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TEST OF DEP HYBRID PHOTODIODES

INTRODUCTION

The goal of the measurement was to study soms
parameters of DEP HYBRID PHOTODIODES (HPD) (1], =anrd
to check its performance for CMS calcrimetry at LEC
[2]. The principle of the HPD operation is described,
for example, in ref. [3] The schematic view of the
HPD is shown in fig. 1. The HPD is wvacuum photo device
composed of photocathode (PC) and a2 silicon PIN diode
(Si) as multiplication system in a very close
proximity geocmetry. The distance between PC and &1 is
of the order of several mm and has an electric fiela <
10 kV. The photoelectrons emited by the photccathode
multiply by a factor of several thousand in the
silicon and the charge 1s collected on the HPD's
anode. Several types of HPD's were tested. There wa
single channel HPD, called "E-type" with p-side of
silicon facing —he HPD's photocathode and two
multipixel HPD (DEP) namely a 25 pizel HPD and a 7
pixzel HPD. Both were of "T-type" structure with r-sidce
of silicon facing the photocathode.
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SETUP

The main part of the setup was a nitrogen laser
with a shiftead wavelength of 440 nm, 10 Hz frecqusncy
and a pulse duration of 15 ns. The laser light wzas
transported to the HPD by a 1 mm clear fiber. T
amount of laser light was changed by rotating whee
with fixed light attenuation. The dynamic range Of the
HPD + AMP + ADC was about 1000. To make the non
uniformity measurement across the photocathode, the
HPD was mounted on a movable stage under control cf =
computer. The accuracy of the adjustment of the

o
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fiber acrcss the sensitive area of the HPD was bhetter
than 100 um. The setup 1s shown in fig._. We alsc us=d
a blue (430 nm) light emitting diocde (LED) with =z I o

clear optical fiber transmitting the light to tre HPD
in part of measuremsnts. The LED light pulse duraticr
was less than 10 ns.

MEASUREMENTS

For each type of HPD the following parameter
were measured:

42

Gain.

Linearity.

Nonuniformity.

Timing properties.

. Counting rate capabilities.

s W N

some other measurements were performed tc check
possible aging of HPD'S, the influence of a magn=t
field on the HPD and crosstalk for letlpixel de--1
We made scme estimation of the lowest level of 1light
signal which 1is possible to separate from the HPL
noise. The point was to see 1f the signal for a
minimum ionizing pvarticle travprsing the CMS
calorimeter which is of approximately 10 phe, or
around 1 GeV of the energy loss in the calorlmeter,
can be observed.

The data will be presented in the indicated
sequence for each type of HPD.
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SINGLE CHANIIEL HPD

A schematic view of a single charnel HPD is =zncwn

in fig.2. The HPD has a 25 mm diameter phothocatcds
(PC) and the same size silicon dicde with the p-<id=
facing the PC. The recommended supply voltage 3

was applied with the output sigral of negative
polarity with AC coupling. The signal amplitude zs =
function of the high voltage applied to PC and tre
pias applied to the silicon are presented in fig.4.
The data are consisternt with the DEP specificaticns.
They show the threshold caused by the silicon dead
layer and —he linear dependence on high voltage (HV).
The gain wvalue i1s around 2000 for HV=E8 kV. A smzll
variation of the gain dep@nd@ncQ cn the bias voltage
(for bias more than 30 V) 1s alsc presented,
indicating full depletion.

The measurements of the linearity were done
using the setup designed by N.Hogan and J.Krider of
Fermilab. The cbserved nonlinearity was less thar
+/= 0.5% for the dynamic range 1-10000 and was larcel
caused by the amplifier's nonlinearity.

The timing measurements for the HPD were
performed Dy using very short light pulse from a
blue LED. The full ration of the pulse was 7 ns a-
10% of the peak zmplitude
using a very Cact Timing phototube. The fzll tims zno
rise time of the HPD signal were 10 ns ard 20 ns for
HV=8 kV anrd at full depletion bias voltacge. It will ¢
shown later that there is a strong dependence of
timing on bias for the "T-type" silicon because
different charge carrier mobilities (the scale for
electrons or holes transit time are 15 ps/um and 45
ps/um) .

The repetiticn rate of the HPD signals was

1

e

The value was measurec

erxplored up to rates more than 37 MHz., It's Importarn:

to note that this high rate capability 1s availalle

wlthout using special vrecautions such as are reauire
h

r

in the case of regular photomultipliers. T .
is delivered directly from the bias voltage power
supply. Note that the transit time is <7 ns, sc thers
is no pulse to pulse charge stored in the d@v ice a

t

LHC rates. We also note that the HPD does not show anvy

saturation for average output current values up to 10
mA.

T
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The saturaticn effect manifests itself as the
appearance of & tail in the signal shape for larcer
currents. This tail i1s dependent on the current
density of the silicon and also on the value of the
bias voltage. The effects will be discussed 1in more
detail later.

Several measurements were performed to estimzte
the aging effect of the HPD. The photocathode was
illuminated simultanecusly by laser light (pulse modes)
and by an LED (D.C. current).

(fig.5). To measure the output current of the HPL the
zero potential side of the silicon was grounded
through a 610 C Solid State Electrometer.

The LED intensity was adjusted to prcduce about - ul
(25 mC/h) D.C. current from the HPD. The diameter cof
PC's illuminated area was 32 mm located at the
geometrical center. The laser output HPD siagnzal ov
the same area cf illumination was then measured. & PII
photodiode signal was used to normalize the laser
light pulse which had a spread of +/-3%. The ratioc e
the HPD sigral over the PIN dicds signa. was meacsure
with better than 1% accuracy. The result of the
measurement 1s shown in fig.6. The galn drops after =
steady charce of more than 50 mT is taken off the
diode.

,th

Another measuremrent of the zcing was perforrad o7
using the setup owr. in fig.7. The LED liont (20 M=z,

fig.8) was measured by HPD and PMT. The PMT worked
with a very low cain and used as a reference for HPD
pulse. A drop of the HPD amplitude was observed &
function of collected charge (fig.9). Both
measurements are consistent 1f we take into account
the illuminaticn area which was of 7 mm diameter in
the latter case.

S 4

Some estimation of the magnetic field influence
onn the HPD was done. The HPD was installed in 637 g
transverse magnetic field. The gain of the HPD w=zs
measured without and with magnetic field (fig.10). ¥=
will show later tThat this curve is very sensitive to
the macnetic field and can be used as a tool to check
such effects. Many more magnetic field data were
obtained for multipixel HPD but this will be the

N

subject of a sevarate discussion.



We used an amplifier (also as vreamplifier i
part of the measurements) when wcr\ing with a lcw
light level signal. The ADC scale was calibrated oo
the number of photoelectrons with the goal to mexsuzs

1 ex

the lowest

vel of light which 1is possible to soe
with the HPD. The number of the photoelectrons can Do

extracted from the =guation:

Npe = aml. gain = HPD gain = Q of ADC,

—
[
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note that we know the gain of the HPD, amplifier znd
ADC scale in electrons. The number of photoelectrons
can also ke obtained by measuring the rms of the
amplitude spectrum of the HPD illuminated by LED.
A test is to compare tnis number with the number
obtained fr he mean value of the spectrum. The
ratio of the two values should bhe 1 for the full =PD
range. Any deviations present some D

The attempt o see a single p
successful (fig.1l1l). We have used
preamplifier in series with an amplif]
bandwidth, high gain and low noise

p xel size iz 2.3 mm o 2.3 mm. The pluels

2.3 mmow 2.3 mo The piluels are ar:

in matrix 5 » £ with a dead space petween them o!

mm. The distance between pivels and PC is 2.5 mm.

The schematic view of the HPD is given in fig.l3. Th=
silicon in the HPD is oriented so that the layer
facing the PC is T-type. The electrical signal cf

positive polarity was collected from “hne p-side whicr

was groundad for high rate D.C. coupled operaticr.

The gain aith —h lzels were tTasted

(figs.1l4, 13) 1t : very gooa

agreement. with th vecif The output sicnal

does not show any saturation for signals up to 100

mY/50 Ohm in amplitude

Tne timing preoperties of the HPD were also
studied. The output vulse s s strongly deperden:
on the bias voltage. The ris e and Tull time (a-
the level 9.1 and 0.9 cf the o
amplitude) dependencie e

mn
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The rate

from 30 Hz to 20 MHz as shown in

dependence is cobserved indicating that the device

in the LHC envir
In fig.18
different light

Work conment .

function of HV are displayed. Cle
the high side tail becomes more

pixel in a row and m

pixel in all cases.
very rapidly as the illumination
that the tail

Note alsoc
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due to localized

fig.17.
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in all spectra.
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In addition, the
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We will discuss below the issues of
relevance to the future HPD application for
HCAL.

Our concerns now are apout the following:
1.Timing.
We plan to work with an HPD cf the T-type. The

advantages are the follcwing. The output signal s =T

ground so the readcut 1s easy both for DC and pu_se
mode measurements. We have Lo use bceth these mocs to
accommodate wire source calipration. The T-type < HFD
is also Sfafed by the manufacturer to be more stable.
The long term gain losses can also be corrected by
incr@aqing the nigh voltage.

The timing proparties of the HPD are determiated
by the type of charge carrier which are holes. Tre
holes are less mobile than the e’ectrons by a factor
of approxzimat . The output signal duration s
around 30 ns 40 Volt bilas. For the CM3
application 1 hould e less than ’ i
time of 25 nrns. It's kxrnown that 10 keV photoelectrons
penetrate into the silicon f
the thickness of the silic
reduced without loss of HPD performance. Limitat:ions

1

¥

rh D W
O
— N N

which exist ncocw on the allowed thickness are only
technical. To improve the HPD timing it's possiblie to
use 200 um silicon instead of 200 um in HPD. We
believe it's pcssible ©o satisfy —he CMS timing
requirements by slightly changing —rne existing
technolcgy.

2. Another issue 1s the high side ©ail in the
amplitude svectra.

Recall the shape cof the single photoelectron
distribution (fig.11l). The tail c¢f the distributiocrn
corresponds to several tens of a photoelectrons. This
locoks like a "shower" vroduced by the original sing.=
photoelectron. Let's consider possible reasons for
this. The data do not favor mechanisms like optical
feedback produced by low energy gammas from electrons
scattering on the surface of the silicon. Such gammas
should preduce a very different znoular distributicr
than that indicated in £1g.20. The effect 1s zlsc
difficult to ezplain by the backscattering of the
secondary electrons from the S1 surface.



A rezsonaple explaration wenuld be poor vacuum of
tne HPD as 'llthvated in fig.2Z. The pho =T
can lonize the residual gas in a collision bexts
and silicon. The iconization potential is
eV so the initial ph toelectrons do not 1
significant energy. The produced positive ion will

accelerate in the electric field and can knock out
several additicnal photoelectrons depending on the
energy of the ion (arcund 10 for 10 keV ion enercy,

(51). A time jitter of around 10 ns ﬁﬂrvesponds to tre
signals which produce the high side tzil in the
amplitude spectrum. In contrast, the gaussian par:s 5o
a time jitter of about 1 ns. The calculations show
that the 10 keV electron's transit time for 3 mm
distance d (fig.23) is around 100 ps. A transit time
of the ion will be more than 4.5 ns. The transit time
of an oxvygen icn will be 18 ns. Hence the calculzticns
and the erperimental data are ccnsistent with the ion
feedback model.

There 1s no cgetter in the HPD. Neverthe

less A
getter will be introduced in the final HPD desigr to
avold the possibility of outgassing Jjust as in tre

case of regular phototubes.

The data obtained were simulated by Monte Carlo
method. We fit the single photcelectron spectrum
(fig.11) by a polynomial corresponding to the taill
plus an exponential distribution mostly responsible
for the main part of the single photoelectron
distribution (SPD, fic.24). The obtained curves for
different photcelectronc are 1n gocd agreement with
the experimental data 1g.25). For the SPD the ratio
of the area under the 11 to the [ A

spectrum is 0.3%. The Cuf between the tall and tle
rest of the spectrum is shown as the arrow in fic
The analogical cuts were applied on

the observed tails fcr different amou
photoelectrons. The ratic of the tai

a function of the mean number photo

in fig.27.

It's useful to note that the SPD shape can b=
used as very sensitive tool to check the HPD vacuum
and we intend to us: '
delivered HPD.

3. We have observed a clear mi
pedestal by using HPD in & beam =Ze
prototype module [61. YWe a

¢
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photoelectron spectrum here. Our task now is Lo L a<s
= — - P " o r—71 PR - 1 4= Fa — -
such a data with "QIE" [7] readont porh for DT 210

pulse mode.

A detailled descripticn of the HPD study in a 5 Teslz
magnetic field will be the subject of separate note.
Our data show that the HPD can operate in the CMS

()]
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Figures.

1.The hybrid photodiode schematic view.

2.Setup to measure gain, linearity and nonuniformity cf the
HPD. HPD - hybrid photodiode, WLS - wave length shifter, PII -
photodiode, AW - attenuation wheel, LED - light emitted dicds,

ADC - analog digital converter.

3.Schematic view of the single channel HPD.

4.The dependence of the HPD's amplitude on: a) photocathods
high voltage, n) silicon bias.

5.5etup for aging test. LED is working in DC mcde.

6.The HPD relative gain vs integrated output charge.
7.Setup to measure aging in pulse mode. HP gen. — HEVLETT
PACKARD generator, PMT - photomultiplier.

8.The oscilloscope traces of the HPD and HP generator's =zlc
9.Loss of the HPD signal due to the integrated outpul charge.
10.The HPD amplitude vs high voltage with and without macrnetic
field.

11.Single photcelectr
12.Front view of the
3.3x3.3 mmZ2.

13.The schematic view of the 25 pixel HPD DEP.

14.The amplitude of the pixel of the 25 pixel HPD DEI vs
high wvoltage.

15.The spread of amplitude of the pizels. The fiber 1s evzc!
1n the geometrical centre of the each piuzel.

16.The rise time and the full time of the output HPD signals
dependencies on bias voltage. High voltage fixed as -8 k.
17.The oscilloscope traces of the HPD sicnals under Z0 Hz

and 30 MHz of freaguency.

18 a,b. The amplitude spectra of the 25 pizel HPD under
different light illiumination.

19.The amplitude spectra of the central pixel of 25 pizel HZD

vs high voltage. The number of the photoelectrons 1s arourd 4..
20.The amplitude spectra of the pixel #5d for fiber positicre~
on pirxels ##5d,4d,32d,”2d, 1d. Each picture shows two measuremer: =:
cne with light illumination and another, one without illumirz-i--7.
21.The amplitude spectra of the 7 pixel HPD under different
light illumination (for central piwxel).

22.The amplitude spectra of the central pizel of 7 pizel HPD
vs high voltage. The number of the photoelectrons is arcird
23.Picture illustrating ion feedback in the HPD.

on spectrum.
25 pixel HPD DEP. Pixel's size is

O

24 .Approximated single photcelectron distribution (fig.l.l).
The cut i1s shown by the location of the arrow.
25.The amplitude spectra of the 25 pixel HPD (DEP) chzaired o

Monte Carlc simulation.
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26.The dependence cof area under the tai’l
in the spectrum on the number of photoele

photoelectrons is defined by the location
amplitude spectra.
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