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The D@ Collaboration *
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Abstract

We present latest preliminary results on hard color-singlet exchange in
proton-antiproton collisions. The fraction of dijet events produced via color-
singlet exchange is measured as a function of jet transverse energy, dijet pseu-
dorapidity separation, and proton-antiproton center-of-mass energy. These
results are qualitatively consistent with a color-singlet fraction that increases
with increasing quark-initiated processes.

*Submitted to the XVIII International Symposium on Lepton Photon Interactions,
July 28 — August 1, 1997, Hamburg, Germany.
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A signature for dijet production via hard color-singlet exchange is a rapidity gap (no
particles in a region of rapidity) between the dijets. Hard color-singlet exchange has been
observed at both the Tevatron [1-3] and HERA [4]. The measured color-singlet rate, roughly
1% in proton-antiproton collisions [1-3] and 10% in positron-proton collisions [4], is too large
to be produced by electroweak boson exchange, thus indicating a strongly-interacting process
[3,4]. We present new measurements by the D@ Collaboration of the fraction of color-singlet
exchange in dijet events as a function of dijet transverse energy (Er), dijet pseudorapidity
separation (A7), and proton-antiproton center-of-mass energy (4/s).

Measuring the color-singlet fraction as a function of these variables probes the color-
singlet dynamics and its coupling to quarks and gluons. Decreasing /s or increasing the
dijet Ep or An (i.e. increasing Bjorken z) increases the proportion of initial-state quark
processes. Therefore, if the color singlet couples more strongly to quarks than a single gluon
couples to quarks, the color-singlet fraction is expected to rise with increasing proportion of
initial-state quark processes. The observed color-singlet fraction is expected to deviate from
this behavior, however, if the dynamics of color-singlet exchange is significantly different
from that of simple gluon exchange.

Although standard QCD (NLO calculations and parton shower Monte Carlos) cannot
account for the existence of hard color-singlet exchange, higher-order QCD processes may
explain this phenomenon [5-9]. The exchange of two perturbative gluons in a color-singlet
state was originally proposed by Bjorken as a simple mechanism to produce rapidity gaps
between jets with a predicted color-singlet fraction on the order of 1-5% depending on the
initial-state partons [5]. Since the two-gluon singlet couples more strongly to gluons by a
9/4 color factor compared to single gluon exchange, the observed color-singlet fraction is
expected to decrease with increasing initial-state quark processes.

This simple two-gluon picture has been expanded to include certain dynamical effects
using a leading-log BFKL approximation to two-gluon exchange [7]. These effects lead to a
rapidly decreasing color-singlet fraction with increasing dijet Er and a rising color-singlet
fraction at large dijet Ay.

Soft color rearrangement [9] is an alternative QCD-motivated explanation for rapidity gap
production. In this model, color flow (via the exchange of a gluon or quark) can be canceled
by the exchange of nonperturbative soft gluons, leading to an effective colorless exchange.
Since initial-state quarks have fewer possible color combinations than initial-state gluons,
this model predicts a color-singlet fraction that increases with increasing initial-state quark
processes, in contrast to the two-gluon model. In addition, assuming that initial-state gluon
processes are highly suppressed, the soft color model is estimated to give a color-singlet
fraction of (1/9)? ~ 1%.

An alternative to the QCD-based models, the exchange of a hard U(1) gauge boson
that couples only to baryon number (quarks), has been proposed to explain the observed
rapidity gap phenomena [10]. With an appropriate choice of the mass and coupling constant,
a color-singlet fraction of 1% can be obtained. Since the boson couples only to quarks, the
color-singlet fraction is predicted to increase with increasing initial-state quark content.
Dynamics of the gauge boson predict a color-singlet fraction that increases with dijet Er
more rapidly than from parton distribution functions alone.

The color-singlet fraction calculated from models for the exchange of a hard color singlet
(i.e. a two-gluon singlet or U(1) boson) includes the probability that the color-singlet event
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TABLE I. Triggers and data samples showing trigger and offline E7 cuts and number of events
after all offline cuts.

Measurement Sample Dijet E7 Threshold Nipvents
Name Trigger Offline In| > 1.9 (1.7)
Er, Ay low ET 12 15 6.2K
dependence medium Er 18 25 33K
at 1800 GeV high Er 25 30 73K (104K)
NZ] 630 12 12 8.5K
dependence 1800 12 12 11.6K

is observable, that is, the rapidity gap is not contaminated by particles from spectator
interactions. This probability (~ 10%) [5,11,12] is expected to be independent of the flavor
of the initiating partons in the hard scattering and to have a weak dependence on the
proton-antiproton center-of-mass energy (4/s) [11,12].

Data from two center-of-mass proton-antiproton energies of /s = 1800 GeV and /s =
630 GeV are used in this analysis. Three opposite-side dijet triggers with different dijet Er
thresholds were taken at 1800 GeV, and one low-E; data sample was taken at 630 GeV (see
Table I). At the trigger level all events were required to have two jets with || > 1.6 and
An > 4 (1800 GeV) or 3.2 (630 GeV). Offline, events are required to have || > 1.9 and
a vertex within 50 cm of the center of the detector. Events with more than one proton-
antiproton interaction were rejected using vertex and timing information. Corrections are
applied to account for multiple interaction events remaining in the sample (as a function of
instantaneous luminosity) and the small fraction (~ 10%) of single vertex events incorrectly
removed from the sample.

The offline jet E7 and 5 cuts have been optimized for each measurement. For the com-
parison of the 630 and 1800 GeV samples the offline Er threshold is the same as the trigger
threshold (12 GeV) since any inefliciencies cancel in the ratio of the two measurements. For
the 1800 GeV samples used in the dijet E7 and An measurements, the offline E7 thresholds
are higher than the trigger thresholds in order to ensure high trigger efficiency. The high
E; sample used for the Ay measurement has a less restrictive cut of || > 1.7 in order to
increase statistics in the sample.

The multiplicity distribution of final-state particles in the pseudorapidity region between
the dijets has been shown to be a useful way to observe and measure color-singlet exchange
[13,2,3]. We utilize the electromagnetic calorimeter and central drift chamber as a measure
of particle multiplicity (denoted n., and nk, respectively) and use a negative binomial
distribution (NBD) to parametrize the color-exchange background and extract the color-
singlet signal (see [3] for details). In order to reduce the sensitivity to multiple interaction
contamination, we fit only the low multiplicity region of the data. The color-singlet fraction
(fs) is defined as the number of events above the color-exchange background parametrization
divided by the number of events in the sample. For the high F; sample we obtain f, =
(0.85 + 0.06(stat)+0.07(syst))%. The systematic error is dominated by the uncertainty in
the background subtraction.




Figure 1 shows the multiplicity distribution (n.) between the jets for the low E; 630 and
1800 GeV samples. Using a NBD to parametrize the color exchange multiplicity distribution
for each sample, we obtain f, = (0.6 +0.1(stat))% at 1800 GeV and f, = (1.6 + 0.2(stat))%
at 630 GeV. The ratio of the two measurements is 2.6 +0.6(stat). Systematic errors have not
yet been finalized, but uncertainties in the fitting and jet energy scale do not significantly
affect this result.
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FIG. 1. The calorimeter multiplicity (m.a, the number of calorimeter towers with
Er > 200MeV) between the dijets for the 630 and 1800 GeV samples, plotted on a logarithmic =
scale to emphasize low multiplicity bins.

In order to measure the color-singlet fraction as a function of E7 and Az the data samples
must be divided into several subsamples leading to large uncertainties in the color-exchange
background subtraction. We thus use a method of determining the E7 and Az dependence
which is largely independent of the background. We calculate the fraction for each bin
of Ep or An using the (0,0) multiplicity bin (ncw = nue = 0), where the color-exchange
background is negligible (~ 5%). For each sample the overall measured (0,0) fraction is
normalized to the overall color-singlet fraction previously obtained for that sample using the
NBD fit method. This approach allows a more accurate determination of the shape of the
color-singlet fraction as a function of Er and An.

Figure 2(a) shows the color-singlet fraction at 1800 GeV binned as a function of the
second leading jet E7 and plotted at the average dijet Er for that bin. Figure 2(b) shows
the color-singlet fraction at 1800 GeV as a function of dijet Ay for the high E; sample.

The measured color-singlet fraction in Fig. 2(a-b) shows a slight rise as a function of
dijet Er and A, and the ratio of the color-singlet fraction at 630 and 1800 GeV is greater
than one. Qualitatively, these results are consistent with a color-singlet fraction that rises
with increasing initial-state quark content and thus appear to be inconsistent with current
two-gluon models. Directly comparing to existing models, however, requires understanding
higher-order dynamical effects in the data that may not be properly taken into account by
the current models.

In conclusion, we have presented new information on the fraction of dijet events produced
via color-singlet exchange. These results are qualitatively consistent with a color-singlet
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FIG. 2. The color-singlet fraction: (a) as a function of the second leading jet E7 plotted at the
average dijet E7 for that bin; (b) as a function of An between the leading dijets. Statistical (inner
error bars) and statistical plus systematic errors (outer error bars) are shown. The error band at
the bottom shows the normalization uncertainty in each sample.

fraction that increases with increasing quark content. These results will be used to put
constraints on color-singlet coupling and dynamics and thus differentiate between current
theoretical models.
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