QED2 as a testbed for interpolations between quenched and full QCD
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Lattice QED2 with the Wilson formulation of fermions is used as a convenient model system to study artifacts
of the quenched approximation on a finite lattice. The quenched functional integral is shown to be ill-defined in
this system as a consequence of the appearance of exactly real modes for physical values of the fermion mass.
The location and frequency of such modes is studied as a function of lattice spacing, lattice volume, topological
charge and improved action parameters. The efficacy of the recently proposed modified quenched approximation
is examined, as well as a new approach to the interpolation from the quenched to full dynamical theory employing

a truncated form of the fermion determinant.

1. Introduction

In this talk, some general features of the
Wilson-Dirac spectrum in quenched lattice gauge
theory are discussed using 2-dimensional QED as
a convenient model system [1]. The specific fo-
cus will be the dependence of the real part of
the spectrum on the parameters of the theory.
The nonexistence of the quenched functional in-
tegral is found to arise from a complicated ana-
lytic structure induced by these real modes. The
relation of quenched, pole-shifted [2] and full dy-
namical amplitudes is also discussed. Finally, the
usefulness, accuracy and feasibility of an inter-
polating determinant approach to the full theory
can be studied in detail in this model.

2. General Features of the Wilson-Dirac
spectrum

In QED2 quark propagators are inverses of a
matrix D —rW +m = M +m, with D, W and m
the naive Dirac matrix, W the Wilson term, and
m a quark mass parameter:
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where a, b are Dirac indices, m, 7 lattice sites, U
the unimodular link variables, and the Wilson pa-
rameter 7 is usually taken to be unity. Quite a lot
is known about the spectrum of M, which is com-
plex as W is hermitian while D is skew-hermitian:

(1) The norm of the quadratic form M is less
than or equal to 2 for arbitrary gauge fields [3], so
the spectrum is contained inside a circle of radius
2 in the complex plane. In fact, a typical spec-
trum (see Fig. 1) has an elliptical shape with four
critical branches, two in the center and one on ei-
ther side. Conventionally the left critical branch
represents the chiral (zero fermion mass) limit.
(2) The secular polynomial for M has real coeffi-
cients and only even terms, so eigenvalues neces-
sarily appear as real doublets A, —A or as complex
quartets A, A*, =\, —A*. In particular, the ap-
pearance of exactly real eigenvalues (despite the
fact that M is not a normal matrix) is generic,
and such eigenvalues persist in finite neighbor-
hoods of any gauge configuration point with a
real mode. (Note the 2 exactly zero modes asso-
ciated with each critical branch in Fig. 1).

(3) The appearance of exactly real modes for
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Figure 1. A typical Wilson-Dirac spectrum in
QED2

—2< AL —i (i.e. for physical naive fermion
masses using the left critical branch) will lead
to nonintegrable singularities in the quenched
functional integral involving lattice Wilson-Dirac
propagators. The integral can be defined by an-
alytical continuation from the nonsingular region
[A] > 2, but the region inside the spectral ellipse
is thoroughly infested with complicated branch
cuts connecting a large number of branch points.
A pinch argument shows that such branch points
arise at any eigenvalue of M for gauge configura-
tions where the link variables U are either +1 or
-1. The noisy behavior of quenched simulations
can be traced directly to this pathology.

The above statements are analytically demon-
strable, but even more can be learned from de-
tailed explicit simulations. For example:

(4) The integer part of the topological charge
Q1 = 5= > psin (8p), (where 0p is the plaquette
angle for plaquette P), tracks quite closely the
number of exactly zero modes per critical branch.
Transitions between different topological charge
sectors in the course of the simulation are accom-
panied by movement of complex eigenvalue quar-
tets towards and then along the real axis.

(5) Histograms of the exactly real modes accu-
mulated over many (typically 1000) decorrelated
configurations for different beta values, but keep-
ing the physical lattice volume fixed show that
the spread of real modes into the physical mass
region becomes acute at strong coupling, and that
the probability at fixed physical fermion mass of
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Figure 2. Beta dependence of histogram of real
modes

encountering exceptional configurations in which
a nearby real propagator pole introduces large
fluctuations in measured hadronic amplitudes de-
creases rapidly as beta is increased (see Fig. 2).
(6) With increasing lattice volume at fixed £, the
probability of encountering an exceptional config-
uration as one approaches the left crtical line de-
creases with increasing volume if one keeps a fixed
offset from the critical line to maintain a fixed
physical quark mass. However, exceptional con-
figurations necessarily appear at any volume once
one goes sufficiently close to the critical point.
(7) The frequency and distribution of exactly real
modes is not substantially affected by a clover im-
proved action. Of course, on any individual con-
figuration, the location of real modes (if present)
will change with the value of the clover coeffi-
cient chosen. But the statistical noise introduced
by exceptionals in any large ensemble remains.

3. Comparison of Quenched, MQA and
Full Dynamical Simulations

Recently, we have proposed a modified
quenched approximation (MQA) in which the
quenched functional integral is made well-defined
by a pole-shifting procedure which incorporates
the correct spectral behavior in the continuum
limit (see [4] for a more detailed description).
QED?2 offers a convenient model for comparison
of naive quenched, MQA and full dynamical re-
sults. A typical result is shown in Fig. 3, where
the pseudoscalar correlator (“pion propagator”)
is shown at a bare quark mass of 0.08 (at f=4.5,



10x10 lattice) for these 3 cases. The statistical
noise in the quenched correlators is essentially
eliminated in the MQA results, which also are
found to interpolate between the naive quenched
and full dynamical results. This is gratifying- the
MQA, in addition to rendering quenched ampli-
tudes meaningful on coarse lattices, appears to
move us closer to the unquenched theory.
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Figure 3. Pseudoscalar correlators in QED2-
quenched, MQA and full dynamical

4. Interpolating Determinant Approach to
Dynamical Fermions

We have recently begun a study of an alter-
native approach to the problem of interpolating
between quenched and unquenched gauge theory,
inspired by the insights gained in the MQA work
on the role of small eigenvalues. The idea is to
separate off and include explicitly in the simu-
lation the infrared contributions to the determi-
nant. In superrenormalizable QED2, the lowest
2N, eigenvalues contribute essentially all of the
fluctuations to In det(ys (M —m)), as indicated in
Fig.4, while the remaining 200-2N (on a 10x10
lattice) hardly contribute to the determinantal
variation. As a consequence correlators computed
using just the lowest 10% of the spectrum are es-
sentially exact (see Fig.5).

In QCD4 the UV part of the quark spectrum
certainly contributes importantly to a renormal-
ization of coupling, visible as a substantial shift
of scale in lattice amplitudes. However, work in
progress shows that all the important infrared
physics (e.g. the correct chiral structure, elimi-
nating quenched chiral logs), say up to a scale of
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Figure 4. Fluctuations in Log(Det) from low and
high eigenvalues (dynamical simulation at 3=4.5)
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Figure 5. Comparison of quenched, truncated de-
terminant and unquenched correlators

300 MeV , can be built in by inclusion of a few
hundred eigenvalues of 5 (M —m) which are read-
ily accessible by a Lanczos scheme [5]. It seems
possible that the remaining determinant effects
not simply reducible to a change of scale may be
included at the end by a reweighting scheme, or
perhaps by using an appropriate loop represen-
tation [6] for the intermediate part of the quark
spectrum. A study of these issues in QCD4 is in
progress.
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