Search for High Mass Photon Pairs in $p\bar{p} \rightarrow \gamma\gamma jj$
Events at $\sqrt{s} = 1.8$ TeV

B. Abbott et al.
The DØ Collaboration

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

October 1997

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.
Search for High Mass Photon Pairs in $p\bar{p} \rightarrow \gamma\gamma jj$ Events at $\sqrt{s} = 1.8$ TeV

The DØ Collaboration

Fermi National Accelerator Laboratory, Batavia, Illinois 60510
(July 15, 1997)

Abstract

A search for new physics in the channel $p\bar{p} \rightarrow \gamma\gamma jj$ has been studied. In some extended Higgs models, a light neutral scalar Higgs boson is produced with suppressed couplings to fermions and standard model(SM) strength couplings to vector bosons(bosonic Higgs), thus enhancing the $H \rightarrow \gamma\gamma$ channel. We required one photon in the event with $\frac{E_T}{\eta^\gamma} > 20$ GeV, $|\eta^\gamma| < 1.1$ or $1.5 < |\eta^\gamma| < 2.0$ and a second photon with $\frac{E_T}{\eta^\gamma} > 15$ GeV, $|\eta^\gamma| < 1.1$ or $1.5 < |\eta^\gamma| < 2.25$. Additionally, we required one hadronic jet in the event with $\frac{E_T}{\eta^{jet}} > 20$ GeV, $|\eta^{jet}| < 2.0$ and a second hadronic jet with $\frac{E_T}{\eta^{jet}} > 15$ GeV, $|\eta^{jet}| < 2.25$. The photons are required to have a $\sum \frac{E_T}{\eta^\gamma} \geq 10$ GeV, and likewise the jets are required to have a $\sum \frac{E_T}{\eta^{jet}} \geq 10$ GeV. The final $M_{\gamma\gamma}$ distribution is consistent with background and no resonance is observed. A 90(95)% C.L. upper limit cross section vs $M_{\gamma\gamma}$ is calculated, which ranges from $0.6(0.7)$ pb$^{-1}$ for $M_{\gamma\gamma} = 60$ GeV/c2 to $0.3(0.4)$ pb$^{-1}$ for $M_{\gamma\gamma} = 130$ GeV/c2. With standard model coupling strengths between the bosonic Higgs and vector bosons, a 90(95)% C.L. bosonic Higgs lower mass limit is set at $86(81)$ GeV/c2.

B. Abbott, 26 M. Abolins, 25 B.S. Acharya, 43 I. Adam, 12 D.I. Adams, 37 M. Adams, 17
S. Ahn, 14 H. Aihara, 22 G.A. Alves, 10 E. Amid, 39 N. Amos, 24 E.W. Anderson, 19 R. Astur, 42
M.M. Baarmand, 12 A. Baden, 23 V. Balamurali, 32 J. Balderston, 16 B. Baldin, 14
S. Banerjee, 13 J. Bantly, 4 J.F. Bartlett, 14 K. Bazizi, 39 A. Belyaev, 26 S.B. Beri, 34
I. Bertram, 31 V.A. Bezzubov, 35 P.C. Bhat, 14 V. Bhatnagar, 34 M. Bhattacharjee, 3
N. Biswas, 32 G. Blazey, 30 S. Blessing, 15 P. Bloom, 7 A. Boehmlein, 14 N.I. Bojko, 35
F. Borcherding, 14 C. Boswell, 9 A. Brandt, 14 R. Brock, 25 A. Bross, 14 D. Buchholz, 31
V.S. Burtovi, 35 J.M. Butler, 3 W. Carvalho, 10 D. Casey, 39 Z. Cashin, 12
H. Castilla-Valdez, 11 D. Chakraborty, 42 S.M. Chang, 23 S.V. Chekulaev, 35 L.-P. Chen, 22
W. Chen, 42 S. Choi, 41 S. Chopra, 24 B.C. Choudhary, 9 J.H. Christenson, 14 M. Chung, 17
D. Claes, 27 A.R. Clark, 22 W.G. Cobau, 23 J. Cochran, 9 W.E. Cooper, 14 C. Cretzinger, 39
D. Cullen-Vidal, 5 M.A.C. Cummings, 16 D. Cutts, 5 O.I. Dahl, 22 K. Davis, 2 K. De, 41
K. Del Signore, 24 M. Demarteau, 14 D. Denisov, 14 S.P. Denisov, 35 H.T. Diehl, 14
M. Diesburg, 14 G. Di Loreto, 25 P. Draper, 44 Y. Ducros, 40 I.V. Dudko, 26 S.R. Dugad, 43
D. Edmunds, 25 J. Ellison, 9 V.D. Elvira, 42 R. Engelmann, 42 S. Eno, 23 G. Eppley, 37
P. Ermolov, 26 O.V. Eroshin, 35 V.N. Evdokimov, 35 T. Fahlman, 8 M. Fatyga, 4 M.K. Fatyga, 39
J. Featherly, 4 S. Feher, 14 D. Fein, 2 T. Ferbel, 39 G. Finocchiaro, 42 H.E. Fisk, 14 Y. Fisyak, 7
E. Flattum, 4 G.E. Forden, 2 M. Fortner, 30 K.C. Frame, 25 S. Fuess, 14 E. Gallas, 44
A.N. Galaiyev, 35 P. Gartung, 9 T.L. Ge, 25 R.J. Genik II, 25 K. Genser, 14 C.E. Gerber, 14
B. Gabbard, 4 S. Glenn, 7 B. Gobbi, 31 M. Goforth, 15 A. Goldschmidt, 22 B. Gómez, 1
K. Gounder, 39 A. Goussiou, 42 N. Graf, 4 P.D. Grannis, 12 D.R. Green, 14 J. Green, 30
H. Greenlee, 14 G. Grim, 7 S. Grinstein, 6 N. Grossman, 14 P. Grudberg, 22 S. Gründerlich, 39
G. Guglielmo, 33 J.A. Guida, 2 J.M. Guida, 5 A. Gupta, 43 S.N. Gurzhiyev, 35 P. Gutierrez, 33
Y.E. Gutnikov, 35 N.J. Hadley, 23 H. Haggerty, 14 S. Hagopian, 15 V. Hagopian, 15
K.S. Hahn, 39 R.E. Hall, 8 P. Hanlet, 20 S. Hansen, 14 J.M. Hauptman, 19 D. Hedin, 30
A.P. Heinson, 9 U. Heintz, 14 R. Hernández-Montoya, 11 T. Heuring, 15 R. Hiroisky, 15
J.D. Hobbs, 14 B. Hoeineisen, 1 J.S. Hoftant, 9 F. Hsieh, 24 Ting Hu, 42 Tong Hu, 18 T. Huen, 9
A.S. Ito, 14 E. James, 2 J. Jaques, 32 S.A. Jerger, 25 R. Jesik, 18 J.Z.-Y. Jiang, 32
T. Joffe-Minor, 41 K. Johns, 2 M. Johnson, 14 A. Jonckheere, 14 M. Jones, 16 H. Jöstlein, 14
C.L. Kim, 30 S.K. Kim, 41 A. Kluh, 12 B. Klima, 14 C. Klopfenstein, 7 V.I. Klyukhin, 35
V.I. Kochetkov, 35 J.M. Kohli, 34 D. Koltick, 36 A.V. Kostritskiy, 35 J. Kotcher, 4
A.V. Kotwal, 12 J. Kourlas, 28 A.V. Kozelov, 35 E.A. Kozlovski, 35 J. Krane, 27
M.R. Krishnaswamy, 43 S. Krzywdański, 14 S. Kunori, 23 S. Lami, 42 H. Lan, 14 R. Lander, 7
F. Landry, 25 G. Landsflat, 14 B. Lauer, 19 A. Leiflat, 20 H. Li, 42 J. Li, 44 Q.Z. Li-Demarteau, 14
J.G.R. Lima, 38 D. Lincoln, 24 S.I. Linn, 15 J. Linnemann, 25 R. Lipton, 14 Q. Liu, 14,
Y.C. Liu, 31 F. Lobkowicz, 39 S.C. Loken, 22 S. Lökös, 42 L. Lukeing, 14 A.L. Lyon, 23
A.K.A. Maciel, 10 R.J. Madaras, 22 R. Madden, 15 L. Magaña-Mendoza, 11 S. Mani, 7
H.S. Mao, 14 R. Markeloff, 30 T. Marshall, 18 M.I. Martin, 14 K.M. Mauritz, 19 B. May, 31
A.A. Mayorov, 35 R. McCarthy, 42 J. McDonald, 15 T. McKibben, 17 J. McKinley, 25
T. McMahon, 33 H.L. Melanson, 14 M. Merkin, 26 K.W. Merritt, 14 H. Miettinen, 27
A. Mincer, 28 C.S. Mishra, 14 N. Mokhov, 14 N.K. Mondal, 43 H.E. Montgomery, 14
P. Mooney, 1 H. da Motta, 10 C. Murphy, 17 F. Nang, 2 M. Narain, 14 V.S. Narasimham, 43
A. Narayanan, 2 H.A. Neal, 24 J.P. Negret, 1 P. Nembeth, 28 M. Nicola, 10 D. Norman, 45
1 Universidad de los Andes, Bogotá, Colombia
2 University of Arizona, Tucson, Arizona 85721
3 Boston University, Boston, Massachusetts 02215
4 Brookhaven National Laboratory, Upton, New York 11973
5 Brown University, Providence, Rhode Island 02912
6 Universidad de Buenos Aires, Buenos Aires, Argentina
7 University of California, Davis, California 95616
8 University of California, Irvine, California 92697
9 University of California, Riverside, California 92521
10 LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
11 CINVESTAV, Mexico City, Mexico
12 Columbia University, New York, New York 10027
13 Delhi University, Delhi, India 110007
14 Fermi National Accelerator Laboratory, Batavia, Illinois 60510
15 Florida State University, Tallahassee, Florida 32306
16 University of Hawaii, Honolulu, Hawaii 96822
17 University of Illinois at Chicago, Chicago, Illinois 60607
18 Indiana University, Bloomington, Indiana 47405
19 Iowa State University, Ames, Iowa 50011
20 Korea University, Seoul, Korea
21 Kyunggung University, Pusan, Korea
22 Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720
23 University of Maryland, College Park, Maryland 20742
24 University of Michigan, Ann Arbor, Michigan 48109
25 Michigan State University, East Lansing, Michigan 48824
26 Moscow State University, Moscow, Russia
27 University of Nebraska, Lincoln, Nebraska 68588
28 New York University, New York, New York 10003
29 Northeastern University, Boston, Massachusetts 02115
30 Northern Illinois University, DeKalb, Illinois 60115
31 Northwestern University, Evanston, Illinois 60208
32 University of Notre Dame, Notre Dame, Indiana 46556
33 University of Oklahoma, Norman, Oklahoma 73019
34 University of Panjab, Chandigarh 16-00-14, India
35 Institute for High Energy Physics, 142-284 Protvino, Russia
36 Purdue University, West Lafayette, Indiana 47907
37 Rice University, Houston, Texas 77005
38 Universidade do Estado do Rio de Janeiro, Brazil
39 University of Rochester, Rochester, New York 14627
40 CEA, DAPNIA/Service de Physique des Particules, CE-Saclay, Gif-sur-Yvette, France
41 Seoul National University, Seoul, Korea
42 State University of New York, Stony Brook, New York 11794
43 Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
44 University of Texas, Arlington, Texas 76019
45 Texas A&M University, College Station, Texas 77843
FIG. 1. Production diagrams for the bosonic Higgs. The first diagram is the radiated Higgs channel, the second diagram is the vector boson fusion channel, and the third diagram is a one loop single Higgs production. The radiated Higgs channel is the most detectable, and will be studied exclusively.

I. INTRODUCTION

Some extended Higgs models predict a light neutral scalar Higgs that has suppressed couplings to fermions, but standard model strength couplings to vector bosons (bosonic Higgs) [1-6]. The strongest constraints on any extended Higgs model is the ρ parameter ($\rho = M_W^2/M_Z^2 \cos^2 \theta_W$). The extended models must preserve $\rho \approx 1$, since experimentally $\rho = 1.0004 \pm 0.0022 \pm 0.002$ [7]. The most promising model is discussed by A.G. Akeryod [1,2], which produces a light neutral scalar bosonic Higgs naturally (no fine tuning) and conserves $\rho = 1$. As expected, the decay channels of the bosonic Higgs are much different from the minimal standard model (SM) Higgs. Since the fermion decay channels are suppressed, the decay of the bosonic Higgs with mass less than $2M_W$ is not dominated by $H \rightarrow b\bar{b}$. At tree level the bosonic Higgs decays only to W^*W^* and Z^*Z^* vector bosons (where $^{(*)}$ denotes off the mass shell). At the one loop level the bosonic Higgs decays predominantly into two photons. The one loop W boson mediated $H \rightarrow \gamma\gamma$ channel is competitive, for bosonic Higgs masses less than 90 GeV/c^2, with the tree level decays due to the vector bosons being considerably off the mass shell. Three possible Higgs production diagrams in $p\bar{p}$ collisions are shown in figure 1. The most detectable production mode is the radiated Higgs channel, where an off mass shell W or Z vector boson is produced and radiates a Higgs boson. Vector boson fusion has the same event topology, but the production cross section is five to ten times smaller, and will be disregarded. The summed HW and HZ cross sections range from a couple of picobarns at $M_H = 60$ GeV/c^2 to several hundred femtobarns at $M_H = 100$ GeV/c^2. We expect sensitivity in the $\gamma\gammajj$ final state, where the bosons decay
$H \rightarrow \gamma\gamma$ and $W/Z \rightarrow jj$, up to a mass of 85 GeV/c^2. The present mass limit on a bosonic Higgs is 60 GeV/c^2 from LEP1 [8,9].

II. DATA SELECTION

The events are selected with the DØ detector [10] during the 1992-1996 Tevatron Run and represents an integrated luminosity of $101.2 \pm 5.5 \text{ pb}^{-1}$. The triggers require two em clusters within the electromagnetic(EM) calorimeter with a transverse energy greater than 12 GeV. The event selection criteria are optimized using an 80 GeV/c^2 Higgs sample and a QCD multijet sample. The event requirements are:

- **Event Requirement**
 - vertex position within 75 cm of $Z_{det} = 0$,

- **Photon Requirements**
 - one γ with $E_T^\gamma \geq 20$ GeV and $|\eta_\gamma| \leq 2.0$,
 - second γ with $E_T^\gamma \geq 15$ GeV and $|\eta_\gamma| \leq 2.25$,
 - $\sum E_T(\gamma) \geq 10$ GeV,
 - $\chi^2_\gamma \leq 100$,
 - EMF $\geq .96$,
 - ISOL ≤ 2 GeV,
 - no ‘hits’ in drift chamber between vertex and γ’s calorimeter shower,

- **Jet Requirements**
 - jets consistent with hadronic showers,
 - one jet with $E_T^{jet} \geq 20$ GeV and $|\eta_{jet}| \leq 2.0$,
 - second jet with $E_T^{jet} \geq 15$ GeV and $|\eta_{jet}| \leq 2.25$,
 - $\sum E_T(jet) \geq 10$ GeV,
 - $dR_{\gamma jet} \geq 0.7$,
 - $40 \leq M_{jj} \leq 150$ GeV/c^2 ,

where $\eta = -\ln \tan(\theta/2)$, dR is a cone defined as $dR = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$, EMF $= E_{EM}(dR = 0.2)/ (E_{EM}(dR = 0.2) + E_{hadronic}(dR = 0.2))$, ISOL$= (E_T(dR = 0.4) - E_T(dR = 0.2))$, and χ^2 is an EM shower shape quantity with χ^2-like behavior.

The offline selection criteria, especially the energy isolation requirement and the ‘no-hits’ tracking cut on the γ remove much of the QCD multijet background. Further, the E_T, η, and $\sum E_T$ selections optimize the differences between Higgs events and QCD events; Higgs events are more central than QCD events. The diphoton and dijet invariant mass distributions of the seven events that pass these selection criteria are shown in Figure 2.
III. BACKGROUND

The dominant background in the $\gamma\gamma jj$ channel is QCD multijet events, where two jets mimic two photons. During the jet fragmentation process, π^0 and η mesons are produced and will promptly decay into multiple photons. If the mesons have a E_T greater than about 10 GeV they will coalesce and mimic a single photon. The handle on these events comes from the longitudinal shower profile. The meson’s multi-photons generally shower sooner in the electromagnetic calorimeter than a single photon would. A thorough study of em candidates’ longitudinal shower shape has been completed to estimate the jet misidentification rate [11]. The probability for a jet to fragment into an isolated photon($P(j \rightarrow \gamma$)) is of the order of a few times 10^{-4}. $P(j \rightarrow \gamma$) is small, but the multijet cross section is so very large that this background is still significant. A rough Monte Carlo estimate of the expected number of QCD multijet events is,

$$N(\gamma\gamma jj) = \sigma(prod) \times A \times L_{int} \times \{P(jet \rightarrow \gamma')\}^2$$

$$N(\gamma\gamma jj) = (4.0 \times 10^5 \text{pb})(100 \text{pb}^{-1})(2.5 \times 10^{-7})$$

$$N(\gamma\gamma jj) = 10 \pm 4 \text{ events},$$
where σ is the production cross section, L_{int} is the integrated luminosity, ‘A’ is the acceptance of a $\gamma\gamma jj$ event, and $P(jet \rightarrow \gamma)$ is the probability for a jet to fragment into an isolated photon. The $\sigma \cdot A$ is estimated from PYTHIA5.7, and $P(jet \rightarrow \gamma)$ was carefully calculated [11].

The second, and much smaller, source of background is single and double direct photon production. The number of events expected is small due to the direct photon production’s low probability of producing high E_T jets. The expected number of events for all direct photon production is $N(\gamma\gamma jj)=0.1\pm0.05$ events. This was estimated using PYTHIA5.7 and a careful calculation of the probability for high E_T jets to be produced in direct photon events [12]. The direct photon channels are small sources of background and are ignored.

Other sources of background would be the $Z \rightarrow e^+e^- 2\text{jet}$, $W\gamma \rightarrow e^\pm \nu \gamma + 2\text{jet}$ where a track is lost by the electron, and $t\bar{t} \rightarrow e^+e^- \nu \nu + 2\text{jet}$ where both the tracks are lost. With the no ‘hits’ in drift chamber between vertex and γ’s calorimeter shower requirement, the electron sources of background are greatly reduced [12], $N_{\text{electron}} = 0.1 \pm 0.05$ events.

The QCD multijet background $M_{\gamma\gamma}$ is estimated using a data-based method. The data-based method uses the same event requirements, but requires either photon candidate to fail an EMF, ISOL, or χ^2 requirement. This will give a QCD enriched sample, since the photon candidate is likely a π^0 or η meson. Similarly, a $M_{\gamma\gamma}$ distribution is calculated and the background is normalized to the LEP Higgs mass excluded region of the data sample, i.e. both ensembles have the same number of events for $M_{\gamma\gamma} \leq 60$ GeV/c^2 (Fig.2). The expected number of QCD events are $N_{QCD}=10.5\pm4.0$ events, while seven events are observed. For a $M_{\gamma\gamma}$ mass greater than 60 GeV/c^2, $N_{QCD}=3.5\pm1.3$ events are expected, while zero are seen. Further, the data-based background estimate is consistent with the Monte Carlo estimated number of $N_{MC}^{QCD}=10\pm4$.

IV. SIGNAL EFFICIENCY AND HIGGS MASS LIMIT

Monte Carlo (MC) is essential for calculating the signal efficiencies for $\gamma\gamma jj$ events. Initially $p\bar{p} \rightarrow HW$ and $p\bar{p} \rightarrow HZ$ events are generated using PYTHIA5.7, in which internal decay channel switches force the decays $H \rightarrow \gamma\gamma$ and $W/Z \rightarrow q\bar{q}$ exclusively. PYTHIA is a leading order event generator that correctly models all spin effects of the decaying W/Z, and H particles. The structure function used is CTEQ3M, but using several other structure functions very little change is seen. Seven ensembles of 5000 events each are generated, with Higgs masses of 60, 70, 80, 90, 100, 110, and 150 GeV/c^2. The events are then detector simulated and event reconstructed.

The final event requirements are applied to the seven HW/Hz samples. A diphoton invariant mass is calculated and histogramed for every event that passes. The signal efficiency for each Higgs-mass sample is calculated by making a gaussian fit to the diphoton invariant mass distribution. A mass width is extracted from the fit; here a 4σ $M_{\gamma\gamma}$ window is used, and the number of events are integrated and simply divided by the number generated (Fig. 3).

A preliminary 90% and 95% confidence level cross section limit vs $M_{\gamma\gamma}$ was calculated (Fig. 4). The limit is calculated using a Bayesian approach [13]. The calculation incorporates the error associated with the efficiency uncertainty, luminosity uncertainty, and background
FIG. 3. The efficiency ranges from 5.5% to 9%. The error displayed on the efficiency is statistical, and is of the order of 5%.

expectation uncertainty. The calculated limit assumes all error sources are uncorrelated, which is generally true. The bosonic Higgs cross section is overlaid onto the cross section limit plot. The cross section and branching fractions are taken from [8]. A 90(95)% C.L. bosonic Higgs lower mass limit of 86(81) GeV/c² is set. A general 90(95)% C.L. upper limit production cross section is calculated which ranges from 0.6(0.7) pb for $M_{\gamma\gamma} = 60$ GeV/c² to 0.3(0.4) pb for $M_{\gamma\gamma} = 130$ GeV/c².

V. CONCLUSIONS

A search for new physics in the $p\bar{p} \rightarrow \gamma\gamma jj$ has been completed. Seven events are seen in the entire ensemble with zero events seen with $M_{\gamma\gamma} \geq 60$ GeV/c², while 3.5 ± 1.3 events of QCD are expected. A 90(95)% C.L. bosonic Higgs lower mass limit of 86(81) GeV/c² is set, using standard model coupling strengths between the Higgs and the vector bosons. A general 90(95)% C.L. upper limit production cross section is calculated which ranges from 0.6(0.7) pb for $M_{\gamma\gamma} = 60$ GeV/c² to 0.3(0.4) pb for $M_{\gamma\gamma} = 130$ GeV/c².
FIG. 4. The bosonic Higgs cross section is from reference 8. The 90% and 95% C.L. lower mass limit of 86 GeV/c² and 80 GeV/c² respectfully is set for the bosonic Higgs.

ACKNOWLEDGEMENTS

We thank the staffs at Fermilab and collaborating institutions for their contributions to this work, and acknowledge support from the Department of Energy and National Science Foundation (U.S.A.), Commissariat à l’Energie Atomique (France), State Committee for Science and Technology and Ministry for Atomic Energy (Russia), CNPq (Brazil), Departments of Atomic Energy and Science and Education (India), Colciencias (Colombia), CONACyT (Mexico), Ministry of Education and KOSEF (Korea), and CONICET and UBACyT (Argentina).
REFERENCES

* Visitor from IHEP, Beijing, China.
† Visitor from Universidad San Francisco de Quito, Quito, Ecuador.