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ABSTRACT 

Recent measurements of the cosmological parameters have renewed interest in the 
cosmological constant .A. I briefly review the current status of these measurements 
and the corresponding arguments for and against cosmological models with non-zero 
A. I outline a scenario which attempts to incorporate non-zero vacuum energy into 
the framework of particle physics, based on an ultra-light pseudo-Nambu-Goldstone 
boson. With global spontaneous symmetry breaking scale f N 101s GeV and 
explicit breaking scale comparable to MSW neutrino masses, M - 10e3 eV, such 
a field, which acquires a mass rn+ - M2/ f - Ho, would have become dynamical 
at recent epochs and currently dominate the energy density of the universe. The 
field acts as an effective cosmological constant for several expansion times and 
then relaxes into a condensate of coherent non-relativistic bosons. Such a model 
can reconcile dynamical estimates of the density parameter, Q,,, - 0.2, with a 
spatially flat universe, and can yield an expansion age Hoto N 1 while remaining 
consistent with limits from gravitational lens statistics. 

1. Introduction: the Observational Case for A 

The history of the cosmological constant is not pretty: beginning with Einstein, 
it has been periodically favored by cosmologists, more out of desperation than desire, 
and then quickly forgotten when the particular crisis passed. Examples include the 
first ‘age crisis’ arising from Hubble’s large value for the expansion rate (1929), 
the apparent clustering of QSO’s at a particular redshift (1967): early cosmological 
tests which indicated a negative deceleration parameter (1974): and the current 
‘age crisis’ arising from a growing body of evidence in favor of a high value for 
the Hubble parameter (see below). (As Berra once said in a seminar on i1, “it’s 
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deja vu all over again.“) Among cosmologists of the early part of the century, only 
Eddington seemed genuinely enamored of the concept: writing 

“1 am a detective in search of a criminal-the cosmical constant. I know 
he exists, but I do not know his appearance; for instance, I do not know 
if he is a little man or a tall man.” 

Moreover, beginning with the work of Zel’dovich and collaborators, it gradually 
became clear that the cosmological constant should be identified with the energy 
density of the vacuum. Consequently, it cannot be invoked by whim, but is an 
inevitable prediction of quantum field theory (and, at this stage, a highly embar- 
rassing one). 

Recently, cosmological models with substantial vacuum energy-a relic cosmo- 
logical constant A-have again come into vogue for several reasons ‘. First, dy- 
namical estimates of the mass density on the scales of galaxy clusters, the largest 
gravitationally bound systems? suggest that Q2, = 0.2fO.l for the matter (m) which 
clusters gravitationally (where the density parameter 0 is the ratio of the mean mass 
density of the universe to the critical Einstein-de Sitter density, Q(t) = 8rGp/3H2). 
However, if a sufficiently long epoch of inflation took place during the early universe, 
the present spatial curvature should be negligibly small, atot = 1. A form of dark, 
homogeneously distributed energy density with & = 1 - f12,, such as a cosmological 
constant, is one way to resolve the discrepancy between a,,, and fitot. 

Recently, this argument was augmented by the ‘baryon catastrophe’ in galaxy 
clusters. X-ray satellites have begun to map the density and temperature profiles of 
the hot gas which permeates many clusters. If the gas is in hydrostatic equilibrium, 
it can be used to directly trace the cluster mass distribution. Cluster masses inferred 
by this method are generally comparable to the virial estimates. The X-ray obser- 
vations also indicate that clusters are surprisingly baryon-rich: the gas constitutes 
typically (5 - 10)hT3i2!Y ( h o w ere the Hubble parameter Ho = 1OOh km/sec/Mpc) of 
the inferred binding mass within approximately lh-’ Mpc of the center of a rich 
cluster like Coma. On the other hand, big bang nucleosynthesis indicates that the 
baryon density of the universe is in the range ;RBh2 = 0.015 f 0.005. If the baryon 
fraction in clusters is representative of the baryon mass fraction of the universe, 
then combining these two ratios yields R, = (0.021 f 0.12)hd1i2, which is well be- 
low unity for the observed range of the Hubble parameter 2. On still larger scales, 
peculiar velocities (deviations from the Hubble flow) have been used to infer the 
cosmic density, but the results have so far been inconclusive, with estimates falling 
in the range Q, - 0.2 - 1 3. 

The second motivation for the revival of the cosmological constant is the ‘age 
crisis’ for spatially flat a,,, = 1 models. Current estimates of the Hubble expan- 
sion parameter from a variety of methods, such as the infrared Tully-Fisher re- 
lation? planetary nebula luminosity functions, and surface brightness fluctuations, 
and most recently Cepheid variable stars in the Virgo cluster 4? are (with some 
notable exceptions) converging to relatively high values, Ho 2 80 f 15 km/sec/Mpc 



5. At the same time, estimates of the age of the universe from globular clus- 
ters are holding at t,, = 13 - 15 Gyr or more 6. Thus, the ‘expansion age’ 
Hot,, = l.l4(Hs/80km/sec/Mpc)(ts/l4Gyr) is uncomfortably high compared to that 
for the standard Einstein-de Sitter model with Q, = 1, for which Hoto = 2/3. On 
the other hand, for models with a cosmological constant, H& can be significantly 
larger: for example, for a,, - A/3H,2 = 0.8 = 1 - Q,,,? one finds Hoto = 1.076. It 
is worth noting that an open, low-density universe with A = 0 also has a higher 
expansion age than the Einstein-de Sitter model, but the gain is much less dramatic 
than for models with non-zero A (see Fig. 1). 

H&-b) 

Fig. 1: Evolution of the cosmic scale factor vs. expansion age in four FRW models: 3 models 

with A = 0 ($2, = 0, 1, 5) and one with R,i = 0.8 = 1 - $20. 

The third motivation for the cosmological constant derives from the attempt to 
model the large-scale structure of the universe. Cosmological constant-dominated 
models for large-scale structure formation with cold dark matter (CDM) and a 
nearly scale-invariant spectrum of primordial density perturbations (as predicted 
by inflation) provide a better fit to the observed power spectrum of galaxy cluster- 
ing than does the ‘standard? f12, = 1 CDM model 7. The shape of the CDM power 
spectrum on intermediate scales is essentially f&d by the parameter flmh. Assum- 
ing galaxies approximately trace the underlying mass distribution on large scales. 
the galaxy power spectrum inferred from spectroscopic (redshift) and photometric 
(angular) surveys is reasonably well fit by a CDM spectrum with R,h = 0.2 - 0.25. 



An example of this is shown in Fig. 2, which shows the galaxy two-point angular cor- 
relation function ~~~(8) inferred from the APM survey, which measured the angular 
positions of roughly lo6 galaxies covering 10% of the sky near the South Galactic 
Pole (the EDSGC survey covered nearly the same region with similar results). The 
predictions from linear perturbation theory for two CDM models, fl,h = 0.5 and 
0.2, are shown for comparison. The indicated spread for each model is a guide to 
the expected ‘cosmic variance’ for this survey. 
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Fig. 2: Galaxy angular correlation function ~~~(0): points are from the APM galaxy survey; for 

comparison, CDM models with R,h = 0.5 and 0.2 are shown. 

While they provide a number of theoretical benefits, models with a relic cos- 
mological constant have problems of their own. A cosmological constant for which, 
e.g., Q2,1 - 1 corresponds to a vacuum energy density pvac = A/87rG z (0.003 eV)4. 
Within the context of quantum field theory, there is as yet no understanding of 
why the vacuum energy density arising from zero-point fluctuations is not of or- 
der the Planck scale, ;UiIY 
M&y 

or at least of order the supersymmetry breaking scale, 
- TeV4? both many orders of magnitude larger. Within the context of clas- 

sical field theory, there is no understanding of why the vacuum energy density is 
not of the order of the scale of one of the vacuum condensates? such as -&I$~~, 
-!Lf&JsY? -&?$,sin40~~/(4~~)2 - (175 GeV)4, or -f$ - (100 MeV)4. Thus, a vac- 
uum density of order (0.003 e\r)4 appears to require cancellation between two (or 
more) large numbers t.o very high precision. Note that this is not an argument 



against the cosmological constant per se? merely a statement of the fact that we 
do not understand why A is as small as it is. However, some theorists expect that 
whatever explains the smallness of the cosmological constant may require it to be 
exactly zero. 

Second? if the cosmological constant satisfies fly - 1, it implies that we are 
observing the universe just at the special epoch when R, is comparable to fi,i, 
which might seem to beg for further explanation. 

Third, cosmological constant models now face strong observational constraints 
from gravitational lens statistics: in a spatially flat universe with non-zero A( 
the lensing optical depth at moderate redshift is substantially larger than in the 
Einstein-de Sitter model with f12, = 1 s. In the Hubble Space Telescope Snap- 
shot Survey for lensed quasars, there are only four lens candidates (thought to be 
lensed by foreground galaxies) in a sample of 502 QSOs; from this data, the bound 
Rii 6 0.6 - 0.8 has been inferred g. For Qi, = 1 - Rs < 0.7, the expansion age satis- 
fies H& < 0.96. With a cosmological constant saturating this bound, the globular 
cluster age to 2 14 Gyr implies HO < 67 km/sec/Mpc, within the uncertainties of 
but below the central value of recent Hubble parameter determinations. 

On balance, spatially flat models with a cosmological constant 0~ = 0.6 - 0.8 
appear to offer the best hope at present of achieving ‘concordance’ with a variety of 
cosmological observations. The question then arises as to how we might incorporate 
this possibility into particle physics without simply introducing another unexplained 
constant of nature. The remainder of this talk describes one set of ideas for how 
this might happen l”lll. 

2. Ultra-Light Scalar Fields 

It is conventional to assume that the fundamental vacuum energy of the universe 
is zero? owing to some as yet not understood mechanism, and that this new physical 
mechanism ‘commutes’ with other dynamical effects that lead to sources of energy 
density (after all, there is gravitational energy density acting on cosmological scales). 
This is required so that, e.g., at earlier epochs there can temporarily exist non-zero 
vacuum energy which allows inflation to take place, but the situation in reality 
could be more complex. Nonetheless, if this simple hypothesis is the case? then the 
effective vacuum energy at any epoch will be dominated by the heaviest fields which 
have not yet relaxed to their vacuum state. At late times? these fields must be very 
light. This is a big asumption: the cosmological ‘constant’ may be in the process 
of relaxing in a self-consistent way which leaves a residual effect at any scale, and 
we can only hope that this hypothesis approximates this possibility. (In fact, there 
is now a substantial literature on models with such a ‘decaying’ vacuum energy 
density 12.) 

Adopting this working hypothesis, we can immediately identify generic features 
which a semi-classical model for the cosmological constant should satisfy. Vacuum 
energy is most simply stored in the potential energy r/‘(G) - iLf4 of a scalar field, 
where 31 sets the characteristic height of the potential. Our working hypothesis sets 



V(&) = 0 at the minimum of the potential; to generate a non-zero A at the present 
epoch, 4 must be displaced from the minimum (& # 4, as an initial condition), and 
it must have negligible kinetic energy. This implies that the motion of the field is 
still overdamped, m+ = ,/mS3Ho=. 5 x 10-33h eV. Second. for R,, - 1, the 
potential energy density should be of order the critical density, iv4 - 3H~M&/8~r~ or 
A4 E 3 x 10e3h1i2 eV. Th us, the characteristic height and curvature of the potential 
are strongly constrained for a classical model of the cosmological constant. 

This argument raises an apparent difficulty for such a model: why is the mass 
scale mg thirty orders of magnitude smaller than iM? In quantum field theory, ultra- 
low-mass scalars are not genetically natural: radiative corrections generate large 
mass renormalizations at each order of perturbation theory. To incorporate ultra- 
light scalars into particle physics, their small masses should be at least ‘technically’ 
natural, that is, protected by symmetries, such that when the small masses are set 
to zero, they cannot be generated in any order of perturbation theory, owing to the 
restrictive symmetry. 

Prom the viewpoint of quantum field theory, pseudo-Nambu-Goldstone bosons 
(hereafter, PNGB s are the simplest way to have naturally ultra-low mass, spin- ) 
0 particles. PNGB models are characterized by two mass scales, a spontaneous 
symmetry breaking scale f (at which the effective Lagrangian still retains the sym- 
metry) and an explicit breaking scale ,X (at which the effective Lagrangian contains 
the explicit symmetry breaking term). In terms of the mass scales introduced above, 
generally iM N p and the PNGB mass rn4 - p2/f. Thus, the two dynamical con- 
ditions on rn4 and M above essentially fix these two mass scales to be p - 10m3 
eV, interestingly close to the neutrino mass scale for the MSW solution to the solar 
neutrino problem, and f - .&lpl - N 101’ GeV, another mass scale already present in 
particle physics. Since these scales can have a plausible origin in particle physics 
models, we may have an explanation for the ‘coincidence’ that the vacuum energy is 
dynamically important at the present epoch. Moreover, for generic PNGBs, when 
the symmetry breaking scale ,Y is set to zero, the symmetry becomes exact, and ra- 
diative corrections do not yield an explicit symmetry breaking term (the radiative 
corrections are “multiplicative” of the scale p in this situation). Consequently, the 
small mass rn+ is technically natural. 

In particle physics, the best known example of a PNGB is the ordinary K me- 
son (the longitudinal W and 2 bosons are actually exact Nambu-Goldstone bosons 
in association with gauge fields). An example of a very light hypothetical PNGB 
is the axion, associated with the Peccei-Quinn symmetry introduced to solve the 
strong CP problem 13. Axions arise when a global Ups symmetry is sponta- 
neously broken by the vacuum expectation value of a complex scalar at the scale 
fat (a) = f=e”lfa; at this scale? the axion? the angular field a around the infinitely 
degenerate minimum of the potential, is a massless Nambu-Goldstone boson. QCD 
instantons explicitly break the global symmetry at the scale f;r - 100 MeV, gen- 
erating the axion mass? m, - O(ma.fr/fa). Since its couplings and mass are sup- 
pressed by inverse powers of fa, the axion is very light and very weakly interact- 



ing. Nevertheless, it can play an important role in astrophysics and cosmology; 
indeed, astrophysical and cosmological arguments constrain the global symmetry 
breaking scale to lie in a narrow window around fa - 10” - 1012 GeV. Thus, the 
axion mass m, - 10W5eV( 1012GeV/f,)Y 
Aa - (f,/1012GeV) cm. 

and its Compton wavelength is macroscopic, 

Although motivated by the strong CP problem, the axion is a particular instance 
of a more general phenomenon that includes familons, majorons, l4 and more exotic 
objects l’. Ref. l6 introduced a class of PNGBs closely related to familons (called 
‘schizons’), with masses rn+ N 7n~,,,i,,n /f. In these models? the small mass rn+ 
is protected by fermionic chiral symmetries (and additional discrete symmetries) 
and is therefore technically natural. That is, when certain fermion mass terms 
are set to zero in the Lagrangian, the PNGB mass goes to zero; the fermion mass 
terms will not be generated in any order of perturbation theory. Models in which 
7nfermiw is associated with a hypothetical neutrino mass7 .m, - 0.001 - 0.01 eV, 
and f - A&, - .AIpl - 1015 - 101’ GeV, were studied in ref. l7 in the context of 
late time phase transitions ls In this case, the PNGB Compton wavelength 7n;’ is . 
comparable to cosmological distance scales. 

As an example, consider the ZN-invariant low-energy effective chiral Lagrangian 
for N neutrinos 17, 

where V(R,L) are respectively right- and left-handed projections, ~(R,L) = (1 f 
r5)y/2. The term proportional to E can arise from a Yukawa coupling gfiLvR@ + h.c., 
where the complex scalar field @ has a non-zero vacuum expectation value, (@) = 
f e@/f/fi, and E E gf /&. The term proportional to mo is an explicit breaking 
which usually comes from some deeper breaking in the theory. In the limit rno + 0, 
this is a familiar chiral Lagrangian, possessing a continuous U(l) chiral symmetry. 
The U( 1) chiral symmetry is broken to a residual Z,r discrete symmetry: 

Uj + Uj+l J u,y-1 --) uo ; 4 * ++ 27rjf/N . (2) 

The induced one-loop correction, with cutoff n < f) is 

N-l $ft 

&-loop = c lln 
j=. 167r2 

where 

(4) 
which respects the discrete symmetry. For M = 2, the leading contribution is log 
divergent, and the induced PNGB mass is of order ‘rn,+ - mot/f; if E - mo - rn,? 



then rn& N rnz if. For N > 2, the sum CjiV! is independent of 4; thusl the & 
dependent term is independent of the cutoff A7 and for N > 2 we can write the 
l-loop effective potential, 

(5) 

In this case, the &potential is explicitly calculable, and one again finds a quasi- 
periodic potential with mass scale me - rnZ/ f. 

3. Cosmology with Ultra-light PNGBs 

We are thus led to study the cosmological evolution of a light scalar field C$ with 
effective Lagrangian 

The theory is determined by two mass scales, M, which from (1) is expected to be 
within an order of magnitude of a light fermion (neutrino) mass, and f, the global 
symmetry breaking scale. Since C$ will turn out to be extremely light, we assume 
that it is the only classical field which has not yet reached its vacuum expectation 
value. Thus, in accordance with our working hypothesis, the constant term in the 
PNGB potential has been chosen to ensure that the vacuum energy vanishes at 
the minimum of the C$ potential. We focus upon the spatially homogeneous, zero- 
momentum mode of the field, d(t) = (d(Z’,t)), w h ere the brackets denote spatial 
averaging. We are assuming that the spatial fluctuation amplitude Q(?, t) is small 
compared to d(t), as would be expected after inflation if the post-inflation reheat 
temperature T RH < f: in this case, aside from inflation-induced quantum fluctua- 
tions (which correspond to isocurvature density perturbations 20), the field will be 
homogeneous over many present Hubble volumes. Since we will be interested in the 
case f N 44~1 (see below), this is not a significant restriction. Finally, for simplicity 
we assume that any finite-temperature corrections to the potential V(G) in (6) are 
unimportant at the epochs of interest (this is different from the case of axions, for 
which finite-temperature corrections do affect the axion field evolution). The scalar 
equation of motion is then 

4 + 3H$ + dV(@)/ds = 0 . (7) 

where the Hubble parameter is given by H2 = (ci/o.)” = (8~r/3M&)(p, + p4) for 
a spatially flat universe, R, + R, = 1, a(t) is the cosmic scale factor, and f12, 
is the density parameter of non-relativistic matter (e.g., baryons and/or weakly 
interacting massive particles). We will focus on recent epochs, when the radiation 
energy density is negligible compared to non-relativistic matter. 

The cosmic evolution of d is essentially determined by the ratio of its mass, 
md - M2/f7 to the instantaneous expansion rat.e. H(t). For m6 2 3H, the field 



evolution is overdamped by the expansion, and the field is effectively frozen to its 
initial value. Since + is initially laid down in the early universe (at a temperature 
T - f >> 1M) when its potential was dynamically irrelevant, its initial value in a 
given Hubble volume will generally be displaced from its vacuum expectation value 
c$, = rf (vacuum misalignment). Thus? at early times, the field acts as an effective 
cosmological constant, with vacuum energy density and pressure p+ = -pi - M4. 
At late times, m6 >> 3H(t), the field undergoes damped oscillations about the 
potential minimum; at sufficiently late times, these oscillations are approximately 
harmonic, and the stress-energy tensor of 4 averaged over an oscillation period is 
that of non-relativistic matter, with energy density p+ - am3 and pressure p4 N 0. 

Let t, denote the epoch when the field becomes dynamical, rng = 3H(t,), with 
corresponding redshift 1 + Z, = (a.(to)/a(t,)) = (M2/3Hof)2/3; for comparison, the 
universe makes the transition from radiation- to matter-domination at .z,~ N 2.3 x 
104R,h2 [where h = Ho/(100 km/sec/Mpc)]. The f - lu parameter space is shown 
in Fig. 3. To the right of the diagonal line rng = 3H0, the field becomes dynamical 
before the present epoch and currently redshifts like non-relativistic matter; to the 
left of this line, 4 is still frozen and currently acts like a cosmological constant (the 
region denoted by ‘A’). In the dynamical region, the present density parameter for 
the scalar field is approximately R, 21247r( f /Mpr)2, independent of M l7 (assuming 
the initial field value +i = O(l)f); thus, the horizontal line at f = 1.4 x 10’s GeV 
indicates the cosmic density limit $l, = 1. In the frozen (A) region, on the other 
hand, 524 is determined by M4, independent of f, and the bound 04 = 1 is indicated 
by the vertical line. 

Focus on the dynamical region in the right-hand portion of Fig. 3. If q6 dom- 
inates the energy density of the Universe, the growth of density perturbations 
is strongly suppressed for physical wavenumbers larger than the ‘Jeans scale’ 21 
ki N m+(&(t)/iMpl)lfi, where &(t) - f [(l + z(t))/(l + .z~)]~/~ is the amplitude 
of the homogeneous field oscillations at z(t) < .+. If this Jeans scale is too large, 
perturbations on galaxy and cluster scales would not grow at high redshift, leading 
to a power spectrum with an unacceptably large coherence scale. We can express 
the resulting perturbation power spectrum in terms of the standard cold dark mat- 
ter (CDM) spectrum as P(k) = Pdm(k)F2(k); for Z, > z,,, the relative suppression 
factor due to the scalar field is 22 



M (ev) 
Fig. 3: The PNGB model parameter space. 

Here? l+z,(k) = [(M/k)(3Ho/A4p~)1/2]4 is the redshift at which the physical wavenum- 
ber kphys = k(l + z) drops below k.,, so that scalar perturbations on that scale can 
begin to grow. Thus, A4 sets the scale where the power spectrum turns down from 
the CDM spectrum, and f (through a+) determines the spectral slope n of the sup- 
pression factor, F(k) - ken with -4 2 n 5 0 (note that for R, 6 0.2, n N 12&,/S). 
For galaxies and quasars to form at moderate redshift? the power at small scales 
should not be very strongly suppressed compared to standard CDM. We therefore 
impose the appoximate bound F(k = 1.6h11pcA1) > 0.3, which corresponds to the 
curved boundary in Fig. 3: the region above this curve is excluded. To the right 
of this region (in the area marked CDM)? 6 acts as an ordinary cold dark matter 
candidate, a lighter version of the dark matter axion. In the area marked MDM, 
the elfects of 4 on the small-scale power spectrum are similar to those of a light 
neutrino in the mixed dark matter model: at the point marked by the star? the vari- 
ance of the density field smoothed with a top-hat window of radius R = 8h-1 Mpc 
is OS(~) N @In /2. When the amplitude is normalized to COBE on large scales, this 
yields OS(O) 21 0.6. as suggested by the abundance of rich clusters of galaxies and 



the small-scale pairwise velocity dispersion of galaxies. In this region of parameter 
space! the neutrinos of mass m, - ;M - several eV could play a dynamical role in 
structure formation as well. 

Now focus on the parameter region near the bullet in Fig. 3, in which the field 
becomes dynamical at recent epochs, Z, - 0 - 3, or in the near future: this has new 
consequences for the classical cosmological tests and the expansion age, and it does 
not lead to the small-scale power suppression above. We thus impose the constraint 
m+ = M2/f 5 3Ho. The second condition is that the PNGB energy density be 
dynamically relevant for the recent expansion of the universe? which implies I+ - 
pCPif(f~). As not d b e a ove, combining these two constraints determines the two mass 
scales in the theory to be f X lUpl/(24w)‘/” z 10’s GeV and M N 3 x lo-“h’/” 
eV. The mass of the resulting PNGB field is miniscule? nq, d 4 x 1O-33 eV, and 
(by construction) its Compton wavelength is of order the current Hubble radius, 
A, = 7n;’ = H&l/3 X lOOOh-’ Mpc. 

Figure 4 shows several examples of the evolution of the scalar field [Eqn.(7) with 
the potential of Eqn.(G) and the Hubble parameter given by the expression imme- 
diately below Eqn.(7)]. We show fi, = 1 - sZ+ as a function of the expansion age 
Ht, for different initial values of the field c#+/f (assuming & = 0, since the field is 
Hubble-damped at early times). The numerical evolution starts at pm/M4 >> 1: i.e., 
at the top of the figure (52, N 1 >> a,) in the matter-dominated epoch. At early 
times, the field is effectively frozen to its initial value by the Hubble damping term 
in Eqn.(7)? and the evolution tracks that of a cosmological constant model (curve 
labelled ‘vat’ in Fig. 4). At t - t,, the field begins to roll classically; on a timescale 
initially comparable to the expansion time, the expansion age Ht reaches a maxi- 
mum and subsequently falls toward 2/3 (indicated with the vertical dashed line) as 
the field undergoes Hubble-damped oscillations about the potential minimum. The 
evolutionary tracks are universal: a shift in the mass scale f accompanied by an 
appropriate resealing of the initial field value & leads to essentially identical tracks, 
i.e., a given track actually corresponds to a family of choices of ( 4ii? f ). 



Ht 

Fig. 4: The non-relativistic mass density 52, = 1 - 524 vs. Ht, for f = MP~/&. The solid 

curves correspond to several initial values for the field, 4i/f = 1.4, 1.5, 1.6, and 1.75. The evolution 

starts at the top of the figure and ends at the lower left. The vertical dashed line shows the Einstein- 

de Sitter expansion age Ht = 213, the horizontal dashed line shows the lower bound R, = 0.1 from 

dynamical mass estimates, the dotted curve (labelled ‘vat’) shows the evolution for a cosmological 

constant model, and the long-dashed curve corresponds to an open model with R+ = 0. The dot- 

dashed curves (labelled 0.6, 0.7, 0.8) bracket the constraints from lensed &SOS in the HST snapshot 

survey (see text). 

The observational consequences of this model follow when one identifies the 
present epoch to on an evolutionary track-this implicitly corresponds to fixing 
the mass scale M. For a given expansion age H& one can choose the upper 
branch, where the field is still frozen and thus nearly identical to a cosmological 
constant, or the lower (dynamical) branch? for which the recent evolution will be 
intermediate between vacuum- and matter-dominated and which has qualitatively 
new features. Dynamical estimates of the mass in galaxy clusters indicate the lower 
bound R, 2 0.1 for the mass density in non-relativistic matter. Consequently, the 
lower branch is excluded if the initial value of the field is below some value, e.g., 
&/f 21 1.3 for f = Mpl/ 6. Physically, for such small values of @i/f! the universe 
undergoes several e-foldings of inflation before the field begins to oscillate, diluting 
the den&y of non-relativistic matter. Consequently, to achieve large expansion 
times in this model. Hoto - l? the present epoch must be in the vicinity of the 
‘nose’ of the evolutionary track, which corresponds approximately to the condition 



t, - to imposed above. 
As with vacuum-dominated models, these scalar field models can in principle 

reach arbitrarily long expansion ages, Ht >> 1, if c&/f is sufficiently small. How- 
ever, this region of parameter space is excluded by the observed statistics of grav- 
itationally lensed quasars. The 3 dot-dashed curves in Fig. 4 show the observed 
constraints on the incidence of lensed QSOs. We computed the number of lensed 
QSOs expected in the HST Snapshot survey 23 for cosmological constant models 
with llii = 0.6, 0.7, and 0.8; along the 3 curves in Fig. 4, the number of expected 
lensed QSOs in the PNGB models are equal to these 3 values. Since different as- 
sumptions about galaxy models yield different lensing fractions, we show the limits 
corresponding to these three cases to cover the spread of quoted limits in the liter- 
ature g (the region to the right of each curve is excluded). For a given lensing limit, 
the upper bound on the expansion age Hoto is increased in the scalar field models 
compared to the cosmological constant model; imposing the lower bound R, > 0.1: 
the bound on Hoto can be relaxed by 7 - 10%. Thus, the scalar field models are 
relatively more successful than a cosmological constant at easing the ‘age crisis’ 
while remaining within the observational constraints, provided 0, is fairly low. 

Thus, ultra-light pseudo-Nambu-Goldstone bosons provide a possible theoretical 
framework for a small but dynamically relevant vacuum energy. With spontaneous 
and explicit symmetry breaking scales comparable to those plausibly expected in 
particle physics models, the resulting PNGB becomes dynamical at recent epochs 
and currently dominates the energy density of the universe. Such a field acts as a 
form of smoothly distributed dark matter, with a stress tensor at the current epoch 
intermediate between that of the vacuum and non-relativistic matter. In these mod- 
els, the cosmological constant is evanescent, within a few expansion times converting 
into scalar field oscillations which subsequently redshift as non-relativistic matter. 
Thus, unlike cosmological constant-dominated models? the universe is not now en- 
tering a phase of exponential de Sitter expansion, but has rather undergone a brief 
hiatus of quasi-accelerated expansion. Such a model may ‘explain’ the coincidence 
between matter and vacuum energy density in terms of particle physics mass scales, 
reconcile low dynamical mass estimates of the density parameter, n2, - 0.2, with 
a spatially flat universe, and do somewhat better than a cosmological constant at 
alleviating the ‘age crisis’ for spatially flat cosmologies while remaining within the 
observational bounds imposed by gravitational lens statistics. 

Ultimately, the question of the necessity of the cosmological constant (or some- 
thing like it) will be settled by improved observations. A variety of methods to 
determine the Hubble parameter are being explored and refined, including type II 
supernovae, the Sunyaev-Zeldovich effect in clusters, and gravitational lens time 
delays. The microlensing collaborations have observed a large number of Cepheid 
variable stars in the LMC, and Cepheid observations in more distant galaxies are 
continuing with HST. X-ray observations of clusters with ASCA and eventually 
AXAF will help in the understanding of these systems. Independent information 
on the dark matter distribution in clusters comes from the giant luminous arcs and 
arclets, high-redshift galaxies gravitationally lensed by rich foreground clusters into 



extended banana-shaped images 24~25. Recently, this method has been extended 
into the ‘weak lensing’ regime, in which one studies the shear distortion pattern 
induced by a cluster statistically by measuring the image shapes and orientations of 
a large number of faint background galaxies 26 This allows one to probe the cluster . 
mass distribution over larger scales and in clusters too weak to produce arcs. In 
some cases, the weak lensing masses are consistent with the virial masses, while 
in others the lensing-inferred masses appear to be several times larger. This rela- 
tively new method holds considerable promise for the future, as large-area imaging 
cameras are installed on 4-m class telescopes at sites with excellent seeing. With 
deeper large-area redshift surveys such as the Sloan Digital Sky Survey and the AAT 
2-degree-field survey, dynamical estimates of Q,,, on larger scales using redshift dis- 
tortions will become competitive, and the large-scale galaxy power spectrum will 
be measured with sufficient accuracy to significantly constrain the shape parameter 
Qmiz. Deep spectroscopic surveys with large ground-based telescopes such as Keck 
may at last lead to realistic application of the classical cosmological tests for the 
deceleration parameter, and a program to discover large numbers of high-redshift 
supernovae could also attack ~0. Finally. a full-sky map of the microwave back- 
ground anisotropy at small angular scales with a new satellite should provide a 
sensitive probe of the cosmological parameters. 

These and other observations over the next several years should tell us whether 
the cosmological constant will remain with us into the next millennium or whether 
it will sink again into disrepute. Those who have faith in Eddington will hope for 
the former, for he prophesied: 

“If ever the theory of relativity falls into disrepute, the cosmical constant 
will be the last stronghold to collapse.” 

For those who prefer Berra, I close with his famous remark: “The cosmological 
constant-it ain’t what it used to be.” 
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