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ABSTRACT

We use gas dynamic simulations to explore the e�ects of galactic winds

on the structure of the intracluster medium (ICM) in X{ray clusters. Two

ensembles of 18 realizations, spanning a decade in temperature T , are evolved

with and without galactic winds in an underlying standard CDM cosmology

with 
= 1 and 
b=0:1. Galaxies are identi�ed as peaks in the initial, linear

density �eld, and are assumed to lose half their initial mass over a Hubble time

in winds with e�ective temperature Twind=8 keV.

The extra wind energy raises the entropy of the gas above the level

generated by gravitationally induced shocks. This leads to substantially

lower central densities in the ensemble with winds compared to the ensemble

lacking winds. The magnitude of this e�ect increases with decreasing mass

or virial temperature, and results in a trend of shallower gas pro�les at lower

temperatures, consistent with observations. In contrast, we �nd the �nal

temperature of the gas is relatively una�ected; a similar mass{temperature

relation results with or without winds. The input wind energy, which is

comparable to the thermal energy in low temperature systems, is e�ectively
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2evrard@umich.edu
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consumed as work to lift the gas in the dark matter dominated potential.

Radially averaged temperature pro�les of models with winds are slightly steeper

than those without. The extended nature of the ICM with winds can lead to

underestimates of the global baryon fraction; we calibrate the amplitude of this

e�ect at density contrasts �c=170 and 500. These features should be generic to

all wind models.

The structure of the dark matter density pro�les is consistent with the form

proposed by Navarro, Frenk & White, and we �nd evidence for higher central

concentrations in lower mass systems, consistent with previous, purely N{body

studies. The galaxy distribution in the ensemble with winds is cooler and

more centrally concentrated than either the dark matter or gas. A mild, but

persistent, velocity bias exists, with ensemble average value �gal ' 0:84�DM .

The steep nature of the galaxy spatial distribution, combined with ejection

of metal enriched material over a Hubble time, produces a strong, negative

radial gradient in metallicity within the ICM. Core radii remain unresolved,

even in the models with winds. These features are sensitive to the assumed

wind history of the galaxies.

Subject headings: Galaxies-clusters, cosmology-theory
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1. Introduction

A variety of mature observational techniques are now in use studying galaxy clusters.

Through optical studies of cluster galaxies, analyses of weak gravitational lensing distortions

of the background galaxy �eld, observations of radio sources within and behind clusters,

and X{ray images and spectra of the intracluster medium (ICM), we now have a wealth

of data to compare to models of clusters drawn from analytic treatment and numerical

simulation.

The paradigm for cluster formation and evolution that has emerged from such

modeling is one in which clusters form through gravitational collapse of an overdense region

(Gunn & Gott 1972; Bertschinger 1985). While analytical descriptions typically assume

spherical symmetry, cluster observations and N{body simulations of hierarchical clustering

from initially Gaussian, random density �elds show that the collapse process is generally

irregular, involving mergers of protoclusters 
owing along large{scale �laments, along with

accretion of smaller satellite systems and weakly clustered material.

It is commonly held that rich clusters formed at recent epochs. Nevertheless, since the

relaxation timescales for clusters are signi�cantly less than a Hubble time, the standard

model for describing the distribution of matter within clusters is one based on hydrostatic

equilibrium. Early one{dimensional collapse simulations by Perrenod (1978) supported

this assumption, later con�rmed in three{dimensions by Evrard (1990a,b). The isothermal

�{model (Cavaliere & Fusco{Femiano 1976, 1978; Sarazin & Bahcall, 1977) makes further

simplifying assumptions of an isothermal ICM temperature and spherical symmetry of an

assumed, dominant collisionless potential, now taken to be generated by dark matter. Each

component follows a density pro�le of the form

�(r) = �0

"
1 +

�
r

rc

�2#�3�=2
(1)

where rc is the core radius within which the density pro�le relaxes to a constant, central

value �0. In this model, the outer pro�le slopes of the gas and dark matter, measured by

their respective values of �, provide information on the relative temperatures of the two

components. The parameter

� �
�2�
kT
�mp

� : (2)

from which the model takes its name, is the ratio of speci�c energy in dark matter,

measured by the one-dimensional velocity dispersion �, to that in gas, measured by its

temperature T and mean molecular weight �, with k Boltzmann's constant and mp the

proton mass. Since the ICM mass dominates the galaxy mass in rich clusters such as Coma
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(Briel, Henry & Bohringer 1992; White et al. 1993), it is reasonable to assume that the

ICM plasma originates in primordial gas leftover from galaxy formation. In this case, the

gas and galaxies cluster hierarchically within the same potential wells, so it is similarly

reasonable to expect that the speci�c energies of the two components will be nearly equal,

�'1. (A re�ned discussion of this point is provided in the Appendix.)

However, there is evidence that the history of the intracluster medium is more

complicated. In particular, the presence in the ICM of iron and other elements produced

by stars, at abundances near solar, necessitates signi�cant interaction between galaxies and

the hot intracluster plasma. Mechanisms for this metal enrichment process include feedback

from a very early stellar population such as Population III stars (Carr, Bond & Arnett

1984), ram pressure stripping by the ICM of the interstellar medium from galaxies (Gunn

& Gott 1972; Biermann 1978; Takeda, Nulsen, & Fabian 1984; Gaetz, Salpeter, & Shaviv

1987), and ejection of hot enriched gas from galaxies via winds (Yahil & Ostriker 1973;

Larson & Dinerstein 1975). How might we discriminate between these?

First of all, a key question with respect to the dynamics of the ICM plasma is whether

signi�cant energy deposition accompanied the enrichment process. \Passive" mechanisms,

such as primordial enrichment or ram pressure stripping, do not add considerable energy

to the ICM. Galactic winds, on the other hand, represent an \active" mechanism which

deposits both energy and metal enriched material into the ICM. Meanwhile, there is some

evidence implying cluster gas has a greater speci�c energy than cluster galaxies, or � < 1

(cf. Edge & Stewart 1991), a result consistent with additional, non{gravitational energy

input into the ICM. Also, several studies of the relation between the galaxy velocity

dispersion and ICM X{ray temperatures in clusters suggest that � varies with the depth

of the potential well (Edge & Stewart 1991; Lubin & Bahcall 1993; Bird, Mushotzky,

& Metzler 1995; Girardi et al. 1995). To be fair, cluster velocity dispersions and X{ray

temperatures are di�cult to compare in an unbiased manner, since the quantities are prone

to di�erent types of systematic errors and are typically not measured within the same

region of a cluster (Metzler 1997). However, if robust, such a result may be expected from

wind models. Since the speci�c energy of an individual galactic wind should not depend

upon the host cluster whereas the speci�c thermal energy supplied by gravitational collapse

does depend on cluster mass, winds should a�ect more strongly the ICM of clusters with

small velocity dispersions. This may introduce a dependence of the ratio of speci�c energies

with temperature in the manner described above.

Another possible discriminant between enrichment mechanisms lies in the distribution

of metals in the intracluster medium. However, it is di�cult to infer analytically the type of

abundance gradient expected from each of these three mechanisms. Simulations of cluster
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evolution incorporating enrichment can clarify this, and provide an expectation to compare

to observations of abundance gradients now becoming available (e.g. Tamura et al. 1996;

Xu et al. 1997; Ikebe et al. 1997).

We present here results from an ensemble of simulations which include the e�ects of

galactic winds in a self{consistent, three{dimensional fashion. A unique feature of these

is the ability to trace the structure of galaxies and metal{enriched gas in the ICM. This

work expands the examination of a single, Coma{like cluster presented in an earlier paper

(Metzler & Evrard 1994, hereafter Paper I). Since galactic wind models themselves are

uncertain, we take a heuristic approach and employ a simple, and in some ways extreme,

model for galactic winds in an attempt to explore the upper envelope within which realistic

models should lie. We examine an ensemble of eighteen cluster realizations, spanning a

factor of 50 in cluster mass, drawn from a standard cold dark matter cosmogony. Each

initial realization is evolved twice, with one run incorporating and the other ignoring

galaxies and their ejecta. This paper focuses on the three{dimensional structure of the

present epoch population; a subsequent paper will examine the e�ect of feedback on X{ray

observations.

In Section 2, we elaborate on the numerical techniques used in this work, as well as

the general properties of the two cluster ensembles used. Section 3 provides a look at the

structure of the collisionless components (dark matter and galaxies) in these simulations.

The structure and metal distribution of the intracluster medium are examined in Section

4. A revised model of the ICM, based on the halo model of Navarro, Frenk & White (1996,

hereafter NFW2), is considered in Section 5. The relative structures of the various cluster

components are compared in Section 6; also included there are some comments about

implications for estimates of the cluster baryon fraction. Our results are summarized in

Section 7.

2. Method

2.1. Initial Conditions

The simulations and their initial conditions use as their basis the standard biased cold

dark matter (CDM) scenario (Blumenthal et al. 1984; Davis et al. 1985): 
 = 1; baryonic

fraction 
b = 0:1; Hubble constant h = 0:5; and power{spectrum normalization �8 = 0:59.

These parameters are used throughout this work when scaling to physical units. The

path{integral formalism of Bertschinger (1987) is used to generate initial density �elds which

are constrained, when smoothed with a Gaussian �lter, to have a speci�ed value at the
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center of the simulated volume. For the simulations in this paper, we �lter with a Gaussian

of scale Rf = 0:2L Mpc, where L is the length of the periodic volume, corresponding to

a mass scale of Mf = (2�)3=2 �c R3
f = 5:6 � 1014 (L=40 Mpc)3M� (Bardeen et al. 1986).

Here �c=3H2
0=8�G is the critical density, also the mean background density of the models.

The perturbation height at the center was constrained to a value �c = 2:0 when �ltered

on scale Mf . For all of the simulations described in this paper, 323 = 32768 particles are

initially placed for each of the dark matter and gas 
uids; the mass of an individual dark

matter particle is related to the mass of a gas particle by mDM = 9mgas, re
ecting their

fractions of the total density. The primordial density �eld is used to generate a particle

distribution at the starting redshift zi = 9 using the Zel'dovich approximation, as described

in Efstathiou et al. (1985).

Since in generating the constrained initial density �eld, we �lter on a �xed fraction of

the box length, we can simulate clusters spanning a range in mass simply by varying the box

size. The mass per simulation particle is proportional to L3, but so is the �lter mass scale.

This causes the number of particles in the �nal collapsed object to be roughly comparable

in all runs, so the fractional mass resolution in the various simulations presented here is

equivalent. This avoids any systematics that might be introduced into correlations between

cluster quantities (X{ray luminosity vs. mass, for example) if the resolution varied in a

systematic way from low{mass to high{mass clusters.

2.2. Including Galaxies

The technique used for inserting galaxies in the simulation is described in detail

in Paper I. We Gaussian{�lter the initial conditions on the approximate scale of bright

galaxies (Rf = 0:5 Mpc, corresponding to Mf = (2�)3=2 �c R3
f = 1:4 � 1011M�) and

locate peaks in the initial overdensity �eld on that scale above a �ducial threshold of 2:5�,

chosen to reproduce the observed number density of bright galaxies. We then return to

the initial particle distribution and replace the gas particles associated with each peak

with a composite \galaxy particle." We assume an e�ective collapse redshift of zc = 4:5,

corresponding to a linearly determined mean interior overdensity at the starting redshift zi
of

�gal = 1:686
1 + zc
1 + zi

= 0:933: (3)

The gas particles within this mean interior overdensity are removed, and the mass of the

resulting galaxy particle is set to the number of gas particles removed. The initial linear

momentum of a galaxy particle is set by demanding conservation of linear momentum.
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A valid concern with our method and results can be raised over our use of peaks to

simulate galaxies. The most natural thing to do would be to allow the gas in the simulations

to cool and form galaxies, and then allow those galaxies to provide the sources for the

feedback into the intracluster medium. However, such an approach su�ers from limitations

in our ability to accurately model star formation, in both a physical and numerical sense.

As we wish to perform many simulations to ensure adequate statistics when considering

issues of cluster structure and evolution, we must economize computatonal resources spent

on an individual run, and our approximate peak treatment to galaxy formation provides

considerable numerical savings. The peak model has some physical basis in that there

is known to be \crosstalk" from large to small scales during hierarchical clustering from

Gaussian initial conditions in the non{linear regime which enhances the rate of small{scale

structure formation for the power spectrum shape considered here (White et al. 1987;

Juszkiewicz, Bouchet, & Colombi 1993). The model also has some phenomenological success

in explaining the qualitative shape of galaxy luminosity functions (Evrard 1989) and the

morphology{density relation in clusters (Evrard, Silk & Szalay 1990).

However, since the theory of Gaussian random �elds (Bardeen et al. 1986) tells us that

peaks on smaller scales are likely to be biased towards peaks on larger scales, and since our

initial conditions are constrained to produce a high{peak on cluster scales at the center of

the simulation volume, the initial galaxy distribution will be more centrally concentrated

than the overall mass distribution. The thermal history and metal distribution of the ICM

is certainly sensitive to the assumed galaxy formation model. To quantify this, several

runs were performed with galaxies placed randomly in the volume, rather than at the

locations of overdense peaks. By removing the peak correlations induced by the presence

of the cluster, random placement resulted in a substantial reduction in the number of

bright galaxies within the simulated clusters, even though the number density in the entire

simulated volume was held �xed. The e�ect of feedback was reduced to the point that the

ejection runs di�ered little from their non{ejection counterparts, and so we do not discuss

these runs further in this paper. High resolution numerical experiments resolving galaxy

formation within clusters will ultimately settle this question. The current best e�ort on this

issue favors the peaks approach over random placement (Frenk et al. 1996).

2.3. Numerical Algorithm and the Wind Model

We use the N{body + hydrodynamical algorithm P3MSPH, which combines the

well known particle-particle{particle-mesh (P 3M) algorithm of Efstathiou & Eastwood

(1981) with the Smoothed Particle Hydrodynamics (SPH) formalism of Gingold &
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Monaghan (1977). The combined algorithm is described in Evrard (1988), and some of the

post{simulation analysis procedures used are described in Evrard (1990b) and Paper I.

The simulation algorithm can follow collisionless dark matter and collisional baryonic

gas; we have modi�ed the simulation algorithm to also model galaxy particles of varying

mass, and to allow the galaxies included to eject energetic, metal{enriched gas. The

technique used is described in detail in Paper I. The galaxy mass fraction lost through

winds is described by a time{dependent rate curve; speci�c energy and iron ejection rate

curves are also assumed as input. For each galaxy, the wind rate curve is integrated until

the amount of mass ejected equals the mass of a simulated gas particle. Energy and iron

mass fraction are then assigned to that particle by integrating those curves over the same

period. The process is then repeated for as long as the ejection rate curve is non{zero.

Thermal energy, momentum, and iron mass are mixed approximately over the scale of one

SPH smoothing length. The smoothing process, described in detail in Paper I, is based on

conservation of mass, momentum and energy and a scenario in which wind ejecta is rapidly

mixed into the surrounding ICM. For these simulations, we have assumed a wind model in

which galaxies eject half their mass at a 
at rate from a redshift of four to the present, with

a wind luminosity for a galaxy with 1010M� in baryons of Lwind = 4� 1042 erg s�1, and a

total energy release of 1:5 � 1060 erg.

2.4. The Cluster Ensemble

To study systematic trends, it is necessary to examine an ensemble. To this end,

we assemble 18 sets of initial conditions, and evolve them with and without galaxies and

winds, for a total of 36 simulations. Five comoving box lengths are used. For comoving

box lengths of 20, 25, and 30 Mpc, four sets of initial conditions each are used, while three

each are run at 40 and 60 Mpc. A summary of general properties of the runs is shown is

Table 1. As in Paper I, we refer to the ensemble of runs with galaxies and winds as the

EJ, or ejection, ensemble, and the runs without galaxies as the 2F, or two{
uid, ensemble.

When referring to individual runs in this paper, all run names begin with the comoving box

length in megaparsecs and end with a su�x to di�erentiate between runs. We will indicate

whether ejection is included as appropriate.
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3. The Collisionless Components

3.1. Clusters Sizes and Characteristic Scales

In formation via graviational instability, one expects a characteristic length to emerge

which divides the regions within which material is close to hydrostatic equilibrium and

exterior to which matter is on its �rst infall or expanding (Gunn & Gott 1972; Rivolo

& Yahil 1984; Bertschinger 1985). Because infall occurs on a gravitational timescale

tgrav/ ��1=2, one expects this characteristic radius to occur at a �xed value of the mean

enclosed density. Figure 1 shows the radial velocity pro�le at z = 0:02 for the dark matter

in four of the two{
uid simulations using mean interior density contrast as the abscissa,

de�ned as �c = �(< r)=�c. These four were chosen because they have qualities worth

describing in more detail; the remaining clusters have similar structure. All show a velocity

pro�le characteristic of gravitational collapse in an expanding world model. Spherical

clusters would have a zero velocity surface at a density contrast of � 5:5 (Peebles 1980).

As shown by the outer dashed line, this overdensity does an excellent job of marking the

turnaround radius. In run 20e, the velocity magnitude in the region of infall is somewhat

small, and the infall occurs over a narrow range of overdensities. This simulation forms

three small clusters of approximate mass ratios 2:2:1, and the two largest objects are near

each other, causing the infall region in each to be weak due to interference from the other

cluster.

There is not an obviously sharp transition marking the virialized region. Some

simulated clusters, such as the 20b and 40a runs shown, have a reasonably quiescent region

interior to a region of strong infall. For these clusters, the rough prediction of the spherical

model | the inner dashed line at an overdensity of 170 | provides a good approximation

to the outer boundary of the virialized region. Other objects, however, have a complicated

velocity structure within this overdensity. In particular, the most massive clusters exhibit

infall extending into much larger overdensities. Massive systems form later, and these

clusters are still experiencing strong infall and are not relaxed. The three worst o�enders

| runs 40c (shown), 60c, and 60d | experience strong mergers and asymmetric accretion

after a redshift of 0.5.

Nonetheless, since no other characteristic virial overdensity emerges from the data, we

use the radius with a mean interior overdensity of 170, hereafter called r170, as a �ducial

virial radius in the analysis below. Cluster properties such as density and temperature will

then be pro�led against the scaled radius x = r=r170. For convenience, the relation between
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r170 and total cluster mass M170 is

r170 = 1:72

 
M170

1015 h�1M�

!1=3

h�1 Mpc: (4)

If clusters are very nearly self{similar over the range in mass probed here, then the choice

of another overdensity value for the virial scale merely amounts to relabelling the radial

coordinate of our pro�les. Much of the literature follows the example of Navarro, Frenk

& White (1995, hereafter NFW1), who employ an overdensity of 200. However, Evrard,

Metzler & Navarro (1996, hereafter EMN) demonstrate that a density contrast of 500 is a

more conservative choice for the hydrostatic boundary of clusters, in the sense that the mass

weighted radial Mach number has smaller variance and an ensemble mean more consistent

with zero within r500 than r200. For power{law density pro�les near r�2, r200 and r170 di�er

by about 8%.

The mass, mean dark matter velocity dispersion, and intracluster medium temperature

within a radius r170 for the members of the two{
uid ensemble are shown in Table 2.

Although the simulations span a factor of 27 in volume, the resulting clusters span a

factor of nearly 50 in mass. This di�erence is due to the fact that in two of the smallest

volume runs, two clusters of comparable mass form and have not merged by the end of

the simulation. For the analyses here, the larger of the two clusters in each simulation was

chosen. In Table 3, we give information for the ejection ensemble, including the global

fraction of the initial gas mass remaining in the volume after insertion of galaxies (fgas), the

number of galaxies in the simulation, the number within r170 of the present epoch cluster,

and the mean temperature of ICM within that radius. Gas and galaxy fractions within

the clusters are discussed in xVI. The masses and dark matter velocity dispersions for the

ejection ensemble are very similar to their two{
uid counterparts, so we do not quote them

here.

3.2. Dark Matter Density Pro�les

We now consider the dark matter distribution of the simulated clusters. The dark

matter structure in the runs with galaxies and ejection is nearly identical to their two{
uid

counterparts, so we present results from only the 2F set in this and the following section.

Figure 2 shows the dark matter density pro�les for the eighteen clusters in our

ensemble, taken at z = 0:02. These pro�les were constructed by de�ning radial bins

containing 200 particles each, then measuring the volume of the bin to arrive at the

density. The shapes of the pro�les look remarkably similar. In Figure 3a, the pro�les have
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been rescaled; we plot the local density contrast �=�c, versus scaled radius x = r=r170.

There is some di�erence in central overdensity between models, but at larger radii (smaller

overdensities), this dispersion tightens. Vertical lines in both �gures denote the values of the

gravitational softening parameter � for each individual run at this epoch. The agreement

among the density pro�les of the ensemble reinforces previous �ndings of a characteristic

density pro�le for halos formed via hierachical clustering. The self{similarity displayed in

this �gure con�rms the choice of r170 as a scale radius, although choices of overdensity near

this value would work equally well.

Motivated by the self{similar appearance in Figure 3a, we construct a mean density

pro�le for the two{
uid runs by averaging the values of the density derived from each

individual cluster in radial bins evenly spaced in log (x). The result, along with comparison

to various functional forms, is shown in Figure 3b. Each of these functions has at least two

adjustable parameters | an amplitude, and either a scale length or an exponent. However,

it is important to note that one parameter is constrained by the required mean overdensity

interior to r170. In �tting to these functions, only data within r170 are used.

We �rst consider a �tting function of the form introduced by NFW1

� (x)

�c
= �

�
x

�

��1 �
1 +

�
x

�

���2
(5)

where, as before, x = r=r170, the scaled radius of Figure 3. This pro�le approximates an

r�1 power law at small radii, and an r�3 power law at large radii. The characteristic scaled

radius �, or physical radius �r170, is the radius at which the logarithmic slope of the density

pro�le is �2; � is four times the local overdensity at that radius. Since we will apply this

functional form to the entire density pro�le, our integral constraint requires that

� =
170

3�3
h
ln
�
1 + 1

�

�
� 1

1+�

i : (6)

A single member of this class of functions with �xed values � = 0:2 and � = 7500 was

introduced by NFW1, and shown to model well the inner pro�les of their simulated CDM

clusters. Subsequent work (NFW2; Metzler 1995; Cole & Lacey 1996; Tormen, Bouchet &

White 1997) generalized this pro�le to allow � to be a free parameter. When applied to our

mean pro�le, this form provides an excellent �t, with a best �t � ' 0:154� 0:008 (implying

� ' 13600). Our normalization looks much larger than the original NFW1 result but,

as explained below, the discrepancy is due to di�erences in the samples employed in the

studies.

If we apply this form to two subsets of the ensemble, one comprised of the six

highest{mass runs and one comprised of the eight lowest{mass runs, we �nd that the mean
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pro�les are signi�cantly di�erent, with the high mass ensemble requiring a higher value of �

(0:176� 0:010) than the low mass ensemble (0:145� 0:005). A small value for � corresponds

to a steeper inner density pro�le; low mass CDM halos are more centrally concentrated than

high mass halos. The di�erence in density structure between high and low mass objects

re
ects the formation epochs of di�erent objects. In hierarchical clustering cosmogonies

such as CDM, lower mass objects form earlier, when the background density is higher, so

their mass is expected to be more centrally concentrated. This e�ect is expressed clearly by

NFW2, who examine halos spanning four decades in mass. It is this mass dependence which

explains the di�erence between our best �t parameters and the original NFW1 values. Our

�ts are, in fact, in good agreement with the standard CDM case considered in NFW2 (their

Figure 5).

Contrast the seeming success of this model with the standard �{model pro�le,

Equation 1, which provides a three{parameter �tting function as

� (x)

�c
= �0

"
1 +

�
x

xc

�2#�3�DM=2

: (7)

This functional form implies a central, constant density core, characterized by the core

radius rc = xcr170 and central density �0�c. Using this expression, we �nd a best{�t core

radius of xc = 0:053, slightly under twice the mean softening scale (see Figure 3). At such a

radius, the deviation of the softened force from a normal Newtonian force law is signi�cant,

so we cannot claim to resolve such scales in the mean pro�le. Fits of this function to the

density pro�les of individual clusters produce resolvable core radii only in systems with

recent or in{progress merger activity. We therefore cannot claim to resolve any core in

our simulated clusters' density pro�les, in agreement with numerous previous studies. The

implied large{radius logarithmic slope for the mean pro�le is �3�DM = �2:48.

The simplest description of the density pro�le is that of a power law, �(x) / x��. The

curvature in the density pro�les evident in Figure 2 implies that a power law is inappropriate

over the entire range of resolved structure, and formal �ts verify its inadequacy. It is

worth noting, however, that while the curvature is clearly present, it is not extreme. The

local logarithmic slope of the density pro�le lies between �1:5 and �2:5 over the entire

resolved range, lending support to analyses of cluster structure which assume isothermality.

Considering only radii with a local overdensity in the range 100 � �=�c � 3000, a power law

with �=2:39 � 0:08 provides an excellent �t to the mean pro�le. This result is consistent

with the value 2:33�0:04 found in the 
 = 1, n = �1 model of Crone, Evrard & Richstone

(1994). At smaller radii, the pro�le is more shallow; a �t between local density constrasts

of 105 and 5000 yields �=1:56. The spatial and mass resolution of the experiments is not

su�cient to demonstrate convergence to this, or any other, value of the logarithmic slope of
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the dark matter density as x! 0.

Parameters extracted from �ts to the dark matter pro�les are summarized in Table 4.

There are several important points to summarize. First, the clusters have a characteristic

density pro�le consistent with those found in previous studies. The logarithmic slope of the

pro�le is typically shallower than -2 at small radii, and steeper at large radii; the division

between these two regions occurs between 0.1{0.2 r170, depending upon the mass of the

cluster. For clusters with emission weighted X{ray temperatures of 7 keV or so, this should

correspond to radii of about 350{700 kpc at the present. The degree of central concentration

is mass{dependent, with less massive clusters being more centrally concentrated. The outer

portions of cluster density pro�les are well{approximated by power{laws and demontrate

less sensitivity to mass. There is no evidence that CDM clusters have or even approach

constant density cores. The behavior of the density pro�le in the very central regions of

clusters remains uncertain; recent high resolution simulations exhibit central pro�les steeper

than that prediced by the NFW form, Equation (5) (Moore et al. 1997).

3.3. Dark Matter Velocity Dispersion Pro�les

The top half of Figure 4 shows the dark matter velocity dispersion pro�le for the

eighteen members of the two{
uid ensemble. The pro�les have been rescaled | the radial

coordinate by r170 for each cluster, and the velocity dispersion by the quantity �170, de�ned

as

�170 =
�
GM170

2r170

�1=2
; (8)

where M170 is the mass within r170. Most of these pro�les have a common shape, rising

from the center of the cluster and then falling again towards the virial radius, but recent

merger activity causes deviations from this pro�le for some systems. As noted earlier, the

typical dark matter density pro�le for the ensemble is shallower than r�2 at small radii, and

steeper at larger radii, corresponding to the velocity dispersion pro�les seen. The radius at

which the velocity dispersion is a maximum will lie somewhat beyond the break radius at

which the density pro�le has a local logarithmic slope of �2. For the NFW pro�le, if we

assume the velocity dispersion to vary weakly with radius (true for the simulated clusters),

and that velocity anisotropy is unimportant, then the location of the velocity dispersion

maximum can be calculated to lie at xmax ' 1:16�; the mean pro�le would then predict

the maximum of the velocity dispersion at xmax ' 0:18, very near where most of the curves

in Figure 4 reach their maximum. Deviations from this prediction for individual curves

originates from transients associated with mergers and/or the presence of long{lived orbital

anisotropy in the velocity distribution.
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The bottom half of the �gure shows the velocity dispersion anisotropy parameter,

A (r) = 1 � �2t =�
2
r , where �r and �t are the dispersions in the radial and transverse

velocities respectively. The dark matter orbits are mostly radial over much of the pro�le for

all of the members of the ensemble, reducing the kinetic support somewhat and steepening

the dark matter density pro�le. At small radii, the dispersions converge towards isotropy,

although one run (60d) shows evidence for the irregular state noted in its radial velocity

pro�le.

3.4. Galaxy Number Density Pro�les

Representation of galaxies as a separate, collisionless component in the ejection

ensemble allows us to investigate the kinematics of this visible population. We �t the

distribution of galaxies in the simulated clusters to a �{model pro�le. Galaxy number

density pro�les are determined by constructing Lagrangian radial bins for each simulated

cluster, holding �ve galaxies each, out to r170. The central two bins of each pro�le are

excluded from the �t, to minimize the e�ect of force softening on the results. This makes

determination of central galaxy number density and core radius uncertain; but these

parameters are of questionable value, since in real clusters their determination is prone

to a variety of errors, particularly from the choice of cluster center. We can estimate

the large{radius logarithmic slope of the galaxy number density pro�le, and address the

question of whether the dark matter is more extended than the galaxy distribution. Finally,

we consider only cluster pro�les which have at least eight �tting bins after this exclusion,

and thus at least �ve degrees of freedom. This requires at least 50 galaxies within r170.

Figure 5 shows the galaxy number density pro�les of the six largest clusters in the

ensemble | the only six that �t the minimum criteria above. Also shown are best{�t

�{model pro�les. In �ve of the six cases, the large{radius slope of the galaxy number density

pro�le �3�GAL is steeper than that of the dark matter; the dark matter is more extended

than the cluster galaxies. Although the number statistics here are poor, a comparison of

cumulative masses using the entire ensemble, shown in xVI, clearly demonstrates that the

galaxy population is, in the mean, more centrally concentrated than the dark matter.

3.5. Velocity Bias

Since our initial placement of galaxies is upon peaks in the density �eld, and since

such peaks are expected to be spatially biased towards the peak on large mass scales
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associated with the cluster itself, the galaxies are expected to be somewhat more centrally

concentrated than the dark matter. There are, however, physical mechanisms which can

contribute to such concentration. Apart from the contribution of galaxies to the overall

cluster potential well, the distribution of galaxies and dark matter will be a�ected to some

degree by interactions between the two components (Barnes 1985; Evrard 1987; West &

Richstone 1988; Carlberg 1991; Carlberg & Dubinski 1991; Carlberg 1994). Given a CDM

halo which is initially well{traced by the distribution of galaxies, dynamical friction will

transfer energy from the galaxies to the dark matter, resulting in a dark matter distribution

which is more extended than would be the case in the absence of galaxies, and a galaxy

density pro�le which is more centrally concentrated than that of the halo. A simple

timescale argument based on the Chandrasekhar dynamical friction formula (cf.Binney

& Tremaine 1987) suggests that, on the periphery of clusters or in the largest clusters,

dynamical friction should be unimportant. However, in cluster cores and larger parts of

poor clusters, this timescale can be comparable to or less than a dynamical time.

The e�ect of such friction on the structure of the dark matter is small. If galaxies

and dark matter both have the same initial speci�c energy, and if each galaxy loses a

fraction k of its initial speci�c energy through dynamical friction, the speci�c energy of the

dark matter is boosted by a factor (1 + kMgal=MDM ). In rich clusters, galaxies typically

account for perhaps 6% of the total mass. If baryons make up 30% of clusters | more than

suggested by analyses of their mean properties (Evrard 1997) | then Mgal=MDM ' 0:085.

In this extreme case, even if galaxies lose as much as 25% of their speci�c energy through

dynamical friction, the e�ect on the dark matter is only 2%. Integrating over the �ts to

the two{
uid and ejection ensembles' mean dark matter density pro�les con�rms that the

total and speci�c energy di�erences between the two are less than a couple of percent. Such

an energy gain by the dark matter is insigni�cant, and at any rate may be swamped by

energy lost heating the ICM through the varying gravitational potential during collapse

and relaxation. However, while the e�ect upon the dark matter should be weak even if the

galaxies lose a large fraction of their kinetic energy, the actual magnitude of e�ect upon the

galaxies is unclear.

A possible signal of dynamical friction is the presence of velocity bias in the cluster,

bv<1, where bv = �gal=�DM is the ratio of galaxy to dark matter velocity dispersions. We

examine the evolution of bv for our simulated clusters, constructing velocity dispersions

by averaging over all the galaxies or dark matter within r170, in three dimensions. For

individual clusters, the instantaneous value of bv undergoes strong 
uctuations depending

upon the dynamical state of the cluster at that time. Even so, the value of the bias

parameter is only slightly above unity (up to 1:05) for brief periods, and for only a few

runs. We attempt to average out the noise associated with individual clusters by showing in
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Figure 6 the evolution of bv averaged in each time bin over the entire ensemble of ejection

runs, over the six most massive runs, and the eight least massive runs. In all cases, velocity

bias is clearly present. The ensemble{averaged bias parameter, time{averaged over the

period from z = 0:1 to the present, is 0.84. This value agrees well with an independent

determination of bv made by Frenk et al. (1996) using a self{consistent treatment for galaxy

formation within the cluster.

The curves imply a mass{dependence to the degree of velocity bias, in the sense that

more massive clusters are less strongly a�ected. This is consistent with dynamical friction

arguments, where the braking e�ect of the dark matter background is more e�cient in low

velocity dispersion environments. There is no evidence for a continued decay in the velocity

bias parameter, as would result from dynamical friction. However, close examination of

the bv evolution curves for individual clusters shows that they can often be described

by a moderate decay, followed by a jump in velocity dispersion. The jumps occur when

additional galaxies fall into the virialized volume, boosting the velocity dispersion with

their infall velocities. With such complicated evolution, it is unclear whether dynamical

friction is actually taking place.

The observational status of velocity bias in clusters is unclear, primarily because �DM
is, of course, not directly measurable. If we de�ne �DM as the ratio of speci�c energies of

the dark matter and gas,

�DM =
�2DM�
kT
�mp

� ; (9)

and if the velocity dispersion for cluster galaxies determined from observations does not

su�er from anisotropies and projection e�ects (and these simulations suggest that it would),

then �spec, the spectroscopic value determined from cluster galaxies, should be related to

�DM through the velocity bias parameter,

�spec =
�2GAL�
kT
�mp

� = b2v �DM : (10)

If the speci�c kinetic energy in dark matter and thermal energy in cluster gas are both

faithful representations of the cluster potential well depth, then �DM should equal unity. In

this case, the determination of �spec for a cluster would allow determination of its velocity

bias parameter. This approach was taken by Lubin & Bahcall (1993), who examined

an ensemble of clusters and calculated the average value of �spec for the ensemble, with

the intent of eliminating dependence on dynamical state through the average. They

found h�speci = 0:97 � 0:04, which suggests that little or no velocity bias is present.

However, this result is subject to the validity of the assumptions noted above. Their

sample of clusters demonstrated a correlation between velocity dispersion and temperature,
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�GAL / T 0:6�0:1. This result was con�rmed by Bird, Mushotzky & Metzler (1995), who

found �GAL / T 0:61�0:13 for a sample of clusters explicitly corrected for the e�ects of

substructure. Girardi et al. (1996) also obtained a similar result, using an independent

analysis designed to minimize the e�ects of velocity anisotropies. While consistent with

�GAL / T 0:5, the power law more strongly suggested by the data implies that �spec is

temperature dependent. This means that any average value of �spec taken from a sample of

clusters will depend on the temperature distribution of the sample, making its interpretation

unclear. Furthermore, when following the evolution of an individual cluster, excursions in

both �DM and �spec can occur as a result of mergers. Finally, the assumption that �DM = 1

implicitly assumes that upon infall, cluster gas thermalizes very e�ciently, and retains little

or no energy in macroscopic motions. Perfect thermalization is not seen in simulations; a

small fraction of residual kinetic energy in the gas is routinely found. A comparison of 11

gas dynamic codes applied to a single cluster realization yields a mean and standard error

�DM =1:16 � 0:03 (Frenk et al. 1997). Heating of cluster gas through energy input from

galaxies drives �DM to lower values, but with several e�ects pushing values larger, a modest

velocity bias could still be present. It should also be noted that the mass{dependence

of velocity bias noted above pushes in the direction of a relation steeper than the virial

prediction �GAL / T 0:5. In this sense, observational data on the �{T relation are consistent

with the presence of velocity bias.

4. The Intracluster Medium

4.1. Hydrostatic Equilibrium

The sound crossing time in cluster gas de�nes a timescale for the gas to respond to

acoustic disturbances. For an isothermal, 
 = 5=3 gas, and with parameters on the low

end of rich clusters, this timecale is

tcross =
r170
cs

= 2:0

 
r170

1 Mpc

!�
T

107K

��0:5
Gyr (11)

For an 
 = 1, h = 0:5 cosmogony, a lookback time of 2:0 Gyr corresponds to a redshift of

0.12. Since X{ray clusters have been seen to much higher redshift (cf. Bower et al. 1994;

Castander et al. 1994), it seems reasonable to expect that much of the gas in clusters should

be in hydrostatic equilibrium. Because the temperature scales with radius as T / r2170
(EMN), the above timescale is independent of cluster size.

Figure 7 shows a pro�le of the gas radial Mach number for two{
uid runs. The ejection

runs are very similar | the main di�erence being a modest reduction in infall velocities
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| so we do not show them here. The velocities are measured with respect to the velocity

of the center{of{mass of the dark matter distribution, as in Figure 1. Again, as in that

�gure, the multiple{cluster run (20e) displays a weak infall region. The rest of the curves

show infall Mach numbers, averaged over radial shells, that reach a maximummagnitude of

at most 1.2. Internal to r170, radial motions of the gas are quite weak. There is, however,

some modest infall of the gas occurring at r170, where hvr=csi ' 0:2. This feature is what

prompted EMN to suggest r500 as a conservative estimate of the hydrostatic boundary

of clusters. Within r500 there are no signi�cant radial motions of gas in either ensemble.

Mass weighted mean values of the radial Mach number within r500 quoted by EMN are

�0:022 � 0:022 and 0:001 � 0:016 for the 2F and EJ ensembles, respectively. The gas is in

hydrostatic balance within r500, and very near to it within r170.

4.2. ICM Density Pro�les

The gas density pro�les for the individual members of both ensembles are shown in

scaled fashion in Figure 8. Like the dark matter, the density pro�les of the 2F runs display

remarkable similarity outside 0:2r170. Although the mean pro�le (bold line in the �gure)

drops two orders of magnitude in this regime, variation about the mean is limited to <
� 20%.

Dispersion in the central gas densities is much higher, and larger by about a factor of 3

than the central variation in the dark matter in Figure 3. This di�erence may be physical,

originating from shocks and sonic disturbances in the gas which are absent in the dark

matter. Care must be taken, however, since the spatial scales involved are quite close to the

minimum hydrodynamic smoothing in the experiments. Higher resolution models will be

able to address this issue. For now, we note that the cluster with the most di�use central

gas (60c) has a rather violent formation history, involving strong merger activity at low

redshift.

The impact of ejection on the gas density structure is dramatic. The gas in the EJ runs

is much less centrally concentrated than that of the 2F ensemble. At 0:1r170, the average

density is depressed by over a factor of 3. Power law �ts to the mean gas density pro�les in

the overdensity range 100 � �gas= (
b�c) � 3000 (the overdensity range �tted for the dark

matter) produce logarithmic slopes of �1:75 (EJ) and �2:34 (2F).

The di�erence in the mean pro�le values is driven primarily by low temperature

clusters with ejection. Self{similarity across the mass spectrum probed by the experiments

is strongly broken in the EJ ensemble; there is a systematic change in ICM structure

between low and high mass clusters. Direct evidence for this is shown in Figure 9, where

we plot values of �GAS from �ts to the standard pro�le, Equation 1, against the mean,
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mass weighted cluster temperature T within r170 for both ensembles. Mean values of �GAS
for the two ensembles are listed in Table 5, along with means for clusters hotter and cooler

than 4 keV. The 2F models show no apparent trend with temperature, whereas the EJ

clusters tend to smaller values of �GAS , meaning more extended gas distributions, at lower

T . The trend in �GAS with T exhibited by the models with galactic winds agrees well with

the observed behavior of �fit with T (Mohr & Evrard 1997) and appears consistent with

semi{analytic treatments of galactic wind input (Cavaliere, Menci & Tozzi 1997).

The larger extent of the gas in the EJ clusters results from the work done by the wind

energy dumped into these systems. The trend with temperature results from the fact that

the work done in small clusters represents a larger fraction of their overall energy budget.

We next consider the energetics of the ICM.

4.3. Energetics and Temperature Pro�les

Figure 10 shows the mass weighted temperature within r170 against mass M170 within

that radius for the two ensembles. In contrast to the density structure, the striking aspect

of the T �M relation is its relative lack of sensitivity to galactic feedback. The 2F ensemble

is well �t by the solid line T2f(M) = 4:0(M=1015M�)
2=3 keV, while the EJ ensemble has a

slightly shallower slope (0:62) and modest (<� 20%) upward displacement within the range of

total masses explored. The dotted line in Figure 10 shows the expectation for the ejection

run temperature Tej based on assuming the wind energy is thermalized and retained within

r170. In this case, energy accounting yields (White 1991)

Tej(M) = T2f(M) + fwind Twind (12)

where T2f(M) is the relation from pure infall, fwind is the ICM gas fraction injected by

winds and Twind is the e�ective wind temperature de�ned in x2. The models display no

systematic trend of fwind with temperature, so for the purpose of illustration we use a

constant value fwind=0:22. The expected temperatures exceed the measured values over all

masses, considerably so at the low mass end.

The wind energy is not retained as heat in the ICM. Rather, it is used to do work in

e�ectively lifting the gas within the dark matter dominated potential. To substantiate this

statement, we calculate an estimate of the work done on the gas in each run by comparing

the �nal states of gas in each 2F/EJ realization pair. Since the dark matter which dominates

the mass distribution is nearly identical in the two runs, we can make an \instantaneous"

approximation of the work done by integrating the change in gravitational potential energy

associated with lifting a gas element from its �nal radius in the 2F realization to its �nal
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radius in the EJ realization. Summing, in a Lagrangian fashion, over radially ordered

gas mass shells (taking into account the small reduction in gas mass due to galaxies)

produces an estimate of the total work required to perturb the 2F gas distribution into

the EJ con�guration for each cluster. This estimate of the work required can be compared

against a similarly approximate, \instantaneous" estimate of the wind energy input input

by galaxies within r170, Einp=3=2MgalkTwind, where Mgal is the galaxy mass within r170.

Figure 11a shows the result of this exercise. The agreement between these two

\instantaneous" measures is quite good for most of the clusters. There is a systematic trend

apparent; the slope of the points is evidently steeper than unity. We do not fully understand

the cause of this steepening, but speculate that it may be connected to the di�erence in

formation histories discussed in x3. Given the approximate nature of this calculation |

assuming a static potential well when, in reality, heating of the gas occurred within the

evolving potential over nearly a Hubble time | it is perhaps surprising that the agreement

for most clusters is as good as it is. In poor clusters, the estimated work done exceeds the

total thermal energy of the cluster gas a�ected, as shown in Figure 11b. For systems with

total mass M170
<
� 3� 1014M� (T <

� 4 keV), the work estimate is comparable to, and in a few

cases exceeds, the thermal energy of the gas. Given the magnitude of the input energy, it is

remarkable how little net thermal heating occurs, as displayed in Figure 10.

How much is the internal temperature structure a�ected by winds? Figure 12 shows

the temperature pro�les for the members of both ensembles at z = 0:02, scaled by a

�ducial virial temperature,

T170 =
GM170

2r170
= 7:57 � 106

 
r170

1 Mpc

!2
(1 + z)3 K (13)

There are clear structural similarities in the temperature pro�les of the two samples; both

display approximately isothermal behavior within half the virial radius followed by a drop

to about half the central value at r170. There is a fair amount of dispersion at small radii

and evidence for a modest central temperature inversion in some of the 2F systems. Such

a temperature inversion may be expected from the shape of the dark matter velocity

dispersion pro�les; the density pro�le is shallower than r�2 at small radii.

There are some structural di�erences as well. The EJ pro�les are slightly (� 25%)

hotter in the central regions than the 2F models. This o�sets the lowered density in these

models and maintains hydrostatic balance. The central pressures in the EJ runs are smaller

by factors of 2� 3 than their 2F counterparts, but the thermal pressure gradient supporting

the gas (�
*

rP=�) is similar in the models. One observable consequence of ejection is a

slightly steeper temperature pro�le, a feature for which there appears to be some empirical

support from ASCA observations of clusters (Markevitch 1997).
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Note that constructing temperature pro�les by averaging over spherical shells can

mask signi�cant structure in the temperature distribution. For example, EMN present in

their Figure 1 a highly irregular projected temperature map for a simulated cluster which,

when averaged over three{dimensional shells or two{dimensional annuli, appears to have an

isothermal temperature pro�le.

Finally, we turn to the energetics of the ICM with respect to the dark matter. Figure 13

shows the distribution of values of �DM , de�ned by Equation (9), measured within r170 for

the two ensembles. We also construct a second set of values for �DM for each ensemble,

where the temperature is replaced by a total speci�c energy,

T ! T +
�mp�

2
gas

k
; (14)

to take into account the bulk motions (including rotation) and residual velocity dispersion

of the gas caused by mergers and infall. The �gure shows average values for �DM for each

data set. Because most of the wind energy goes into redistributing the gas, the shift in

the mean � values between the EJ and 2F models is only 10%, comparable to the e�ect of

including gas kinetic energy. Note also that if �DM correlates with cluster temperature, as

may be true for the observed �spec, then our average values of �DM depend on the cluster

sample used. The important point here is not the exact values of these averages, but the

relationships between them.

4.4. Iron Abundances and Abundance Gradients

The gas ejected by our \galaxies" is metal enriched. The distribution of metals in

the ICM of our simulated clusters can thus be examined and compared with observations.

Although predictions for the metal distribution are a feature unique to the ejection models,

the predictions themselves are not unique, but depend on the choice of ejection history, as

shown in Paper I.

We noted above that the gas distribution is more extended than the dark matter

distribution in the ejection runs, with �1:75 as the best{�t power law slope at overdensities

100 � �gas= (
b�c) � 3000. Meanwhile, in Figure 5, we saw that the values of �GAL from �ts

to the galaxy number density pro�les for individual runs were typically signi�cantly higher,

with only a small overlap in range of values. The gas is thus considerably more extended

than the galaxy distribution. In Paper I, we showed how this can lead to an abundance

gradient; the ejected, enriched gas traces the galaxies, and thus has a gradient with respect

to primordial gas. Figure 14 shows that such a gradient is generally seen in the runs from

about x = 0:15 out to the virial radius.
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The 
at metallicity pro�les at smaller radii are not induced by any gravitational or

hydrodynamic force resolution e�ects. Since resolution limits 
atten the gas density pro�le

at a larger radius than the galaxies, we would expect this to actually steepen the gradients

near the center. Instead, the 
attening is due to the mixing of metals at the time of gas

particle ejection, which e�ectively acts as a di�usive term. Many gas particle ejections take

place at radii below 0:1 r170, and the core gas consequently undergoes many such mixing

events. This was noted in Paper I (Figure 5b), where we showed that a model with no

mixing evidenced a steeper abundance pro�le at small radius. An ejection model di�erent

from the one used here, in which the metal enrichment took place at earlier times, was also

shown in Paper I to exhibit a 
atter central abundance pro�le; this occurs because the

di�erence in pro�les between galaxies and gas was not yet large when the enrichment took

place.

Data on abundance gradients from real clusters are only now becoming available

through observations with the ASCA satellite. These data suggest that clusters sometimes

have gradients and sometimes do not and that poorer systems are more likely to show

evidence for an abundance gradient (Mushotzky 1994; Xu et al. 1997). Splitting our sample

into high{mass and a low{mass subsets reveals no substantial di�erence in their gradients,

as shown by the dotted and dashed lines in Figure 14.

Recall that the abundances in Figure 14 are scaled by the wind abundance. If the wind

abundance is constant in time, its absolute value will not a�ect the shape of the abundance

gradient. Similarly, a change in the total quantity of mass blown out of galaxies will not

change the shape of the gradients, as long as the ejection rate remains 
at. What will

a�ect the gradient shape is if the metallicity of the wind or the ejection rate from galaxies

vary with time. If the observations continue to support weak abundance gradients in rich

clusters, then the discrepancy between these simulations and the observations implies that

an ejection model in which the enrichment and heating took place predominantly at early

times would be more appropriate.

By late times, the gradient between galaxies and gas that we see in our simulations

should be present in both low{mass and high{mass clusters. Late{time enrichment should

thus result in abundance gradients for both mass ranges. However, since low{mass systems

form earlier in hierarchical structure models, early{ejection models would enrich the ICM

when a galaxy/gas gradient is in place for low{mass clusters, but not for the high{mass

clusters we see at low redshift. This would explain such an observational distinction. There

is some evidence from observations of Abell 370 (z = 0:37) that enrichment takes place

primarily at early times (Bautz et al. 1994); the case for this is strengthened by the ASCA

detection of signi�cant quantities of neon, silicon, and other heavy elements in the ICM
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(Mushotzky et al. 1996) in quantities which imply injection of Type II supernova enriched

gas rather than Type I. This, in turn, implies that the feedback took place early in the

lifetime of cluster galaxies. We await additional ASCA and upcoming AXAF data, as well

as simulations with ejection based on well motivated star formation histories, to clarify this

issue.

5. A Model for ICM Structure and the Core Radius Question

The traditional formalism used in describing the cluster gas distribution is the

hydrostatic isothermal �{model, reviewed in the Appendix. However, it is somewhat

disconcerting that the fundamental assumptions upon which the �{model is based are

probably wrong. In particular, despite the presence of cores in X{ray images, there is no

evidence for the presence of a core in cluster potentials examined through gravitational

lensing observations, and simulations of clusters in both CDM and scale{free cosmologies

show no core in the underlying dark matter distribution. The success of the model in �tting

X{ray surface brightness pro�les may be due to having three free parameters in the �tting

function, when there are three basic features to �t in the data | an amplitude, a scale

length to de�ne curvature, and a large radius slope. In addition, the choice of cluster center

is often adjusted to provide the best �t, introducing additional degrees of freedom. The

success of the �{model pro�le function in modelling the gas distribution need not require

that its underlying assumptions about the form of the potential be valid.

A second model can be constructed from what we learned in the previous section on

the dark matter density. The one{parameter form introduced by NFW provides a good �t

to the dark matter mean density pro�le over all resolved radii; integrating to �nd the dark

mass within a given radius, we have

MDM (< x) = 4��cr
3
170��

3
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�
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�

�
�
�
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�

��
1 +

x

�

��1#
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where recall that x = r=r170, the radius of interest as a fraction of our �ducial virial radius.

This gives the mass within a scaled radius x, and thus within a physical radius r = xr170.

If we make the assumption that the dark mass essentially determines the cluster potential

(approximately true in our simulations where the baryon fraction of the simulation volume

is 10%), we can rewrite this expression as

M (< x) = M170
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Here M170 = 4�
3
r3170 � 170�c is the mass within r170. For an isothermal gas in hydrostatic

equilibrium in the potential de�ned by this mass pro�le, we then have
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��
1 +

x

�

��1#
(17)

where �g is the local gas density, and the constant K is

K = 4�G�cr
2
170

 
kT

�mp

!�1
��2 (18)
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'
2�DM

�
h
ln
�
1 + 1

�

�
� (1 + �)�1

i ; (20)

where here we have written �2DM ' GM170=2r170. In the absence of any signi�cant

post{infall heating or cooling of the intracluster gas, we expect the gas temperature to

re
ect the potential well depth, and thus �DM = 1. Note that even without such additional

physics, we do not expect � to equal unity locally, because we have assumed the gas to be

isothermal, while we have shown earlier that this potential generates velocity dispersion

pro�les which are not strictly isothermal. However, K depends only on the global value; we

consider the impact of such local deviations upon the global value to be small, and make

this assumption in the interests of simplicity.

Integrating over a range in radii from x1 to x gives

ln

 
�g (x)

�g (x1)

!
= K

�
x

�

��1 �
ln
�
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�
�
�
x
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�
ln
�
1 +

x1
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��
: (21)

This can be rearranged to give

�g (x) = �g (0) exp

(
K

"�
x

�

��1
ln
�
1 +

x

�

�
� 1

#)
(22)

Clusters in this two{component model are essentially a two{parameter family, determined

by � and T . The latter sets K through Equation (20). Given K, the normalization �g (0) is

determined by the total gas content of the cluster.

In a cosmological setting, the shape parameters � and T are not formally independent,

as they are both related to the cluster mass. This implies that clusters are essentially a

one{parameter family, with internal structure determined by their mass. However, one
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must be cautious not to oversimply the picture. First, as noted before, there is considerable

scatter in values of � at �xed mass | Tormen, Bouchet & White (1997) quote a factor of 2

at the 2� level | which presumably arises from particular di�erences in clusters' dynamical

histories. Also, scatter in the relation between temperature and mass of 10 � 20% arise

from mergers (EMN), and other heating and cooling mechanisms may increase this scatter.

Finally, the gas is not exactly isothermal, as assumed in the model. Nevertheless, we

present this model, if only as an alternative to the standard �{model. A clear advantage

over the latter is that the potential assumed in deriving Equation 22 is motivated by direct

simulation of hierarchical clustering.

Like the �{model pro�le, Equation 22 has zero logarithmic derivative at the origin.

At the �{model pro�le's core radius, the density has dropped to �GAS (0) =(23�GAS=2), or

slightly less than half its central value for observed values of �. If we de�ne a core radius

x1=2 for our density pro�le as the radius at which the gas density drops to half its central

value, we have �
x1=2
�

��1
ln
�
1 +

x1=2
�

�
= 1 �

ln 2

K
: (23)

This is a transcendental equation for x1=2 as a function of �. For the value of � = 0:154

from the �t to the mean dark matter pro�le, and for the an approximate �DM = 1:17 for

the two{
uid ensemble, we have K = 13:2, which in turn implies x1=2 = 0:11� = 0:017.

For a cluster with a 3 Mpc virial radius, this corresponds to a core radius for the gas of

51 kpc, too low to compare favorably with observations. Alternately, using the de�nition of

K earlier, a core radius x1=2 ' 0:1 (corresponding to gas core radii 100{400 kpc) implies

� ' 0:6, much larger than is seen in the simulations.

Figure 15 shows the ICM mean density pro�le for the ensemble. The large dispersion

in central values is re
ected in the large error bars for the central points. The vertical lines

denote the values of the central SPH smoothing length for the members of the ensemble.

Also shown is a �t to Equation 22. The success of the �tting function is quite striking,

but the best{�t � = 0:26 is inconsistent with the best{�t � = 0:154 extracted from the

mean dark matter pro�le. For contrast, the pro�le for � = 0:154 is shown as a dashed line;

the normalization for this curve is set by the average baryon fraction within x=1 for the

ensemble. The core radius x1=2 produced by the best{�t pro�le with � = 0:26 is 0:034, still

too small compared to observations, although better than the curve inferred from the dark

matter distribution.

In Section III, we established that the NFW functional form provided a good

description of the dark matter pro�le. Earlier in this section, we showed that the gas in the

simulations can be thought of as isothermal and in hydrostatic equilibrium. And yet here,

the gas density pro�le that theoretically should be a simple consequence of these facts is
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found to con
ict with the gas density pro�le in the simulations. Why does the model fall

short with the gas, when it succeeds with the dark matter and when the assumptions about

the gas upon which it is based seem valid? To answer this, we �rst note that the shape of

Equation (22) depends both on � and K, which is determined by the temperature T through

the hydrostatic equation. Figure 13 indicates that post{infall thermalization of cluster gas

is incomplete and that modest residual bulk motions exist in the gas. In this case, the gas

temperature alone slightly underestimates the degree of pressure support. Incorporating

these motions into an e�ective temperature, Equation (14), leads to a decrease in K and a

gas distribution which is more extended than that derived from the thermal temperature

alone. From Figure 13, using �DM = 1:03 instead of �DM = 1:17 results in the dash{dotted

curve shown in Figure 15. (Again, the normalization comes from forcing the baryon fraction

to the average value for the ensemble). At large radius, the agreement with data from the

simulations is quite good. Since bulk motions should be included as a source of support, this

curve is the one of interest. Our question has therefore changed: why does the theoretical

prediction based on the potential and the complete energy budget of the ICM overestimate

the central gas density when constrained to accurately describe the gas density at large

radius? Why is the gas more extended in the simulations than is predicted?

To address this, we �t the gas density pro�les of individual two{
uid runs to the

�{pro�le and extracted core radii. The top row of Figure 16 shows the distribution of core

radii obtained, the relation between the resulting values of rc and the corresponding clusters'

virial radii, and between rc and the numerical parameters � (the gravitational softening) and

hcen, the SPH smoothing length at the cluster center. Of principal importance is the latter.

The cluster core radius resulting from a �t to the gas density is typically three times the

central value of the SPH smoothing length. This is the approximate e�ective width of the

smoothing kernel used in the simulations; when volume{weighted, the kernel drops to 10%

of its maximum value at 2.2h; it drops to 1% at 2.8h and 0.1% at 3.2h. We argue therefore

that the theoretical model, when the entire ICM energy budget is considered, provides a

good description of the large{radius behavior of the gas density in the simulations. Its

failure to compare well to the simulations at smaller radii largely re
ects the fact that the

gas density cores seen in the simulations are principally numerical in origin. Since the

hydrodynamical resolution in these simulations is comparable to most other studies, and

since no physics beyond shock heating exists in such simulations to raise the adiabat of

cluster core gas, we suggest that gas cores seen in these other studies are also numerical in

origin. Support for this position is found in recent numerical studies by Anninos & Norman

(1996), which were not able to converge to a well{de�ned gas density core as resolution

improved. It remains possible that physical e�ects contribute to the di�erence between the

model and simulated core pro�les. In particular, deviations from isothermality and small
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amounts of core rotational support are present in the simulated clusters but not in the

analytic model.

In the right{hand{side of Figure 15, we compare the NFW gas density pro�le to the

mean pro�le for the ejection ensemble. Once again, the best{�t does an excellent job of

reproducing the mean pro�le, but with a scale length of � = 0:329, much larger than

the scale in the potential. The dashed and dash{dotted lines are as before; thus, the

dash{dotted line contains the bulk motions of the gas indicated in Figure 13, and is the

true prediction of the theoretical model. Once again, the core in the real density pro�le is

more pronounced than that of the model, although not as severely as for the two{
uid runs.

The ICM in the ejection runs has experienced post{infall heating, slightly raising ICM gas

temperatures over pure infall runs, and resulting in �DM decreased typically by 8%. This

translates into a more extended gas distribution. However, as is seen in the �gure, the

heating provided by our ejection model is not su�cient alone to account for the ICM cores

we see in the simulation runs; numerical e�ects must still be important. This is illustrated

by the vertical lines on the �gure which mark the value of hcen for the various members of

the ensemble; again, 3hcen approximately marks the range of interest, where deviation from

the theoretical prediction begins to be important. The bottom row of Figure 16 shows that

the cores still have a lower limit of 3hcen, but now extend to larger radii as well. Numerics

still dominate the core radii in the ejection ensemble, but the entropy introduced by winds

is beginning to play a role. We conclude that the model employed here is not su�cient to

generate the depressed central densities and cluster core radii necessary to compare to real

systems.

We could have predicted this result. Equation 23 gives the dependence of the core

radius in this model on the parameter K. For � = 0:154, correcting K by a factor of

1:03=1:17 = 0:88 (the ratio of values of �, or of temperatures) merely raises the size of

the core radius by 10%. While additional sources of heating raise the temperature, thus

lowering K and thus increasing x1=2, the increase we need is extremely large. To raise x1=2
to values comparable to real clusters (i.e. x1=2 = 0:1), the temperature must be boosted

by a factor of three or four; such a model is physically implausible and observationally

unjusti�ed.

We remain without an explanation of the gas cores of real clusters. The cores predicted

by the analytic model, based upon the application of the NFW pro�le to our simulated mass

distributions, appear too small to explain those observed in real clusters. One possibility is

that the mass density pro�le for real clusters is typically shallower than indicated by the

NFW pro�le here, in the sense that it approaches r�2 at a larger radius than occurs in

these simulations. This would be the case if the parameter �, the scale radius of the NFW
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model in units of r170, were signi�cantly larger than is seen here, as may be the case for

CDM models with lower values of 
o (Navarro, Frenk & White 1997). Another possibility,

however, is that additional physics, such as magnetic �elds, provide an important source of

support at small radius. This view is bolstered by measurements of Faraday rotation in

X{ray clusters (Taylor, Barton & Ge 1994; Ge & Owen 1994) and comparisons of X{ray

and lensing mass measurements for cluster core regions (Loeb & Mao 1994; Miralda-Escude

& Babul 1995). Finally, winds with energy output concentrated at early times may raise

the central entropy to a higher level than that seen in the models used here, and this may

be su�cient to generate core radii of the requisite scale. Accurate modelling of these e�ects

awaits future simulations.

6. Relative Structure and the Baryon Fraction

We summarize in Table 6 what we have learned about the relative extents of gas and

dark matter by showing the results of power law �ts to the outer slope of the mean ensemble

density pro�le for each 
uid in the two ensembles.

For the dark matter, we do not quote separate values for the two ensembles as

their outer slopes are not signi�cantly di�erent. Small number statistics do not allow a

comparable �t for the galaxies; the range of values quoted in Table 6 come from Figure 5.

We can show their relative extent more clearly by displaying in Figure 17 the cumulative

density measure | that is, the fraction of the virial mass in each component found within a

given radius. This �gure illustrates that the gas with or without feedback is more extended

than the dark matter, and that the di�erence is signi�cantly enhanced by the energy input

from galactic winds. At small radii, the dark matter in the ejection ensemble is typically

slightly more extended than the corresponding dark matter in the two{
uid runs; however,

the di�erence is quite small. Finally, the galaxy pro�le is more centrally concentrated

than any of the other components. The half{mass radii for each of the 
uids displays this

hierarchy.

As a consequence of the extended nature of the gas distribution, the mean, enclosed

baryon fraction is reduced relative to the global value 
b=
0 at radii interior to the

virial radius. In the EJ ensemble, the ICM mass fraction is further reduced by the

baryons incorporated into galaxies. The amplitude of this reduction within radii

encompassing density contrasts �c=170 and 500 is shown in Figure 18, where we plot the

normalized, local baryon fraction of each component, de�ned by �X = fX(
b=
0)�1 with

fX =MX(�c)=Mtot(�c) the mass fraction of component X (gas, galaxies, total baryons)

within the radius encompassing density contrast �c.
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The ensemble without ejection displays modest diminutions, h�i=0:94 within r170
and 0:91 within r500, with no apparent trend with cluster size. The slight di�erences

in formation history between low and high mass systems, which produces the modest

structural di�erences discussed in xIII, is not apparent in the behavior of gas mass fraction

with temperature. The ensemble with ejection exhibits markedly di�erent behavior.

Although the galaxy mass fraction is insensitive to cluster size, the ICM mass fraction is

noticeably reduced in lower temperature systems, particularly those with T <
� 4 keV. The

magnitude of the e�ect depends on the region under consideration. At �c=170, there is a

30% fractional drop (from �gas=0:75 to 0:55) between 10 and 1 keV, whereas the e�ect

is nearly a factor two drop at �c = 500. The larger e�ect at higher densities or smaller

radii re
ects the di�erence in ICM structure between low and high T objects displayed in

Figure 9; lower temperature clusters in the ensemble have less centrally concentrated gas

distributions. At smaller radii or higher density contrasts, the disparity in gas fractions

between low and high T clusters increases.

For high temperature clusters (T >
� 4 keV), the total baryon fraction within r170 is

nearly una�ected by galactic winds. There are, however, modest structural di�erences in

the gas distribution within this radius, as indicated from the reduction in �gas from values

� 0:89 to � 0:79 (Table 5). The work associated with the wind energy injected into rich

clusters is thus used to redistribute gas within r170, but causes little or no \spillover" at this

radius. This is not the case for the low temperature clusters, where the considerable wind

energy results in a more dramatic redistribution of the gas extending beyond r170. Still, the

diminution of the total baryon fraction is not catastrophic, even at low temperatures. A

crude �t to the total baryon fraction �(T ) with T (in keV) for the EJ ensemble yields

�(T ) ' 1 �AT�2=3 (24)

where A'0:3 at �c=170 and A'0:4 at �c=500. These are shown as solid lines in Figure 18.

We stress that the exact form and magnitude of �(T ) is likely to be sensitive to the

speci�c wind model employed. One must look for empirical and/or additional theoretical

support to justify a particular model. Our particular implementation is successful at

reproducing the slope of the observed X{ray size{temperature relation (Mohr & Evrard

1997), and this may indicate that our particular wind implementation is well calibrated,

in terms of its energetic or entropic e�ects. This provides some reason to be optimistic

that the predicted form for �(T ) in Equation 24 may apply to real clusters. Future e�orts

employing more realistic wind ejection histories are needed to clarify this issue.
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7. Summary

We investigate the structure of clusters in a CDM universe using multi{component,

numerical simulations spanning a factor of 50 in cluster mass. Dark matter, intracluster

gas and galaxies are included in a set of models designed to explore the role of feedback of

mass and energy into the ICM. Two principal assumptions made for the galaxy population

are: (i) galaxies form at the locations of peaks in the initial density �eld and (ii) galaxies

lose half of their initial mass via winds at a 
at rate from z = 4:5 to the present.

The self{similar form for CDM cluster density pro�les seen in earlier works (NFW2;

Metzler 1995; Cole & Lacey 1996; Tormen, Bouchet & White 1997) provides an excellent

description of the dark matter distribution in these simulated clusters. The degree of

central concentration increases with decreasing cluster mass, as expected from these earlier

works and from the formation history of objects in hierarchical clustering models. The

characteristic scale radius for this pro�le appears at 0:1{0:2 r170 in these simulations;

however, Navarro, Frenk & White (1997) caution that the location of the scale radius is

dependent upon the assumed value of the density parameter.

The two{
uid models, lacking winds, exhibit a self{similar gas distribution. At large

radii, the gas density pro�le matches well the expection from hydrostatic equilibrium and

the self{similar pro�le observed for the dark matter. The agreement at smaller radii is

di�cult to determine because of resolution limits. The introduction of winds raises the gas

entropy above levels achieved by gravitational infall and thus produces a more extended gas

distribution within the dark matter dominated potential. The e�ect of winds is strongest

on low{mass clusters, where the energy input by winds is comparable to the total thermal

energy of the gas. Thus, the self{similarity seen in the gas distribution of the two{
uid

models is broken with the introduction of winds, with the gas in low temperature clusters

being more strongly a�ected than their high temperature counterparts.

The energy input through winds is primarily spent in redistributing the gas within the

potential; the e�ect on the gas temperatures is slight. Thus, the introduction of winds does

not seem to a�ect the relation between ICM temperature and mass. This, in turn, supports

the use of mass estimators that assume gas temperature to be simply related to potential

well depth. However, the dependence of this result upon the wind model chosen remains

to be determined. Detailed temperature information from X{ray satellites, combined with

independent mass estimates from weak lensing analysis, can probe this relation in real

clusters.

Galaxies are more centrally concentrated than the dark matter in these simulations.

Part of this e�ect arises simply because the initial distribution of galaxies is more
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concentrated than the dark matter | an artifact of considering overdense peaks as likely

sites for galaxy formation. However, in addition, a persistent velocity bias between galaxies

and dark matter is present in the ejection ensemble; the degree of bias correlates with

cluster mass in a manner consistent with the expectations of bias induced by dynamical

friction.

As the gas is more extended than the dark matter, while the galaxies are more

concentrated, a gradient between galaxies and gas exists. As a result, metal abundance

gradients are generic to the ejection models. However, this result is sensitive to the speci�c

wind model used; the gradient is reduced if winds and metal enrichment occur only at

high redshift. The strength of the metal abundance gradients seen in this work shows

no dependence on cluster mass, which may be in contradiction with observations. The

relative ordering of extents of the three 
uids simulated is, however, consistent with present

observations.

While energy input from feedback depresses central gas densities and causes a more

extended gas distribution, the e�ect is not signi�cant enough to explain observed cluster gas

density cores observed in X{ray images. While cores of appropriate size are present in these

simulations, they appear predominantly numerical in origin. Possible sources of X{ray cores

include additional sources of support such as magnetic �elds, or a change to the cluster

density pro�le such as is expected for low{
 cosmologies (Navarro, Frenk & White 1997).

An ejection history featuring vigorous, early winds may also lead to larger cores, since the

central gas entropy could be raised above that seen in the experiments presented here.

Since the low{temperature clusters simulated experience the strongest e�ect upon the

gas density pro�le, estimates of the baryon fraction should be taken from high{temperature

clusters whenever possible. The local baryon fraction in 10 keV clusters is approximately

90% of the global value and is insensitive to winds, while loss approaching a factor of two

in gas fraction can occur in interior parts of low{temperature clusters.

This research suggests at least two directions for future numerical experiments. One is

to consider the simpli�ed evolution of gas assumed to be isentropic at some high redshift,

but which is allowed to change its adiabat through shock heating and (optionally) radiative

cooling at later times. Systematically varying the initial adiabat would mimic the e�ect

of abrupt wind input of varying strength at high redshift, and would allow structural

issues, such as core radii generation, to be addressed. Another approach is to increase

the spatial and mass resolution in the experiments and add appropriate physics to allow

galaxy formation to be modelled self{consistently within forming clusters. This is the

long{term goal of such cosmological simulations, but it remains a formidable task because

of the uncertainties in modeling star formation on galactic scales, the inherent complexity
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of the dynamical system involved, and the large parameter space (physical and numerical)

associated with the problem. There is much yet to be gained from simple models, but the

problem cannot be considered \solved" until the latter approach is complete.
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A. Appendix

We provide here a brief summary of the hydrostatic, isothermal �{model (Cavaliere &

Fusco{Femiano 1976, 1978; Sarazin & Bahcall, 1977). Those familiar with the model may

still wish to brie
y review this appendix in order to become familiar with the notation used

in the paper.

The model presumes that the intracluster medium is isothermal and hydrostatic in a

potential well determined by collisionless, dark matter following the density pro�le

� = �0

"
1 +

�
r

rc

�2#�3�DM=2

; (A1)

where rc is the core radius of the cluster. All the early literature on the model assumes that

the collisionless matter is described by the King approximation to the isothermal sphere,

meaning �DM = 1. The relevant hydrostatic equations for the gas and collisionless matter

are
dP

dr
= ��g

d�

dr
; (A2)

and
d (�DM�2r)

dr
+

2�DM
r

h
�2r � �2t

i
= ��DM

d�

dr
; (A3)

with P the gas thermal pressure; � the gravitational potential; �g and �DM the densities

of gas and collisionless matter respectively; �r the radial velocity dispersion, and

�t = 0:5 (�2 � �2r)
1=2

the tangential velocity dispersion, of the collisionless matter. The

model assumes spherical symmetry, so that d�=dr = �GMtot (< r) =r2. If one then
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demands isothermality (that is, that the gas temperature and collisionless matter velocity

dispersion are independent of radius), one obtains

kT

�mp

d�g
dr

= ��g
GMtot (< r)

r2
(A4)

and

�2r
d�DM
dr

+
2�DM�2r

r
A (r) = ��DM

GMtot (< r)

r2
; (A5)

where A (r) = 1 � �2t =�
2
r is the anisotropy parameter. If we assume that the collisionless

matter follows Equation A1, then the gas density has a similar functional form,

�g (r) = �g;0

"
1 +

�
r

rc

�2#�3�GAS=2
: (A6)

with

�GAS = �r (�DM � 2=3A (r)) (A7)

and �r is the ratio of speci�c energies,

�r =
�2r�
kT
�mp

� : (A8)

All of these parameters can depend on radius in the cluster. In the standard implementation

of the �{model, one assumes �DM = 1 and an isotropic velocity dispersion �r = �t � �, so

A (r) = 0 . In this case, �GAS = � of Equation 2.

The volume emissivity of thermal bremsstrahlung emission is �ff / �2gT
1=2; the surface

brightness is then calculated from a line{of{sight integral of the square of the gas density.

The functional form used by observers to �t X{ray surface brightness pro�les is

�x (�) = �0

h
1 + (�=�x)

2
i�3�fit+1=2

; (A9)

which is identical to the result obtained from the �{model pro�le if the cluster is isothermal,

with �fit = �GAS , and �x being the angular size of the core radius rc at the cluster's

redshift. Typically, data show �fit < �, where the ratio of speci�c energies � is determined

by direct spectral analysis of cluster galaxy redshifts and by X{ray spectral �tting. Various

e�ects have been noted to explain this so{called \�{discrepancy". Since the logarithmic

slope of Equation (A9) is a function of radius, �fit < �GAS unless the data used in the

surface brightness �t extends to su�cient radius. Also, from the relation between �GAS
and �, �GAS will be less than � if �DM < 1 or if A (r) > 0, both of which are seen

in simulations (Evrard 1990a,b). Finally, if thermalization of cluster gas after infall is
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incomplete, and the ICM is partially supported by residual motions, then � overestimates

the ratio of speci�c energies, and the \e�ective" value of � is decreased.

The galaxies, as another collisionless 
uid, should also follow this functional form,

although perhaps with a di�erent large{radius logarithmic slope to the density pro�le |

that is, �gal need not equal �DM .
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Fig. 1.| Dark matter radial velocity pro�les at z = 0:02 for four members of the two{
uid

ensemble. Pro�les are centered on the most bound dark matter particle of each cluster.

Mean interior density contrast is used as the radial coordinate. The dashed lines mark the

predictions of the simple spherical infall model for the virial radius and the turnaround

radius.

Fig. 2.| Dark matter density pro�les for the eighteen members of the two{
uid ensemble,

at z = 0:02. The vertical lines mark the value of the gravitational softening parameter � for

the various runs.

Fig. 3.| (a) Rescaled dark matter density pro�les for the two{
uid ensemble at z = 0:02.

Densities are scaled to multiples of the background (critical) density, and radii rescaled by

the radius with a mean interior density contrast of 170, for each cluster. Vertical lines mark

the gravitational softening for the various runs. (b) The mean dark matter pro�le for the

two{
uid ensemble, along with three �ts. The mean density pro�le, denoted by the points

and error bars, is derived from the average value of the density contrast at that scaled radius

amongst the members of the ensemble; the errorbars come from the scatter in this value

amongst the ensemble. The solid line is a �t to the one{parameter density pro�le suggested

by NFW2. The dotted line is a simple power{law �t. The dashed line is a �t to the density

pro�le of the standard �{model form.

Fig. 4.| Dark matter velocity dispersion and orbital anisotropy pro�les for the two{
uid

models at z = 0:02. The top half shows dark matter velocity dispersion pro�les for the

eighteen two{
uid runs. The velocity dispersions have been rescaled by �170 ' GM170=2r170.

The bottom half shows the value of the anisotropy parameter, A (r) = 1 � �2t =�
2
r , for the

runs. The radial coordinate has been rescaled by r170.

Fig. 5.| Galaxy number density pro�les for the six most massive clusters in the ejection

ensemble, at z = 0:02. Each radial bin holds �ve galaxies. The solid lines show �ts to the

�{model pro�le; the values for 3�gal shown give the large{radius logarithmic slope of the

number density pro�le from the �ts.

Fig. 6.| Evolution of the velocity bias parameter bv = �gal=�DM , averaged over the entire

ejection ensemble and over high{ and low{mass subsets. Time is written in terms of the

endpoint of the simulations at z = 0.

Fig. 7.| Gas radial mach number at z = 0:02 for the eighteen members of the two{
uid

ensemble.
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Fig. 8.| (a) Scaled two{
uid ensemble gas density pro�les at z = 0:02. Radii are rescaled by

r170 and densities by the background baryon density, similar to the dark matter in Figure 3.

The vertical lines here denote the values of the central SPH smoothing length for the members

of the ensemble. A mean pro�le, de�ned as for the dark matter by taking an average amongst

the ensemble members in Eulerian bins, is shown as a heavy solid line. (b) The equivalent

pro�les for the ejection ensemble. The heavy solid line again marks a mean pro�le for the

ensemble. The heavy dashed line shows the mean pro�le for the two{
uid ensemble from

panel(a), to facilitate comparison.

Fig. 9.| The gas outer slope parameter �gas from �ts to the standard form, Equation 1, as

a function of cluster temperature. Open circles are models without ejection (2F ensemble),

while asterisks show models with winds (EJ ensemble). The similarity in this variable evident

in the 2F ensemble is broken by the introduction of winds.

Fig. 10.| Mass weighted cluster temperature T against mass M170, both measured within

the virial radius r170. Symbol types are the same as in Figure 9. The solid line gives a

�t to the 2F data T2f(M) = 4:0(M=1015M�)2=3 keV, while the dahsed line is the mass{

temperature relation expected in the ejection models if the input wind energy is retained as

thermal energy (Equation 12).

Fig. 11.| (a) Estimates of the work required to lift the gas in each cluster from its �nal

con�guration in the 2F realization to that in the EJ realization plotted against galaxy mass

within the virial radius. The solid line gives the energy input by those galaxies over the

course of the simulation. See text for a discussion. (b) Ratio of the work estimate to the

total gas thermal energy as a function of total cluster mass. The work performed by winds

is comparable to the total thermal energy in low mass, low temperature clusters.

Fig. 12.| Scaled two{
uid ensemble temperature pro�les at z = 0:02. Here temperatures

are scaled by T170 = (�mp=k) (GM170=2r170). The left{hand panel shows the results for the

two{
uid ensemble, while the right{hand panel shows the results for the ejection ensemble.

Fig. 13.| Histograms of the distribution of �DM = �mp�
2
DM=kT for the two{
uid and

ejection ensembles, both with and without correcting temperatures to account for gas speci�c

energy in bulk motions, at z = 0:02.
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Fig. 14.| Iron abundance pro�les for �ve members of the ejection ensemble at z = 0:02.

Also shown are mean pro�les for the entire ensemble (heavy solid line), the high mass subset

(heavy dotted line), and the low mass subset (heavy dashed line).

Fig. 15.| (a) z = 0:02 mean gas density pro�le for the two{
uid ensemble. Error bars

come from the dispersion in each Eulerian bin amongst members of the ensemble. The solid

line is a �t to the form predicted by the NFW model with the assumptions of hydrostatic

equilibrium and isothermality. The dashed line is the prediction of the NFW model for the

scale length of the potential (� = 0:154) found through studying the mean dark matter

distribution, without including gas motions in the pressure support. The dash{dotted line is

the prediction of the generalized NFW model for the known form of the potential including

gas motions in the pressure support term. These last two lines are normalized to produce

the correct amount of gas within r170. (b) The equivalent plot for the ejection ensemble.

Again, the solid line is a direct �t to the mean pro�le; the dashed line is the prediction of the

NFWmodel assuming the scale length found in the potential; and the dash{dotted line is the

prediction of the model when including bulk motions in the temperature. Finally, the direct

�t to the two{
uid model points is shown here as a dotted line, to facilitate comparison.

Fig. 16.| Histograms of gas density core radii at z = 0:02, for both ensembles. Values of

the core radius rc are taken from �ts to the �{model form. Shown are absolute values of rc,

as well as values scaled in terms of r170, the gravitational softening, and the SPH smoothing

length at the cluster center.

Fig. 17.| Enclosed mass pro�les for the various cluster components at z = 0:02. Each

line corresponds to the fraction of the mass in that component at r170 that is enclosed

within radius r. The clusters in each ensemble were renormalized to their values of r170 and

\stacked" on top of each other to produce a characteristic curve for each component in the

ensemble. Components are marked by di�erent lines: two{
uid ensemble dark matter (solid);

two{
uid ensemble gas (dotted); ejection ensemble dark matter (short{dashed); ejection

ensemble gas (long{dashed); and ejection ensemble galaxies (dot{dashed).
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Fig. 18.| Local baryon fractions, normalized to the cosmic ratio, within two di�erent

density contrasts displayed versus mass{weighted temperature. Open circles show the 2F

ensemble results, while components within the EJ ensemble are shown individually (�lled

triangles : gas; �lled circles : galaxies) and in total (asterisks). Solid lines show �ts to the

EJ total, Equation 24 at each density contrast. The short{dashed line in the �c=500 panel

shows �c = 170 result; the baryon fraction decreases toward smaller radii or larger density

contrasts. The long{dashed line at unity re
ects a local baryon fraction equal to the cosmic

mean value. All clusters are baryon de�cient. The EJ ensemble shows a dependence of the

local baryon fraction on temperature but, at high temperatures, the total baryon content is

similar to that in the models without ejection.
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Table 1. General Simulation Parameters

Parameter Value

Comoving Box Length L ( Mpc) 20, 25, 30, 40, 60

Total Mass in Box (M�) 4:44 � 1015
�

L
40 Mpc

�3
Number of Dark Matter Particles 32768

Mass per Dark Matter Particle (M�) 1:22 � 1011
�

L
40 Mpc

�3
Number of Gas Particles in Two{Fluid Runs 32768

Mass per Gas Particle (M�) 1:35 � 1010
�

L
40 Mpc

�3
Initial Redshift 9

Timestep (yr) 1:29� 107

Initial Temperature of Gas 104 K

Speci�c Energy of Wind (Lwind= _M ) 1:37 � 108 K
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Table 2. Final Characteristics of Two{Fluid Models

Run M170 �DM;170 T170
(M�) ( km s�1) (K)

b20bn 8:34 � 1013 365 8:75 � 106

b20cn 1:29 � 1014 435 1:15 � 107

b20en 8:36 � 1013 353 7:81 � 106

b20fn 1:16 � 1014 462 1:28 � 107

b25an 2:84 � 1014 597 2:00 � 107

b25bn 2:79 � 1014 564 2:08 � 107

b25cn 3:31 � 1014 576 2:07 � 107

b25dn 2:60 � 1014 564 2:05 � 107

b30an 4:59 � 1014 665 2:84 � 107

b30bn 4:94 � 1014 721 3:10 � 107

b30cn 4:66 � 1014 667 2:69 � 107

b30dn 4:57 � 1014 632 2:64 � 107

b40an 1:14 � 1015 881 4:94 � 107

b40bn 9:20 � 1014 818 4:48 � 107

b40cn 1:04 � 1015 942 5:28 � 107

b60bn 2:61 � 1015 1120 8:55 � 107

b60cn 3:92 � 1015 1420 1:12 � 108

b60dn 3:59 � 1015 1310 9:58 � 107
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Table 3. Final Characteristics of Ejection Models

Run fgas NGAL NGAL (< r170) T170 (K)

b20b 0:914 24 8 1:02 � 107

b20c 0:879 35 16 1:31 � 107

b20e 0:921 26 11 9:29 � 106

b20f 0:913 39 15 1:34 � 107

b25a 0:912 41 31 2:22 � 107

b25b 0:887 48 31 2:24 � 107

b25c 0:881 56 36 2:49 � 107

b25d 0:895 50 24 2:17 � 107

b30a 0:879 79 46 3:04 � 107

b30b 0:904 64 42 3:25 � 107

b30c 0:899 78 39 3:03 � 107

b30d 0:886 79 40 2:93 � 107

b40a 0:875 128 60 5:47 � 107

b40b 0:878 128 55 4:74 � 107

b40c 0:894 115 53 5:43 � 107

b60b 0:842 201 72 9:21 � 107

b60c 0:849 195 103 1:19 � 108

b60d 0:851 189 100 1:01 � 108
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Table 4. Dark Matter Density Pro�le Fits

NFW �{model Power-Law Slope �

Ensemble � �DM 100 � �=�back � 3 � 103

0:154 � 0:008 0:826 � 0:018 2:39 � 0:08

All Runs �2=� = 0:53 �2=� = 0:39 �2=� = 0:24

q = 0:99 q = 0:99 q = 1:0

0:176 � 0:01 0:816 � 0:018 2:35 � 0:07

High Mass �2=� = 0:75 �2=� = 0:60 �2=� = 0:53

Subset q = 0:85 q = 0:98 q = 0:92

0:145 � 0:005 0:835 � 0:015 2:36 � 0:10

Low Mass �2=� = 1:24 �2=� = 0:587 �2=� = 0:13

Subset q = 0:12 q = 0:98 q = 1:0

Table 5. Mean ICM �GAS Values

Sample 2F Ensemble EJ Ensemble

All 0:870 � 0:002 0:704 � 0:008

T < 4 keV 0:860 � 0:002 0:663 � 0:007

T > 4 keV 0:891 � 0:002 0:785 � 0:001
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Table 6. Outer Density Pro�le Slopes

Component Value

Dark Matter �2:39

Gas in two{
uid runs �2:34

Gas in ejection runs �1:75

Galaxies �2:22 to �4:88






































