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Production of Gauge Bosons at the Tevatron

C. E. Gerbera �

aFermi National Accelerator Laboratory
P.O. Box 500, Batavia, IL 60510, USA

The CDF and D� collaborations have used recent data taken at the Tevatron to perform QCD tests with W

and Z bosons decaying leptonically. D� measures the production cross section times branching ratio forW and Z

bosons and determines the branching ratio B(W ! l� ) = (10:43� 0:44)% (l = e; �). This also gives an indirect
measurement of the total width of the W boson: �W = 2:16 � 0:09 GeV. The W cross section times branching
ratio into tau leptons is measured to be �(pp! W +X)B(W ! �� ) = 2:38�0:13 nb, from which the ratio of the
coupling constants is determined: gW� =gWe = 1:004� 0:019� 0:026. D�'s measurement of the di�erential d�=dPT
distribution for the Z boson decaying to electrons, discriminates between di�erent phenomenologic vector boson
production models. CDF measures the cross section for the Drell{Yan continuum, and extracts improved limits
on compositeness scales for quarks and leptons of �ql � 3� 6 TeV, depending on the model. Studies of W + Jet

production at CDF and D� �nd that the QCD prediction underestimates the production rate of W +1 Jet events
by about a factor of 2 as measured by both collaborations.

1. INTRODUCTION

W and Z bosons, the carriers of the weak force,
are directly produced in high energy pp collisions
at the Fermilab Tevatron, operating at a cen-
ter of mass energy of

p
s = 1:8 TeV . In addi-

tion to probing Electroweak Physics, the study
of the production of W and Z bosons provides
an avenue to explore QCD, the theory of Strong
Interactions. The bene�ts of using intermedi-
ate vector bosons to study perturbative QCD are
large momentum transfer, distinctive event sig-
natures, low backgrounds, and a well understood
electroweak vertex.
Large number ofW bosons have been detected

by the two collider detectors (CDF and D�), dur-
ing the 1992{1996 running period. These large
samples of W bosons complement the detailed
studies carried out on the Z boson at LEP and
SLC, and also the new W studies from LEP II.
The CDF and D� collaborations have used these
large data samples to perform various tests of the
Standard Model. Their preliminary results are
presented in the next sections.

�For the CDF and D� collaborations.

2. W AND Z PRODUCTION CROSS

SECTIONS AT D�

The W and Z production cross sections times
leptonic branching fractions are measured using
data collected by the D� detector during 1994{
1995, in the electron, muon and tau channels.
TheW candidates decaying to electrons or muons
were selected as events containing one high qual-
ity isolated lepton and an imbalance of the mo-
mentum in the transverse plane of at least 25 GeV
for electrons and 20 GeV for muons, as a signal
for the undetected neutrino. The Z candidates
decaying to electrons or muons were selected as
events containing two high quality isolated lep-
tons.
The major source of background in all four

cases is due to QCD events with jets faking lep-
tons. The amount of background in the samples
is estimated directly from collider data. Back-
grounds originating from other physics processes
(W ! �� ; Z ! �� , Drell{Yan) are estimated
from Monte Carlo. Lepton selection e�ciencies
are determined from the Z ! ll data. The ge-
ometric and kinematic acceptance is calculated
from a fast Monte Carlo simulation of the D� de-
tector. Table 1 shows the preliminary values for
the cross sections measured from these samples.
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Table 1
The D� preliminary cross sections for W and Z bosons.

W ! e� Z ! ee W ! �� Z ! ��

Nobs 59579 5705 4472 173
Background(%) 8:1� 0:9 4:8� 0:5 18:6� 2:1 8:0� 2:1
E�ciency(%) 70:0� 1:2 75:9� 1:2 24:7� 1:5 43:2� 3:0
Acceptance(%) 43:4� 1:5 34:2� 0:5 20:1� 0:7 5:7� 0:5
Luminosity [pb�1] 75:9� 6:4 89:1� 7:5 32:0� 2:7 32:0� 2:7

� �B [nb] (�stat) 2:38� 0:01 0:235� 0:003 2:28� 0:04 0:202� 0:016
(�syst) (�lum) �0:09� 0:20 �0:005� 0:020 �0:16� 0:19 �0:020� 0:017

Many common sources of systematic error can-
cel when taking the ratio of the W to Z produc-
tion cross section times branching ratio, de�ned
as

R � �(pp!W +X)B(W ! l� )

�(pp! Z +X)B(Z ! ll ):

This ratio is of interest since it can be expressed as
the product of calculable or well measured quan-
tities:

R =
�W

�Z

�(W ! l�)

�(Z ! l+l�)

�Z

�W
:

For the combined electron and muon channels,
D� measures

R = 10:32� 0:43:

Using the LEP measurement[1] of B(Z ! ll ) =
(3:367 � 0:006)%, and the theoretical calcula-
tion[2] of �W=�Z = 3:33� 0:03, one obtains

B(W ! l� ) = (10:43� 0:44)%:

Combining this result with a theoretical cal-
culation of the W leptonic partial width[3]
�(W ! l� ) = 225:2�1:5 MeV, results in a total
width for the W boson of

�(W ) = 2:159� 0:092 GeV:

This method gives the most precise indirect mea-
surement of the width of the W boson (�W ) cur-
rently available. All these results are in good
agreement with previous D� results[4], and with
Standard Model predictions.
D� has also observed the production of

W ! �� and used it to test lepton universal-
ity. The � lepton is identi�ed via its hadronic

decay, which is detected as an isolated, narrow
jet, with ET (jet) > 25 GeV and completely con-
tained within D�'s central calorimeter. In addi-
tion, to select � 0s originating from W decays, a
minimum imbalance in the transverse energy of
25 GeV is required. The Pro�le distribution, de-
�ned as the sum of the two highest ET towers di-
vided by the transverse energy of the cluster, pro-
vides powerful discrimination against QCDmulti-
jet backgrounds. Jets originating from hadronic �
decays tend to be narrower than those originating
in multijet QCD events, and therefore will show
a higher value for the Pro�le distribution. Fig-
ure 1 shows the Pro�le distribution for � candi-
dates (before the Pro�le cut), and for QCD back-
ground events. The shaded low{Pro�le region is
used to estimated the QCD contamination in the
�nal W ! �� sample.
Events where more than one inelastic collision

took place during the same beam crossing were re-
jected at the trigger level; this e�ectively reduced
the integrated luminosity to � 17 pb�1 for the
complete 1994{1995 D� data sample. 1202 events
pass these selection criteria, with estimated back-
grounds of 106� 7� 5 events from QCD, 81� 14
events from noisy calorimeter cells, 32� 5 events
from Z ! �� , and 3 � 1 events from W ! e� .
The acceptance � e�ciency for the selection is
� 3:8%. The preliminary cross section times
branching ratio obtained from this data is

�(pp!W +X)B(W ! �� ) = 2:38

�0:09 (stat) � 0:10 (syst) � 0:20 (lum)nb:

Comparing this measurement with D�'s pub-
lished [4] value for � �B(W ! e� ), measures the



3

Figure 1. D� Pro�le Distribution for � candidates
(Top) and for QCD multijet background events
(Bottom).

ratio of the couplings

gW
�
=gW

e
= 1:004� 0:019� 0:026:

This result shows good agreement with the ex-
pected e � � universality.
D� also measures the di�erential d�=dPT cross

section for the Z boson decaying to electrons,
as a function of the boson transverse momen-
tum. This measurement provides a sensitive test
of the resummation formalismused in low PT vec-
tor boson production phenomenology. The same
data set as the one in the inclusive production
cross section measurement is used for this anal-
ysis. The shape of the background as a function
of PZ

T
is obtained directly from D� direct pho-

ton data. The uncertainties in shape and level
of background are conservatively assigned to be
50% for each bin in PT . The variation of the ac-
ceptance and e�ciency vs PZ

T
is calculated using

a Monte Carlo simulation.
The resulting distribution for the di�erential

cross section, normalized to the inclusive mea-
surement is shown in �gure 2, compared to theo-

retical predictions by Ladinsky and Yuan [5], and
Arnold and Kau�man [6]. Both predictions use
MRSA structure functions and are smeared with
the D� detector resolution. A comparison of the
smeared predictions to D� data, shows a better
agreement with the former [5] (�2

dof
= 1:25), than

the latter [6] (�2
dof

= 9:2).
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Figure 2. D� data (full line), compared to the-
oretical prediction by Ladinsky{Yuan[5] (dotted)
and Arnold{Kau�man[6] (dashed).

3. DRELL{YAN CONTINUUM PRO-

DUCTION AT CDF

CDF measures d2�=dMdy (jyj < 1) for dilep-
tons pairs produced in the process pp! l+l�+X,
using 110 pb�1 of dielectron and dimuon data
taken during the 1992{1996 Tevatron run. If
quarks and leptons are composite and have a com-
mon substructure, the dilepton mass spectrum in
pp ! l+l� + X interactions will show an excess
relative to the Standard Model Drell{Yan expec-
tation at high masses.
The event selection requires the presence of two
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opposite charged, isolated, central leptons (elec-
trons or muons), with El

T
> 20 GeV and invari-

ant mass of the dilepton pair of at least 50 GeV.
The major sources of background are QCD multi-
jet events and Diboson and Top production pro-
cesses; they are estimated directly from collider
data.
Figure 3 shows CDF's result. The circles (M <

50 GeV) correspond to earlier data [7]. The di-
amonds and crosses, respectively, are the dielec-
tron and dimuon data, normalized in the 50 to
150 GeV mass range to the Standard Model NLL
prediction from [8]. The lack of any signi�cant
deviation from the Standard Model prediction is
used to set a limit on quark{lepton compositeness
scales.
To establish a compositeness scale, any devia-

tion of the data from the Drell{Yan prediction is
assumed to be due to composite fermions. At col-
lision energies well below the mass scale of com-
positeness, quark and lepton substructure can be
described by an e�ective four{fermion contact in-
teraction. CDF adds the ELHQ[9] contact la-
grangian to the Standard Model Drell{Yan ampli-
tudes to calculate the cross section used to deter-
mine the compositeness scale. The various com-
positeness models considered are categorized by
the signed interaction strengths; the two models
giving the largest di�erences are shown in �gure 3.
The observed number of events forM > 150 GeV
are compared against model predictions using a
binned likelihoodmethod. This allows the setting
of improved limits on compositeness scales of

�ql � 3� 6 TeV;

at single sided 95% CL limit for the combined e; �
data, depending on the model.

4. STUDIES OF W + JETS PRODUC-

TION AT CDF AND D�

The CDF Collaboration uses 108 pb�1 of data,
accumulated from 1992 to 1995, to measure the
production cross section of �e

n
� W+ � n Jets

(for n = 1; 4) relative to the published (W+ �
0 Jets) inclusive cross section measurement for
the 1992{1993 collider run [10]. The analysis is
restricted to events where the W decays into a

Figure 3. CDF Drell{Yan data, compared to the
Standard Model prediction by[7], and two com-
positeness models giving the largest di�erences.

central pseudorapidity electron (j�ej < 1:1). The
jets are reconstructed using a 0.4 �xed cone algo-
rithm and restricted to j�Jetj < 2:4.

The backgrounds to this sample are determined
as a function of jet multiplicity in the event. The
dominant background is due to QCD multijet
events, and varies from � 2:9% to � 27% for the
n = 0 to n = 4 case. The background originat-
ing from Top and Diboson production processes
varies from � 0:1% to � 17% for the n = 0 to
n = 4 case. Backgrounds from electroweak pro-
cesses (W ! �� , Z ! �� and Z!ee/) are esti-
mated as a 
at 3% contribution. The overall de-
tection e�ciency is � 20%.
The measurement of �e

n
is compared to pre-

dictions obtained from the leading order QCD
matrix element calculations by including gluon
radiation and hadronic fragmentation using the
HERWIG [11] shower simulation algorithm. The
W boson events with hadron showers are then
introduced into a full CDF detector simulation,
and the resulting jets are identi�ed and selected
as in the data, allowing a comparison between the
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QCD predictions and the data.
Figure 4 shows CDF's data compared to the

theoretical prediction for two choices of the renor-
malization and factorization scale Q2

REN;FAC
.

The published Z+ � n Jets cross section from
reference [12] are also shown. One observes that
the measured W+ � n Jets cross sections are a
factor of 1.7 larger than the LO QCD prediction
for Q2

REN;FAC
=M2(W ) + p2

T
(W ).
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Figure 4. CDF's �e
n
(W +n Jets) as a function of

the jet multiplicity. The published result[12] for
�e
n
(Z + n Jets) is also shown.

CDF data is also used to compare di�erent dis-
tributions of jets produced with a W boson to
QCD predictions. Figure 5 shows the measured
ET distribution for the leading to fourth{leading
jet in events of W+ � 1 to W+ � 4 Jets re-
spectively. The error bars shown for the data
include statistical uncertainties and background
subtraction systematics. The shape of the jet ET

distributions are well reproduced by the theoreti-
cal prediction. The invariant mass distribution of
the two leading jets and the �R separation be-
tween the two leading jets is also well reproduced

by QCD.
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Figure 5. The shape of the jet ET distributions
for the leading to fourth{leading jet in events of
W+ � 1 to W+ � 4 Jets is well reproduced by
QCD.

The D� Collaboration uses its inclusive 1994{
1995W ! e� sample to measure R10, the exclu-
sive ratio of theW+1 Jet toW+0 Jet production
cross section as a function of jet ET threshold in
the 20 to 60 GeV range. The analysis is restricted
to events where the W decays into a central pseu-
dorapidity electron (j�ej < 1:0). The jets are re-
constructed using a 0.7 �xed cone algorithm and
restricted to j�Jetj < 2:4.
The backgrounds to this sample are determined

as a function of jet ET threshold (Emin

T
) for both

the W +1 Jet and the W +0 Jet case. The dom-
inant background is due to QCD multijet events,
which stays below 2% for all thresholds in the
W + 0 Jet case, and varies from � 5% to � 20%
for Emin

T
of 20 to 60 GeV in the W + 1 Jet

case. The backgrounds originating from other
physics processes do not exceed the 2% level for
all Emin

T
. The variation of the selection e�ciency
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as a function of Emin

T
is estimated using D�'s

Z ! ee sample. The uncertainty in the e�ciency
introduces a systematic uncertainty of � 5% for
Emin

T
= 25 GeV. A comparable source of system-

atic uncertainty at that jet ET threshold comes
from the jet energy calibration.
The measurement of R10 is compared to NLO

QCD predictions obtained by the DYRADMonte
Carlo [13], tailored to the experimental e and Jet
de�nitions used at D�, and by the experimental
resolutions. Figure 6 shows the measured R10 dis-
tribution as a function of Emin

T
, compared to the

theoretical prediction. NLO QCD does underes-
timate the absolute value of the measurement by
4�, independent of the threshold chosen for the
jet ET . Little variation is observed in the pre-
diction when varying PDFs or the normalization
and factorization scales.
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Figure 6. D0's W + 1 Jet to W + 0 Jet ratio as
a function of jet Emin

T
, compared to NLO QCD

prediction by[13].

5. CONCLUSIONS

Using approximately 100 pb�1 of data from
Run 1 at the Tevatron, the CDF and D� collabo-
rations make precise measurements of the vector
boson production properties that test QCD pre-
dictions. The inclusive measurements show good
agreement with the Standard Model predictions.
CDF's measured W+ � n Jets cross sections are
a factor of 1.7 larger than the LO QCD predic-
tion for Q2

REN;FAC
= M2(W ) + p2

T
(W ). D�'s

measured W + 1 Jet to W + 0 Jet ratio is un-
derestimated by NLO QCD by 4�, independent
of the threshold chosen for the jet ET .
We are grateful to the D� and CDF collabora-

tions for discussions of their data.
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