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We present evidence for dilepton events from tt production with one electron or muon and one

hadronically decaying � lepton from the decay tt ! (`�`)(��� ) bb, (` = e; �), using the Collider
Detector at Fermilab (CDF). In a 109 pb�1 data sample of pp collisions at

p
s = 1:8 TeV we expect

� 1 signal event and a total background of � 2 events; we observe 4 candidate events (2 e� and 2

��). Three of these events have jets identi�ed as b candidates, compared to an estimated background
of 0:28� 0:02 events.
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The Collider Detector at Fermilab (CDF) Collabora-

tion [1,2] and the D0 Collaboration [3] recently estab-

lished the existence of the top quark through searches for

tt production with the subsequent decay tt!W+bW�b.

The decay modes of the twoW bosons determine the ob-

served event signature. Both experiments observed top

quarks based on the \dilepton" channels in which both

W bosons decay into e�e or ���, and the \lepton + jets"

channel where one W boson decays into e�e or ��� and

the other into quarks.

Here we present �rst evidence for top quark decays in

the \tau dilepton" channel, where one W decays into e�e
or ��� and the other into the third-generation leptons, �

and �� . Consequently, the total decay chain is:

tt!W+W�bb! (`�`)(��� ) bb
j! hadrons+ �� ;

where ` stands for e or �. This channel is of particular in-

terest because the existence of a charged Higgs bosonH�

with mH� < mtop could give rise to anomalous � lepton

production through the decay chain t ! H+b ! �+��b,

which could be directly observable in this channel [4].

In the Standard Model the top branching ratio (BR)

to Wb is essentially 100% and the approximate BR of

W to each of e�e, ���, and ��� is 1=9, and to qq0 is 6=9.

Consequently, the total BR for tt into e� and �� events is

4/81, the same as for ee, ��, and e� combined. In prin-

ciple, the number of dilepton events could be doubled by

including � 's. However, the 64% BR [5] for � decays into

hadrons (50% one-prong and 14% three-prong decays),

decreased kinematic acceptance due to the undetected

�� , and a � selection that is less e�cient than the e or �

selection, result in a total tau dilepton acceptance about

�ve times smaller than that for ee; ��, and e� events.

We report here on a search based on a data sample con-

taining 109� 7 pb
�1

collected with CDF during the Fer-

milab 1992-93 and 1994-95 Collider runs. A detailed de-

scription of the detector can be found elsewhere [6]. The

components of the detector most relevant to this search

are a four-layer silicon vertex detector [7], located im-

mediately outside the beam pipe, providing precise track

reconstruction used to identify secondary vertices from b

and c quark decays, a central drift chamber immersed in

a 1.4 T solenoidal magnetic �eld for tracking charged par-

ticles in the pseudorapidity [8] range j�j < 1:1, electro-

magnetic and hadronic calorimeters covering the range

j�j < 4:2 and arranged in a projective tower geometry for

identifying electrons and jets, strip chambers embedded

in the electromagnetic calorimeter at a depth of approx-

imately shower maximum for detailed shower sampling,

and drift chambers outside the calorimeters in the re-

gion j�j < 1:0 for muon identi�cation. Calorimeters also

measure the missing transverse energy E=T [8], which can

indicate the presence of undetected energetic neutrinos.

A three-level trigger selects inclusive electron and muon

events used in this analysis.

The data sample used in this analysis comprises

high-pT inclusive lepton events that contain an electron

with ET > 20 GeV or a muon with pT > 20 GeV/c in the

central region (j�j < 1:0). The selection criteria for the

primary e or � are identical to those applied in Ref. [2].

The identi�cation of hadronically decaying � 's is dif-

�cult due to the misidenti�cation of the much more nu-

merous quark or gluon jets as � 's . We use two comple-

mentary techniques for identifying � 's, one \track{based"

and the other \calorimeter{based".

The track{based selection [9] accepts only one-prong �

decays. Events with an e or a � must have an additional

high-pT (pT > 15 GeV/c), central (j�j < 1:0), isolated

track. The tracking isolation Itrack is de�ned as �pT of

all tracks in a cone of �R =

p
(��)2 + (��)2 = 0:4

in (�; �) space around the high-pT track. A cut of

Itrack < 1 GeV/c discriminates between the � signal and

QCD jets. Requiring E=p > 0:5 ensures consistency be-

tween the energy measured in the calorimeter and the

track momentum. Electrons are removed by rejecting

clusters in which a large fraction of the total energy is

deposited in the electromagnetic calorimeter. Tracks as-

sociated with an energy deposition consistent with that

of a minimum ionizing particle are rejected as � candi-

dates. These cuts provide su�cient background rejection

for one-prong decays, but not for three-prong decays.

The calorimeter{based selection [10] increases the ac-

ceptance by using both one-prong and three-prong � de-

cays. The selection criteria are: (i) The number of tracks

with pT > 1 GeV/c in a 10
�
cone around the calorime-

ter cluster center, which de�nes the track multiplicity

associated with the cluster, must be either one or three.

(ii) The track isolation Itrack is de�ned as �pT of all

tracks in a cone of �R = 0:4 around the cluster cen-

ter, excluding those that de�ne the track multiplicity.

We require Itrack < 1 GeV/c. (iii) About 73% (41%)

of all one(three)-prong decays are expected to be asso-

ciated with at least one �0 [5] which is identi�able in

the strip chambers by searching for clusters from the de-

cay �0 ! 

. The pT of the � is then de�ned as the

scalar sum of the pT of the tracks in the 10
�
cone plus

the ET of any identi�ed �0's as measured in the electro-

magnetic calorimeter. We require pT > 15 GeV/c and

j�j < 1:2. (iv) We require 0:5 < E=p < 2:0(1:5) for

one(three)-prongs. (v) The width �cl of a calorimeter

cluster in (�; �) space is de�ned as the second moment of

the ET distribution among the towers in a cluster. Low{

multiplicity � clusters are narrower than clusters from

QCD jets: we require �cl < 0:11(0:13)� 0:025(0:034)�
ET [GeV]=100 for one(three)-prongs. (vi) Tau decays

rarely involve more than 2 �0's, so fewer than 3 �0 can-

didates must be found. (vii) The invariant mass recon-

structed from tracks and �0's is required to be less than

1.8 GeV/c2. (viii) Clusters consistent with being an e or

� are removed.

A Monte Carlo simulation (mtop = 175 GeV=c2)
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of tt production provides an estimate of the � iden-

ti�cation e�ciencies and acceptances for tau dilepton

events. We use the pythia [11] Monte Carlo to gen-

erate tt events, the tauola package [12], which correctly

treats the � polarization, to decay the tau lepton, and

a detector simulation. We expect 29% of hadronic one-

prong � decays to produce tracks with pT > 15 GeV/c

and j�j < 1:0. The track{based � selection identi�es

(59�4(stat)�3(syst))% of these. The calorimeter{based

selection identi�es (57�2(stat)�3(syst))% of the 45% of

all hadronic � decays with pT > 15 GeV/c, as de�ned in

the previous paragraph, and j�j < 1:2. The uncertainty

in the number of tracks due to the underlying event and

overlapping minimum bias events makes the largest con-

tribution to the overall systematic uncertainty.

The e�ciency calculation is checked using a data sam-

ple enriched in W!��� decays. Typically, a W!���!
hadrons+���� decay has one jet from the � , and E=T due

to the neutrinos. A monojet sample is selected by requir-

ing one central jet with 15 < ET < 40 GeV, no other jet

with ET > 7 GeV in j�j < 4:0, and 20 < E=T < 40 GeV.

Figure 1a shows the track multiplicity in this sample

and in a background sample of QCD jets. The latter

is normalized to the monojet sample using the bins with

� 4 tracks where there is a very small contribution from

W ! ��� events. The data show a clear excess in the

one-prong and three-prong bins, as expected for a sam-

ple with signi�cant � fraction. The W!��� content is

estimated to be (45�5(stat))% by subtracting the QCD

contribution. Figure 1b shows the track multiplicity after

applying all cuts from the calorimeter{based � selection

(except cut i). The background in all bins is greatly

Track multiplicity

FIG. 1. Track multiplicity in the monojet data sample. a)

No � ID cuts applied. b) After applying all � ID cuts except
track multiplicity.

reduced and the data agree well with the expectation

from a W!��� Monte Carlo [11]. The e�ciency of all

calorimeter{based � identi�cation cuts is measured to be

(55�6(stat))%, consistent with theW!��� Monte Carlo

prediction of (56�1(stat))%. The same check performed

on the track{based � selection gives similar results.

Top events and background have di�erent topologies.

Dilepton events from tt decays are expected to contain

2 jets from b decays. We therefore select events with

� 2 jets with ET > 10 GeV and j�j < 2:0 [2]. The

E=T is corrected for muons and jets as in the dilepton

analysis [1,2]. As top events are expected to have sig-

ni�cant amount of E=T due to undetected neutrinos, a

cut is applied on the E=T signi�cance, de�ned for e�

events as SET= � ET=p
�ET

; and as SET= � ET=p
�ET+p

�

T

for

�� events. Here �ET is the scalar sum of the trans-

verse energies measured in the calorimeter towers. We

require SET= > 3 GeV
1=2

. Due to large mtop, tt events

exhibit large total transverse energy, HT [13]. We re-

quire HT � Ee
T (p

�
T )+p�T +ET= +(

P
jetsET ) > 180 GeV.

Finally, the leptons must have opposite charge.

The product of all BR's, geometric and kinematic ac-

ceptance, e�ciencies for trigger, lepton identi�cation,

and cuts on the event topology yields a total accep-

tance Atot = (0:085�0.010(stat)�0.012(syst))% for the

track{based selection. Using the calorimeter-based selec-

tion we �nd Atot = (0:134�0.013(stat)�0.019(syst))%.
The systematic uncertainty on Atot is dominated by un-

certainties on identi�cation e�ciencies for the � (6%)

and the primary lepton (7%), the top mass (6%), and

the hadronic energy scale of the calorimeter (5%). Of

the total one-prong events selected, 19% (38%) are

expected to be found only by the track(calorimeter){

based technique, and 43% by both. Based on the

tt cross section as measured by CDF from other

decay modes, we expect 0.7�0.2(stat)�0.1(syst) and

1.1�0.3(stat)�0.2(syst) events from tt production in the

two selections, respectively.

Table I lists the contributions from the various back-

ground sources. The dominant background is due to

Z=
 ! �+�� + jets events. If one � decays leptonically

and the other � hadronically, this process can mimic the

top signature. From Monte Carlo simulations we expect

a background of 0.89�0.28 (1.48�0.38) events due to this
process for the track(calorimeter){based � selection, and

smaller backgrounds from WW and WZ production.

The \fake �" background is due toW+ � 3 jets events

with one jet misidenti�ed as a � . We calculate the fake

rates as a function of ET by applying the � selection

criteria to jets in QCD jet samples. Applying the fake

rates bin-by-bin to the ET spectrum of all jets that could

be misidenti�ed as � 's in a W+ � 3 jets sample gives

the number of fake events. We expect 0.25�0.02 fake one-
prong � 's with the track{based � selection, and 0.78�0.04
fake one- and three-prong � 's with the calorimeter{based
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selection. The total expected backgrounds are 1.28�0.29
and 2.50�0.43 events, respectively.
We check that our background calculations correctly

predict the number of events in a background-dominated

sample by dropping the HT and the SE=T requirements

and instead imposing a loose E=T cut (E=T > 15 GeV).

With these relaxed cuts we expect a total background of

5:7�0:7 (9:4�0:8) events, in addition to 1.3 (2.0) events

from tt decays, and observe 9 (11) events in the data

using the track(calorimeter){based selection. The sum of

calculated background and top contribution agrees well

with the observed number of events.

Figure 2 shows SE=T versus E=T for data events with

a primary lepton and a tau candidate that passes the

calorimeter{based selection cuts. After all cuts four can-

didate events are identi�ed, 2 e� and 2 �� events. There

is in addition one same-sign �+�+ event, consistent with

the 0.78 expected background events from fake � 's. The

track{based � selection �nds the same four events.

We use the presence of a soft lepton from semileptonic

b decays (SLT) or of a secondary vertex (SVX) in the sil-

icon vertex detector to identify jets from b quarks. Three

of the four candidate events have b-tagged jets [2]. One

event has an SLT-SLT double tag. We expect 0.16 (0.18)

background events with � 1 SVX (SLT) tag, for a total

background including correlations of 0.28�0.02 events.

The probability to observe � 3 background events is

0.3% after b-tagging. For top signal plus background we

expect 0.64�0.12(stat) (0.37�0.06(stat)) events with an

SVX(SLT) tag and observe one (two) event(s).

In conclusion, we have developed a method to use �

leptons in the analysis of top decays. We observe 4 can-

didate events where we expect � 1 tt event and � 2

background events. In three of the events we identify jets

from b quark decays, which supports the tt hypothesis.

Using the numbers of estimated background and ob-

served events in Table I (Njet � 2) and the acceptances

Atot, we calculate a production cross section. We �nd

�tt = 10:2+16:3�10:2(stat)�1.6(syst) pb for the calorimeter{

based selection and 29:1+26:3�18:4(stat)�4.7(syst) pb for the

track{based selection, consistent with latest measured

values given the large statistical uncertainty.

We thank the Fermilab sta� and the technical sta�s of

the participating institutions for their vital contributions.

TABLE I. The expected number of background and tt events and the observed events.

Selection Track{based Calorimeter{based

Njet (� 10 GeV) 1 � 2 1 � 2

� fakes 0.14�0.01 0.25�0.02 0.47�0.03 0.78�0.04
Z=
 ! �+�� 0.22�0.12 0.89�0.28 0.54�0.16 1.48�0.38
WW; WZ 0.14�0.06 0.14�0.08 0.20�0.09 0.24�0.10
Total Background 0.50�0.14 1.28�0.29 1.21�0.28 2.50�0.43
expected from tt 0.08�0.02 0.7�0.3 0.13�0.03 1.1�0.4
observed events (b-tagged events) 1 (0) 4 (3) 0 (0) 4 (3)

FIG. 2. The distribution of SE=T vs E=T for events with a
primary lepton and a tau candidate in the data. Three of the

four �nal candidate events (stars) have b-tagged jets.
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