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The Luminosity Function for L > L∗ Galaxies at z > 3

Matthew A. Bershady1,6 and Steven R. Majewski2,6,

David C. Koo3,6 Richard G. Kron4,6, and Jeffrey A. Munn5,6

Accepted for publication in The Astrophysical Journal Letters

1Dept. of Astronomy & Astrophysics, Pennsylvania State University, University Park,

PA 16802, and Dept. of Astronomy, University of Wisconsin, Madison, WI 53706

(mab@astro.wisc.edu)

2Dept. of Astronomy, University of Virginia, Charlottesville, VA, 22903-0818

(srm4n@didjeridu.astro.virginia.edu)

3University of California Observatories/Lick Observatory, Board of Studies in Astronomy

& Astrophysics, University of California, Santa Cruz, CA 95064 (koo@ucolick.org)

4Fermi National Accelerator Laboratory, MS 127, Box 500, Batavia, IL 60510

(rich@oddjob.uchicago.edu)

5U.S. Naval Observatory, Flagstaff Station, P.O. Box 1149, Flagstaff, AZ 86002-1149

(jam@nofs.navy.mil)

6Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy

Observatories, which is operated by the Association of Universities for Research

in Astronomy, Incorporated, under cooperative agreement with the National Science

Foundation



– 2 –

Abstract

Through use of multiband (U, BJ , RF , IN) photometry we have isolated high redshift

(3.0<z<3.5) galaxy candidates in a survey of 1.27 deg2 to RF = 21.25 and a survey of 0.02

deg2 to RF = 23.5. Our pool of candidates constrains the nature of the 3.0 < z < 3.5

luminosity function over the range L∗

∼< L ∼< 100L∗, if we grant a similar level of

completeness to these data as for very faint samples (to R = 25.5) selected in a similar

fashion. Our constraints agree with the high redshift sky density at RF = 20.5 estimated

from Yee et al. ’s (1996) serendipitous discovery of a bright, z = 2.7 galaxy, as well as the

density at RF ≈ 23 by Steidel et al. (1996b). We strongly rule out – by more than two

orders of magnitude at MRF
= −25 – the L > L∗ luminosity function for z = 3 − 5 galaxies

obtained by a photometric redshift analysis of the Hubble Deep Field (HDF) by Gwyn &

Hartwick (1996). Our results at RF ≈ 23 are more consistent with the photometric redshift

analysis of the faint HDF galaxies by Sawicki & Yee (1996), but our present upper limits at

the brightest magnitudes (RF < 21.5, MRF
< −24) allow more generous volume densities

of these super-L∗ galaxies.

Subject headings: galaxies: luminosity function – galaxies: evolution – galaxies:

distances and redshifts
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1. Introduction

When deep imaging surveys revealed a significant population of blue objects (well in

excess of no-evolution models) at B > 23, it was initially thought (Tyson 1988, Cowie

1988, Cowie et al. 1988) that this could be the signature of “primeval galaxies” (PGs) –

counterparts to present day ≈ L∗ galaxies undergoing an initial, extremely bright burst of

star formation at high z (Partridge & Peebles 1968). Ever deeper redshift surveys (now

B ∼ 24, Songaila et al. 1994, Glazebrook et al. 1995), however, revealed galaxies only to

z < 0.8, and it became evident that galaxies with redshifts as high as 3 were not likely to

represent a substantial fraction of the galaxies, even to B ∼ 25 (Koo et al. 1996).

The conspicuous paucity of faint, high z galaxies had already been shown by two

studies of faint galaxy colors. At 2.7 < z < 3.4, galaxies should exhibit a particularly red

U −B, compared to a rather blue color at longer wavelengths, because of the presence of the

Lyman limit in the U passband. The first application of this test by Koo, Kron & Majewski

(see Majewski 1988, 1989) demonstrated the number of B < 24.5 galaxies showing the

expected z > 3 color signature to be negligible – < 1%. With deeper data, Guhathakurta,

Tyson & Majewski (1990) showed that the number of galaxies to B ∼ 27 showing the

expected z > 3 color signature was no more than 7%, and likely < 1% of galaxies.

More recently, Steidel et al. (1995 and references therein, “S95”) have repeated the

“Lyman limit imaging” experiment over ∼ 0.03 deg2 to their ℜ = 25.5. They confirm

the relatively low surface-density of high z candidates, and with the Keck 10-m have

spectroscopically verified 22 of 37 color-selected candidates are indeed at 3 < z < 3.5

(Steidel et al. 1996b, “S96”). All galaxies in S96 have ℜ =23.7-25.5, implying luminosities

near present day L∗ and slightly brighter. From their data, S96 estimate the comoving

space density of these objects to be approximately 1/2 that of present day L > L∗ galaxies.

Both Steidel et al. (1996a) and Lowenthal et al. (1997) find comparable results in the same

magnitude and redshift range in the Hubble Deep Field (HDF), despite more liberal color

selection in the latter survey.

The numbers of objects much brighter than L∗ is less well constrained. Yee et al.

(1996) have discovered serendipitously a “normal” (i.e., neither AGN nor radio), V = 20.5

galaxy at z = 2.7. Though super-luminous at MR − 5 log h ≈ −25 (q0=0.5, h = H0/100),

this galaxy is spectroscopically similar to the S96 galaxies. Based on one galaxy in their

0.66 deg2 survey, Yee et al. estimate the density of such objects at R ∼ 20 is 100±1 deg−2.

Meanwhile, Gwyn & Hartwick (1996, “GH”) attempted to determine photometric

redshifts for galaxies in the HDF and claim dramatic changes in the galactic luminosity

function (Φ(M)) from 0 < z < 5 with Φ(M) becoming flat between −24 ≤ MB ≤ −15 for
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3 < z < 5. They predict a substantial abundance of galaxies up to M∗−4 at high z. In stark

contrast, the photometric redshift analysis of the HDF by Sawicki et al. (1996, “SLY”) finds

a more prosaic z = 3 − 4 luminosity function, adequately described by a Schechter function

with α = −1.3 and φ∗ = 0.023h3 Mpc−3. An extrapolation of this function predicts many

orders of magnitude less high z galaxies at RF = 21 than GH. Yet another photometric

analysis of the HDF by Mobasher et al. (1996) suggests strong luminosity function evolution

to z = 3, and implies numbers of bright z = 3 galaxies intermediate between GH and SLY.

While all of these groups suggest that in the HDF they are seeing the formation of L ≥ L∗

galaxies at high z, there seem to be vast differences in the implied nature of the luminosity

function, especially for bright galaxies.

The range in HDF results may be attributable to the substantial uncertainty in the

application of photometric redshifts at very faint magnitudes. Unlike the photometric

redshift study of brighter galaxies by Connolly et al. (1996), at HDF depths there is no

adequate spectroscopic training set available for calibration. While S96 have a handful

of spectra of z > 3 galaxies, the vast majority of objects to ℜ ≈ 25 and beyond are

without spectroscopic redshifts. Most troubling to the interpretation and application of

spectro-photometric galaxy models is the near-degeneracy in color between particular

redshifts (e.g., at 0 < z < 1 for the bluest galaxies and z ≈ 2.5 for all galaxies; see figure 1);

this plausibly produced the apparent strong bimodality in the redshift distribution inferred

by GH. Unlike in Connolly et al. , GH and SLY do not use apparent brightness to break

such degeneracies in the redshift estimates. Moreover, as pointed out by SLY, differences in

the model spectral energy distributions (SEDs) – particularly in the still poorly understood

rest-frame ultraviolet where internal reddening and intervening absorption are important –

lead to substantially different results. It is important, therefore, to check the HDF results,

especially at magnitudes where spectroscopic confirmation is feasible.

Apart from the S96 data near L∗ and the loose Yee et al. (1996) constraint, there is

scant spectroscopic redshift data to explore the nature of the luminosity function of z > 3

galaxies. Ironically, it is Φ(M) at magnitudes brighter than those explored by S96 that is

most poorly defined due to a lack of reliable data; if the high redshift Φ(M) is of prosaic

form, with a steep decline toward the bright end, much larger survey areas are required

to explore the L >> L∗ domain than have been achieved with CCD surveys to date.

We have undertaken a large area, photometric search for bright, high z galaxies. Even

without spectroscopy, we constrain the high z luminosity function based on the magnitude

distribution of our high z candidates. To do so, we rely on the good correspondence between

high z galaxy candidates identified by S95 through similar selection criteria and bona fide

high z galaxies among these candidates as confirmed by S96.
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2. High Redshift Galaxy Search

Our search for bright, z > 3.0 galaxies utilizes two sets of multicolor galaxy catalogues.

The first data set consists of the photographic catalogues generated for the Kitt Peak

Galaxy Redshift Survey (KPGRS; Munn et al. 1997) and faint quasar surveys (Kron et

al. 1992). These catalogues cover four separate regions of the sky totaling 1.27 deg2 with

photometry from sky-limited, Mayall 4-m photographic plates in the UBJRF IN passbands7

calibrated with deep CCD photometric sequences (e.g. Majewski et al. 1994). While these

catalogues reach to RF = 23, we choose here a conservative catalogue limit of RF = 21.25,

where random errors in BJ , RF and IN are at most 0.3 mag (smaller than the color

difference between our z > 3 selection thresholds and the locus of low z galaxies).

The panels in Figure 1 show the progression of U − BJ , BJ − RF and RF − IN galaxy

colors with redshift. The iso-z loci for different galaxy types were generated with Bruzual

& Charlot’s (1993) models for a range of star-formation histories8, plus observed elliptical

and starburst (using the galaxy N4449) spectral energy distributions (SEDs). Model and

observed SEDs were reddened as a function of band and redshift to account for intervening

absorption (only), as prescribed by Madau (1995). This process is identical to that in S96,

except that we include a broader range of SEDs. For colors of z > 3.0 galaxies this has little

consequence, however it is important at lower redshifts. Based on our models, dashed lines

delimit the region of each color-color diagram inhabited by z > 3.0 galaxies. To justify this

selection, we show (top-left panel, Figure 1) the S96 z > 3.0 galaxies in our UBJRF system

using the transformations in Majewski (1992) and Steidel & Hamilton (1993); the symbols

are coded for those objects S96 classified as “robust” (U -band drop-outs falling within the

selection boundary based on 1-σ limits), and “marginal” (non-“robust” objects within the

selection boundary). We also show (top-right panel, Figure 1) all known 2.7 < z < 3.0 and

z > 3.0 QSOs in our fields (Kron et al. 1992).

The middle and right panels of Figure 1 show our RF < 21.25 sample. We are

interested in setting upper limits on the numbers of bright, high z galaxies; our selection

algorithm reflects a liberal acceptance threshold that sets a conservative upper limit on

Φ(M) while maintaining reasonable reliability. As a first acceptance criterion, we adopt a

7Our U band is virtually identical to the standard photoelectric U (Koo 1985). Steidel &

Hamilton’s (1993) Un is about 100 Å bluer, and UF300W for the HDF is about 700 Å bluer.

8 Colors are for evolving and non-evolving model galaxies with 16 Gyr ages at z = 0

(q0=0.1, H0=50 km s−1 Mpc−1, Λ=0), Salpeter initial mass, and 0.01 < µ < 0.95, where µ

is the fraction of galactic mass in stars after 1 Gyr of star formation.
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similar selection function to S96 – objects with red U − BJ and blue BJ − RF colors, as

illustrated in the top row of Figure 1. However, our models show the U − BJ , RF − IN

diagram (middle row, Figure 1) affords a much cleaner separation of high z galaxies from

the low z locus. We accept high z galaxy candidates from this diagram as well. Galaxies

selected in the (U − BJ , BJ − RF ) and (U − BJ , RF − IN) diagrams need not be the same.

For example, a high z galaxy might be missed in the U − BJ , BJ − RF plane if the line

of sight to that object passes through a sufficient number of neutral hydrogen clouds for

significant suppression of the observed BJ flux (with both U − BJ and BJ − RF affected).

The BJ −RF , RF −IN diagrams in the bottom panels of Figure 1 reveal the high z locus

is not as well separated as in the other diagrams. As a compromise between completeness

and low z contamination (reliability), we (1) adopt a more conservative color cut, but

(2) accept galaxies in this diagram only if they are bona fide U band drop-outs. Objects

selected in this way satisfy the relevant RF − IN color criterion in the (U − BJ , RF − IN)

diagram, but have U − BJ upper limits insufficient to place them confidently within the

z > 3 region. These objects are faint in BJ , so their exclusion in the middle panel is likely

due only to the magnitude limit of the U plates. Hence these are plausible z > 3 candidates.

In the BJ − RF , RF − IN diagrams we have the potential to discover galaxies at redshifts

even higher than 3.5, yet no such “BJ -band drop-outs” were found.

Each high z candidate was inspected visually on a number of photographic plates to

ensure reliability. We find twelve resolved (unlikely to be either stars or QSOs) z > 3.0

candidates between 19.25 < RF < 21.25. We also find 20 unresolved sources with

RF < 21.25; three are spectroscopically identified as z > 2.9 QSOs and two as stars in our

QSO survey (Kron et al. 1992). No galaxies at z > 1 have been identified among any of the

QSO candidates in Kron et al. (1992).

To bridge our study of the high z luminosity function from RF = 21.25 to the very

deep S96 sample, we have generated deeper images in two 39 arcmin2 subfields of SA 57 by

stacking PDS microdensitometer plate scans of five U plate images, ten BJ plate images and

five RF plate images (see Majewski 1988). Candidate z > 3 galaxies are selected here only

on the basis of U −BJ , BJ −RF as before (no comparably deep IN image was available). A

total of 11 candidates (both stellar and nonstellar) are found (small triangles in top-middle

panel of Figure 1) to the conservative limit of RF = 23.5.

3. High Redshift Luminosity Function
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Our z > 3 galaxy candidates represent the highest possible density of bright, S96-like

galaxies if we assume a similar level of completeness in our sample as has been assumed

for S96. We believe no z > 3 galaxies lie within our unresolved sample to RF < 21.25,

but, in the spirit of upper limits, we include discussion of this sample here. Our survey

should be more complete than, for example, S96 since we utilize multiple combinations of

colors. If there exists a population of high z galaxies not chosen by our selection criteria,

our comparison to other surveys using similar S96-like selection criteria is still valid.

In Figure 2 we compare the various studies of the z > 3 luminosity function in a

cosmologically model-independent way:

(i) The luminosity functions of GH (in the range 3 < z < 5) and SLY (in the range

3 < z < 4) are transformed into the apparent differential counts A(RF ) for galaxies lying

in the redshift shell between 3 and 3.5, the range of redshift to which our data apply. To

do this we have adopted their respective cosmologies to scale by the appropriate volumes

and luminosity distances, and assumed k-corrections for N4449. The observed spectrum of

N4449 has been extended below 1250 Å using the best-matching Bruzual & Charlot model

in the range 1250-2000 Å. Note that GH and SLY calculate “the z > 3 luminosity function”

beyond our z = 3.5 limit, yet both studies find the space density falling rapidly beyond

z ≈ 2. Thus our estimation of the predicted A(RF ) for their Φ(MRF
) in the lowest redshift

shell of their broader z ranges provides lower limits on the counts. This is particularly

relevant to the gross discrepancy between our derived upper limits to A(RF ) and the GH

results (presented as lower limits) detailed below.

(ii) Candidate z > 3 galaxies at faint magnitudes were compiled from S95 and S96 in

two ways. a) In S95, four of five fields had well-defined samples and areas (i.e. excluding

Q0000-263), yielding 15 candidates in 20.7 arcmin2 to ℜ < 25.5 defined as “robust” by them.

From S96, we counted candidate and confirmed z > 3 galaxies in two fields (Q0000-263 and

SSA 22) to the same depth in a total area we estimate to be 45.4 arcmin2. These tallies

exclude spectroscopically confirmed stars, QSOs, or galaxies at z < 3. A total of 36 robust

candidates in 66.1 arcmin2 are counted, 22 of which are spectroscopically confirmed. Based

on the 81% reliability of spectroscopically identified candidates (3 of 16 are QSOs) we scaled

the remaining unconfirmed robust candidates to derive number counts in the RF band for

z > 3 galaxies. b) For S95, we have counted, in the same 4 of 5 fields, additional objects

not considered “robust” but still within the color region believed to contain 3 < z < 3.5

galaxies. This yielded 23 candidates (including “robust” ones) in 20.7 arcmin2.

(iii) We include the z = 2.7 Yee et al. as a datum at RF ∼ 20.35 assuming one source

in their survey area at this apparent brightness.
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Without redshifts, we constrain the density of resolved z > 3.0 galaxies to ≤ 10 ± 3

deg−2 at RF < 21.25, or ≤ 22 ± 4 deg−2 if we include unresolved candidates (minus

the known QSOs and stars). Our counts are in strong conflict – at least two orders of

magnitude – with GH at this depth. We note that the counts of z > 3 galaxies in the GH

analysis rivals our total galaxy counts for RF < 22 (Figure 2), although if we had adopted

redder k-corrections, the results of the surveys would be in somewhat better agreement. At

22 < RF < 23.5, our limits are similar to the upper limits of the more liberal set of the

fainter S96 candidates ([ii]b above). The combination of the S96 upper limits and our limits

at brighter magnitudes suggests a rapid decline in the z > 3 luminosity function brighter

than MR − 5 log h ≈ −20.5 to −21. This corresponds to the SLY et al. M∗ at z = 3.25

(RF = 24.5), or ≈0.75 mag brighter than the local galaxy luminosity function. In general,

our upper limits and those derived from S95 agree with the SLY luminosity function for

23.5 < RF < 25. However, over the brighter range of our survey, 19 < RF < 23.5, our

upper limits allow for a much more gradual bright-end decline than suggested by the SLY

extrapolation, and are consistent with the Yee et al. (1996) serendipitous discovery.

While the SLY luminosity function overestimates the numbers of robust candidates

from S95 and S96, our more liberal selection from their data is marginally consistent to

RF ≈ 25. However, it is critical to discriminate between the SLY suggestion of a rising faint

end of the luminosity function and the flatter faint end hinted at by the S96 data. Upper

limits on the shape of the L < L∗ luminosity function could be checked via the U -band

drop-out method in a similar manner to what we have done here at brighter magnitudes.

While the HDF data are appropriately deep for such an exercise, the UF300W of WFPC2 is

much bluer than ground-based, Johnson U ; this increases the sensitivity of HDF data to

z ∼ 2.2 and complicates direct comparisons. Hence there is a need for ultra-deep imaging

in the Johnson U band even over relatively small fields of view.
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fig. 1. – U − BJ , BJ − RF , RF − IN color-color diagrams. Left panels: the locus

of non-evolving observed, model, and passively evolving model galaxy colors (see key in

middle-left panel) as a function of redshift (labels, connected by dotted lines of constant z);

our z > 3 color-selection (long-dashed lines); the 3 < z < 3.5 samples from S95 and S96,

transformed to our photometric system (top-left); and the Yee et al. datum, transformed

from their g, V, r, I bands using relations from Fukugita et al. (1995; bottom-left). Middle

panels: our sample of all galaxies (points) and extended high z candidates to RF = 21.25

and high z candidates from stacks of photographic plate images to RF = 23.5. Right panels:

our sample of all stellar sources (points), stellar high z candidates to RF = 21.25, and

confirmed QSOs and stars. Keys in middle and right panels apply to all middle and right

panels. Note the significant number of our candidates in the same region of color-space as

S96’s confirmed 3.0 < z < 3.5 sample. We select high z candidates, however, using all three

color-color diagrams.

fig. 2. – Differential counts of candidate and confirmed 3 < z < 3.5 galaxies from

figure 1, as described in text and key. Error bars enclose 68.3% confidence intervals (Gehrels

1986). Also shown (lines) are counts for 3 < z < 3.5 galaxies from luminosity functions

inferred from the HDF via photometric redshifts (GH and SLY). The dotted portion of

SLY is an extrapolation of their best-fitting Schechter function. The absolute magnitude

scale at z = 3.25 is shown at the top, while the change in RF with redshift for constant

luminosity and q0=0.5 is shown at the bottom. Total RF galaxy counts from Kron (1980)

and Majewski (1988) are shown for reference.
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