennycuick, Colin J. Conversion Factors: S. I. Units and Many Others. Univ. of
Chicago Press, 1988. ISBN 0-226-65507-5.

