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SYNCHROTRON RADIATION INTERFERENCES
BETWEEN SMALL DIPOLES AT LEP

C. Bovet, A. Burns, F. Méot∗, M. Placidi, E. Rossa, J. de Vries

CERN, Geneva, Switzerland.

Abstract

Synchrotron Radiation interferences between small dipoles
in the very low (visible) frequency range have been stud-
ied at the LEP diagnostic mini-wiggler. Their understand-
ing allowed a substantial brightness gain by adequate lay-
out modifications. The phenomenon is described analyti-
cally in terms of time coherence effects. This serves as a
basis for further detailed numerical simulations of the ex-
periment by means of stepwise ray-tracing, and allows pre-
cise interpretation of the spectral, polarization and intensity
measurements collected at LEP. It also provides guidelines
for SR diagnostic at injection energy in LHC.

1 INTRODUCTION

Two identical devices (mini-wigglers) [1] provide dedi-
cated SR for transverse and longitudinal bunch profile mea-
surements on e+ and e− beams in LEP with a streak camera
sensitive in the near-UV to visible range [2]. They are lo-
cated at∼ 67 m on either side of IP1 where the light beams
are extracted by plane mirrors.

A first configuration exploited until 1993 (Fig. 1) in-
volved a ∼ 3 m long localised closed orbit bump. It was
subject to harmful multiple image formation and interfer-
ence effects which received theoretical interpretation [3].
This led to the design of a new configuration (Fig.2) now
operational and compatible with bunch train operation at
LEP2 energies [4].

Figure 1: The first mini-wiggler set-up in the LSS1 LEP straight section.
e+e− synchrotron light beams extracted at IP1 are focused in the optical
laboratory.
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Figure 2: The new mini-wiggler layout at the left side of IP1 for di-
agnostics on the e+ beam. The closed orbit bump now extends over
15.6 m from W1 to W4. A similar set up is installed symmetrically
to IP1 for the e− beam. SR sources from both dipoles W3 and W4,
now 6.75 m away, fall within the acceptance of the imaging optics
(Fig. 1) which focuses on W4 and the effect of W3 is reduced to ' 10%
parasitic blurring while W1, W2 are not seen.

2 EXPERIMENTAL RESULTS

The first comparative measurements between the original
mini-wiggler set-up and a configuration where the SR emis-
sion from a single dipole could be observed were per-
formed in 1993 [5]. In the former case the light intensity
was comparable to that from the parasitic sources (e.g. the
quadrupole QL4) while in the latter case about 2 orders of
magnitude intensity were gained (Fig. 3). This result sug-
gested that the interference effects could be cured on the ba-
sis of the theoretical investigations [3]. Experiments have
been performed using this new configuration the main re-
sults can be summarised as follows.

The intensity from the W3–W4 pair agreed, well with SR
froma single dipole confirming the remaining factor of∼ 2
in the interference intensity loss predicted from the numeri-
cal simulations for the case of a pair of dipoles 6 m apart. It
is worth to mention that following the improvements in the
productionof visible light a series of accelerator physics ex-
periments requiring the use of the streak camera were per-
formed with a very low current (4µA single bunch).

Intensity measurements as a function of the deflection α
in W3 and W4 were performed making use of polarising fil-
ters to separate the σ- and the π-components of the radiation
(Table 1) [6]. The two vertical lobes of the π-component
were clearly observed on a screen positioned slightly out of
focus. This method was adopted to precisely determine the
longitudinal position of the image plane defined by the su-
perposition of the two π-lobes.
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Figure 3: Comparison of the experimental data [4,5] with numerical
simulations (continuous curves [3]) performed in 1993 and 1994. The ra-
diated power at the streak camera is shown as a function of the dipole ex-
citation for two different 4-dipole configurations and for the single-dipole
case. The + and – are deflection signs in the dipoles W1-W4 juxtaposed
as in Fig. 1. Note a remarkable result in the +– – + configuration: due to
the interference, the SR intensity stays constant within the 10–40A current
range.

Table 1: Integrated (relative) intensities of the light spots at the
image plane. (Beam energy E = 20 GeV). In the case of the im-
ages corresponding to 40A excitation it was possible to measure
the W4 and W3 light spots separately. The integrals obtained for
the other images correspond to a combination of the light from the
2 sources. These values compare fairly well with the theoretical
predictions as shown on Fig. 5.

Source I α Intensity Intensity σ+π σ
σ+π

π
σ+π

(A) (mrad) in σ- in π-

W3 40 1.40 0.80 0.13 0.93 0.86 0.14

W4 40 1.40 0.86 0.20 1.06 0.81 0.19

W3+W4 25 0.88 2.39 1.71 4.10 0.58 0.42

W3+W4 12 0.42 1.53 0.85 2.38 0.64 0.36

3 THEORETICAL INTERPRETATION

3.1 Interference

Numerical simulations of interference [3] by ray-tracing [7]
in the first 4-dipole configurations (Fig. 1) are reported
in Fig. 3. Interference consists of time coherence effects
which can be summarized as follows. An electron travers-
ing a pair of dipoles (for simplification) delivers a double
electric field impulse (Fig. 4) which can be written

E(t) = e(t)
[
δ

(
t− T

2

)
−δ(t +

T

2

)]
where e(t) is the single dipole impulse, δ is the Dirac dis-
tribution, t is the observer time, T = d(1 + γ2Ψ2 +
K2/2)/(2γ2c) is the time delay between the two impulses
(γ= relativistic Lorentz factor, Ψ = observation angle, K =
αγ, c= light velocity, d=magnet separation).

The squared Fourier transform of E(t) is homogeneous
to the SR brightness at the observer and is written

|Ẽ(ω)|2 = 4 sin2 ωT

2
|ẽ(ω)|2

where |ẽ(ω)|2 describes the brightness due to one dipole,
homogeneous to the K1/3 or K2/3 Bessel functions in reg-
ular SR. For dipoles which are d ' metres apart (Fig. 2),
and ω ' 0.5 eV (visible light, left end of the spectrum in
Fig. 4), one gets ωT/2 � 1 and the attenuation due to the
interference amounts to sin2(ωT/2) ' (ωT/2)2.

Pulling the two dipoles 6.75 m apart (W3–W4 in
Fig. 2) leads to an increase in sin2(ωT/2) by a factor
(6.75/0.76)2 ' 80, consistent with the measured inten-
sity gain obtained by going from the first miniwiggler
configuration to the second one.
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Figure 4: Double electric field impulse Eσ(t) emitted by a 45GeV elec-
tron undergoing a α = 0.43 mrad deflection in W3 and W4 d = 0.76 m
apart, and the corresponding brightness dPσ/dνdΩ (normalized to 1mA
circulating beam current) in the direction ϕ = α/2, Ψ = 0.

3.2 Single dipole

Figure 5 presents a comparison between intensity measure-
ments in the new configuration (Fig. 2) and the theoretical
predictions schemed in Fig. 6 which displays the shape of
the σ- and π- components of the visible SR due an electron
traversing a single dipole, as observed at the surface of the
extraction mirrors at IP1 (Fig. 1).

It can be shown (Fig. 5 and Table 1) that the Pσ/Pπ ratio
varies strongly from one dipole excitation to another, but is
very different from the usually assumed (2/3)/(1/3) ratio of
the low frequency SR approximation [9]. It can be verified
that dPσ/dϕ is zero for ϕ = α (Fig. 6); this is due to

∫
Eσdt

= 0 for that particular direction of radiation [3].
An important feature of these simulations is that they in-

volve the single SR source W4, thus neglecting any resid-
ual interference effects due to W3. Such interference would
result in a distortion of the SR spectrum by a partial sine-
modulation (Fig. 4) which in turn would translate into non-
linear effects in Fig. 5, where the light power as a function
of the dipole excitation is implicitely correlated to the over-
lapping of the two sources W3 and W4.

The intensity measurements do not prove the existence
of such residual interference. Nevertheless the slight dis-
crepancies between the measurements and the simulations
(Fig. 5) might reveal it. This point would deserve deeper
experimental and theoretical investigations. It might for in-
stance explain the fringes that appear in the π-spot of the
W3–W4 image observed at 12A [4].



Figure 5: Comparison between the measured intensities (Table 1,
M curves) and numerical simulations for a 20 GeV electron, normalised to
1 m A beam (T curves), in the 400–800nm spectral range (data normalised
to the calculated σ + π intensity at 25A).
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Figure 6: 3-D plot of the σ- and π-components of the visible light in-
tensity (400–800 nm) from W4 (α = −0.43 mrad), at large distance, ob-
tained by ray-tracing of a single 20 GeV electron [7]. The transverse axes
are the angles ϕ (horizontal) and ψ (vertical). The end intensity peaks are
due to the edge radiation [3], [8]. It can be observed that dPσ/dϕdψ ' 0
at ϕ = α = −0.43 mrad (upper plot).

As well, special properties apparent in Fig. 6 (such as∫
Eσdt 6= 0 at ω ' 0, consistent with the con-

cept of ‘strange electromagnetic waves’ as developped in
Ref. [10]), deserve finer experimental investigation. The
edge effect might explain the double spot shape of the
π-image of W4 at 40A [4] namely the two spots correspond-
ing to the two end peaks of W4 (Fig. 6). Works relevant
with this issue have been accomplished recently [11].

4 CONCLUSIONS

A new configuration of the dedicated SR source (mini-
wiggler) compatible with LEP2 energies and the bunch train
scheme is now in operation. Pulling the last two dipoles
6.75 m apart considerably reduces the destructive interfer-
ence and improves the light intensity by a factor of 30 com-
pared to the previous configuration.

These experimental results confirm the theoretical inves-
tigations and provide a deeper insight into interference is-
sue in connection with the emission of synchrotron radia-
tion from small dipoles. This might be of particular impor-
tance for the optimisation of LHC beam diagnostics [12]
where the same ray-tracing methods and codes are used to
investigate the brightness of a short dipole in the spectral
range beyond the critical energy.
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