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1. Introduction

The Cosmic Microwave Background Radiation (CMBR) provides a strong

observational foundation for the standard cosmological scenario, the Big

Bang theory. It is di�cult to understand how to produce a 2:7�K black-

body spectrum except in the context of the Big Bang scenario. The near

blackbody spectrum of the CMBR along with it's near isotropy provides

compelling evidence for a period of fairly quiescent Friedman-Robertson-

Walker expansion for many expansion time before recombination. The past

decade has seen huge advances in the measurement of the CMBR, with

COBE's de�nitive discovery of anisotropies and measurement of a near per-

fect blackbody spectrum. The small deviations from isotropy have and will

continue to tell us a great deal about the inhomogeneities in our universe,

and small deviations from a blackbody spectrum can also tell us about the

energetics in our universe. Such deviations have already been discovered in

the direction of clusters of galaxies, although the mean CMBR spectrum
is, so far, indistinguishable from a blackbody spectrum.

Here we give a introduction to the observed spectrum of the CMBR and

discuss what can be learned about it. Particular attention will be given to

how Compton scattering can distort the spectrum of the CMBR. This is

left toward the end though. Unfortunately the author has no expertise in
the area of how these measurements are made but Smoot has covered this

area in his lectures. An incomplete bibliography of relevant papers is also

provided. Some old but still highly useful reviews of the physics behind the

spectra are by Danese and De Zotti[20], and Sunyaev and Zel'dovich[74].

Theoretically not much has changed in this �eld in over 25 years. Much of

the interesting work was done by Zel'dovich and Sunyaev in 1969[83].
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2. Executive Summary

The universe today is fairly di�use and cold, however the universe is ob-

served to be expanding, and in the past we may deduce that the uni-

verse was more dense and because of p dV work the matter in the universe

would also have been hotter. Extrapolating the expansion back to very early

epochs the universe would have been very hot and very dense and the uni-

verse must have been expanding very rapidly in order to have grown as large

as it is observed to be. Hence the Hot Big Bang. When the matter in the

universe is hot and dense the thermal equilibration time becomes very short.

Thus we expect everything to rapidly approach thermal equilibrium and we

therefore expect the photons in the universe to have a thermal (blackbody)

spectrum at early times. It is easily shown that expansion of the universe

(or traversal through any gravitational �eld) leaves a blackbody spectrum

a blackbody spectrum although the temperature may change. This tem-

perature change is known as the redshift and can sometimes be thought

of as either a Doppler shift or a gravitational redshift. Formally speaking

the two may be thought of as the same phenomena and there is often no
physical sense in trying to separate them.

Thus as a �rst approximation we expect the photons in the universe

to have a blackbody spectrum. The fact that the cosmic microwave back-

ground radiation (CMBR) has nearly a blackbody spectrum is strong evi-

dence for the Hot Big Bang hypothesis. There is simply not enough matter

around today to thermalize so many photons (there are >� 109 photons for

every atom) and in any case most of the matter in our universe is much

hotter that 3K. The reason we might expect a deviation from blackbody is

because some of the matter in the universe has gone out of thermal equilib-

rium with the photons and may either heat or cool the photons. This can

be done by non-equilibrium scattering or absorption of existing photons or

by non-equilibrium emission of new photons. Clearly most of the matter

in the universe is not today in thermal equilibrium with the CMBR and

the spectrum o�ers us a probe of this. However there are so many more

CMBR photons in the universe than there are protons or electrons that it is

di�cult for the matter to signi�cantly distort the spectrum of the CMBR.

Thus the fact that the observed CMBR spectrum is so close to a blackbody

should come as no surprise.

3. Measures of Temperature

The brightness or speci�c intensity of light, I� , is de�ned as the incident

energy per unit area, per unit solid angle, per unit frequency, per unit time.
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It may be written

I� =
2h�3

c2
n
 (1)

where � is the frequency and n
(�) is the quantum-mechanical occupation

number, i.e. the number of photons (in each polarization state) per unit

phase space volume measured in units of h3. Here h is Planck's constant,

and we assume the light is not (linearly) polarized so that there are an

equal number of photons in each polarization state. A blackbody or Planck

spectrum has

nBB
 =
1

exp
�
h�
kT

�
� 1

(2)

where T is the the temperature. The high-frequency (h� � kT ) limit of

the Planck spectrum is known as Wien's law:

IW� =
2h�3

c2
exp

�
� h�

kT

�
(3)

while the low frequency (h� � kT ) limit of the Planck spectrum is known

as the Rayleigh-Jeans law:

IRJ� =
2�2kT

c2
: (4)

Note that the intensity is proportional to the temperature in this case.

One may invert the Planck spectrum and characterize the intensity by the

thermodynamic temperature or brightness temperature:

Tb =
h�

k ln

�����1 + 2h�3

c2I�

�����
(5)

Occasionally radio astronomers may de�ne the brightness temperature by

it's Rayleigh Jeans limit:

TRJ

b
=

c2I�

k 2�2
: (6)

In the radio region this is an excellent approximation to the thermodynamic

temperature and is simply related to the intensity, and is therefore closer

to what is actually measured.

Here we are interested in small deviations from a blackbody spectrum,

i.e. we have some temperature T
 which is a good �t to Tb at many frequen-

cies, and want to express the actual spectrum in terms of small deviations
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from a blackbody with this temperature, in particular in terms of the devi-

ations in intensity from the blackbody spectrum, �I� . For small deviations

the deviation in brightness temperature is

�Tb � Tb � T
 =
(ex � 1)2

x2ex
c2�I�

k 2�2
x � h�

kT

: (7)

Experimentally it is often easier to measure di�erences rather than abso-

lute numbers: di�erences in intensity in di�erent directions on the sky, or

between the sky and internal calibrators. Note that in the Wien region dif-

ferences in brightness temperature are greater than in the Rayleigh-Jeans

region for the same di�erence in intensity. In what follows we will tend to

plot spectral distortions in terms of di�erences in brightness temperature

versus the dimensionless frequency, x. These \derived" quantities are prob-

ably more appealing to a theorist than an observer since they are further

removed from what is actually measured.

4. Measured Mean Spectrum of the CMBR

Over the years there have been many measurements of the CMBR.

There have been many claims that the spectrum deviated signi�cantly from

a blackbody, especially in the Wien region, however recent measurements

with FIRAS (Far-InfraRed Absolute Spectrophotometer) on the COBE

satellite has shown de�nitively that the spectrum is very close to a black-

body[48]. Contemporary and quite competitive with with the �rst FIRAS
measurements was a rocket experiment [34] which also found a blackbody.

The most recent FIRAS results have appeared in ref [30] which are plotted

in �gs 1 & 2. In the 2nd �gure the we have converted to a more theoreti-

cal representation by plotting versus x = h�
kT


and converting to fractional

changes in temperature. The reason that this transformation is useful is

that we can predict the shape of the deviations from blackbody in terms of

x, which we cannot in terms of � since we have no a priori knowledge of T
 .

To transform to an x variable one must decide on a �ducial temperature.

We have used the best-�t temperature, T
 = 2:728K, taken from the most

recent results of FIRAS[30]: T
 = 2:728�0:002K. Note that the uncertainty
in T
 is which is larger than the error bars on most of the individual points

in the plots. The reason that the uncertainty in Tb � T
 can be smaller
than the uncertainty in T
 is that the experiment measures the di�erence

in brightness between a blackbody and the sky. The �0:002K represents

the uncertainty in the temperature of the reference blackbody, while the

accuracy to which this reference is thought to be a blackbody is much bet-

ter than this. Note that when �tting for a distortion from a blackbody one

must �t for both the amplitude of the distortion and for T
 simultaneously.
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Figure 1. Plotted are the residuals in Rayleigh-Jeans temperature from the best �t
blackbody as a function of frequency as stated by Fixsen et al. (1996). The error bars
are 1-�. The solid line is the subtracted Galaxy model at the Galactic poles. We see
that these measurements are running up against a fundamental limitation of Galactic
contamination.

While FIRAS certainly revolutionized the �eld, and does make obsolete

most other short wavelength measurements of the CMBR spectrum, it only

looked at the frequency range 68�640GHz. The bolometric techniques used

by FIRAS only work at high frequencies and therefore the spectrum at low

frequency was not touched by FIRAS. There has been ongoing measure-

ments of the absolute CMBR 
ux in the Rayleigh-Jeans region for 30 years

and we list some results from the last 15 years in Table 1. One can see that

measurement did not stop after COBE. As we shall see some of the spec-
tral distortions we are looking for are most visible in the Rayleigh-Jeans

regime. We have selected some of the most sensitive of measurements to

plot in �g 3. The uncertainties vary widely with frequency and are orders

of magnitude larger than those of FIRAS. Several authors have noted that

these low frequency measurements tend to indicate a temperature lower

than that obtained at higher frequencies[62, 7], suggesting that there may
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Figure 2. Same as �g 1 except here we plot the fractional deviation in brightness
temperature vs. the dimensionless frequency x = h�

kT
. To do this we have used the best-�t

photon temperature T
 = 2:728K. Plotting things in this way accentuates the deviations
at high frequencies.

be a deviation from a blackbody spectrum at low frequencies.

Measurement of the absolute CMBR spectrum, at the present level

of sensitivity, face signi�cant problems of Galactic contamination at both

long and short wavelengths. Synchrotron radiation contaminates the long-

wavelength spectrum while the short wavelength region is contaminated by

dust emission. Since we cannot expect to observe the CMBR from outside

of the Galaxy this is a fundamental limitation. Many of the results plotted
here include signi�cant corrections for this contamination. While there is

a limit to how well one can subtract o� the Galaxy, we can look forward

to improvements in Galaxy modeling using results from anisotropy exper-

iments which will have increasingly better sensitivity, sky coverage, and

angular resolution. While anisotropy experiments cannot generally make

absolute measurements of intensity, they can help to map out the Galaxy.
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TABLE 1. Listed are measurements, made over the past 15 years, of the absolute
CMBR brightness temperature at a variety of wavelengths. The results often
include signi�cant corrections for Galactic emission. Millimeter wavelengths are
omitted as they have been superseded by results of FIRAS (> 68GHz - see
Fixsen et al. 1996). The ADS code given refers to the paper where these results
are presented or reviewed and may be used to �nd the papers and abstracts online
at the NASA Astrophysics Data System and mirror sites: adsabs.harvard.edu,
cdsads.u-strasbg.fr, d01.mtk.nao.ac.jp . These codes are of the form year journal
volume page.

Frequency Wavelength TCMBR 1st Author ADS Bibliographic

(GHz) (cm) (Kelvin) Code

1.47 20.4 2:26 +0:19
�0:19 Bensadoun 1993ApJ...409....1B

90. 0.22 2:60 +0:09
�0:09 Bersanelli 1989ApJ...339..632B

2.0 15. 2:55 +0:14
�0:14 " 1994ApJ...424..517B

3.7 8.1 2:59 +0:13
�0:13 De Amici 1988ApJ...329..556D

3.8 7.9 2:64 +0:07
�0:07 " 1990ApJ...359..219D

3.8 7.9 2:64 +0:06
�0:06 " 1991ApJ...381..341D

25. 1.2 2:783+0:025
�0:025 Johnson 1987ApJ...313L...1J

7.5 4.0 2:60 +0:07
�0:07 Kogut 1990ApJ...355..102K

1.410 21.26 2:11 +0:38
�0:38 Levin 1988ApJ...334...14L

7.5 4. 2:64 +0:06
�0:06 " 1992ApJ...396....3L

4.75 6.3 2:70 +0:07
�0:07 Mandolesi 1986ApJ...310..561M

2.5 12. 2:79 +0:15
�0:15 Sironi 1986ApJ...311..418S

0.600 50. 3:0 +1:2
�1:2 " 1990ApJ...357..301S

2.5 12. 2:50 +0:34
�0:34 " 1991ApJ...378..550S

0.82 36.6 2:7 +1:6
�1:6 " "

2.5 12.0 2:78 +0:3
�0:3 Smoot 1987ApJ...317L..45S

33.0 0.909 2:81 +0:2
�0:2 " "

1.41 21.2 2:22 +0:55
�0:55 " "

3.66 8.2 2:59 +0:14
�0:14 " "

10. 3.0 2:61 +0:06
�0:06 " "

90. 0.33 2:60 +0:10
�0:10 " "

1.4 21. 2:65 +0:33
�0:30 Staggs 1993PhDT.........6S

10.7 2.80 2:730+0:014
�0:014 " 1996ApJ...473L...1S

90. 0.33 2:57 +0:12
�0:12 Witebsky 1986ApJ...310..145W

5. Spectral Distortions of the CMBR

While one should not be surprised that the CMBR has close to a blackbody

spectrum, there are various mechanisms which should cause deviations from

a thermal spectrum. Now we discuss a few of them.
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Figure 3. Plotted are a selection of the low frequency measurements of the CMBR
brightness temperature listed in table 1. From left to right the points are from Sironi
et al. (1990), Bensadoun et al. (1993), Bersanelli et al. (1994), Sironi& Bonelli (1986),
DeAmici et al. (1991), Mandolesi et al. (1986), Kogut et al. (1990), Levin et al. (1992),
Smoot et al. (1987), Staggs (1996), Johnson & Wilkinson (1987) and were chosen because
of the small errorbars. The black band at the right indicates the FIRAS data (Fixsen
et al. 1996), while the horizontal straight line represents a temperature 2.728K given by
the FIRAS best �t blackbody spectrum. The long-dashed represents a chemical potential
distortions with amplitude � = �9� 10�5 while the solid line gives free-free distortions
with amplitude Y� = �10�4. These are both idealized curves and one may expect (model
dependent) corrections long-ward of 10GHz (see Burigana, De Zotti, and Danese 1995).

5.1. ANISOTROPIES

The most common way in which the CMBR spectral distortion occurs is

when the photons have a blackbody spectrum in each direction but the tem-

peratures characterizing these spectra are di�erent in di�erent directions.

This direction dependent temperature di�erence is called anisotropy. The

anisotropy can either be caused by Doppler/gravitational e�ect or because
the gas emitting the photons really did have di�erent temperatures.

The �rst anisotropy discovered was the dipole anisotropy, i.e. the tem-

perature varies like the cosine of the angle from some point on the celestial



9

Figure 4. Superimposed on the FIRAS data of �g 2 is the largest chemical potential
distortion allowed by the data (Fixsen et al. 1996): � = �9� 10�5. The falling positive
curve is the far more plausible positive chemical potential distortion and the negative
rising curve is a negative chemical potential distortion.

sphere. It is usually attributed to the Sun moving at 371km/s. Note that

to a �rst approximation, when averaging over the sky, the dipole does not

contribute to the mean spectrum of the CMBR.

One way to check that measured anisotropies are what they are sup-

posed to be is to measure the spectrum. For a small anisotropy the change
in 
ux from the mean spectrum should be proportional to the derivative of

the 
ux of a blackbody with respect to temperature. FIRAS has done just

that for the dipole[29, 30] and found just what was expected. Most modern

anisotropy experiments use many frequency channels in order to check the

spectrum of the anisotropy, or more speci�cally to be able to subtract o�

contamination of the measurements by other e�ects than the anisotropy.
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Figure 5. Superimposed on the FIRAS data of �g 2 is the largest y-distortion allowed
by the data (Fixsen et al. 1996): y = �1:5� 10�5. The rising curve is the more plausible
positive y-distortion and the falling curve is a negative y-distortion.

5.2. CHEMICAL POTENTIAL DISTORTIONS

There are three processes which are important from thermalizing the CMBR

spectrum in the early universe: Compton scattering, double Compton scat-

tering, and free-free scattering (also known as bremsstrahlung). Compton

scattering is a much more rapid process but since it conserves the number

of photons so it can only thermalize the energy distribution of the pho-

tons and not the number of photons. All of these processes become more

e�cient as one goes to earlier and earlier epochs and eventually photon
non-conserving processes start to become important.

There is a epoch between z = 105 and z = 2�106 during which Compton

scattering is e�cient in thermalizing the energy distribution while other

processes are not capable of thermalizing the photon number. During this

epoch, if the energy-to-photon ratio is perturbed from that required for a

blackbody spectrum, the spectrum will instead approach a Bose-Einstein
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distribution

nBE =
1

exp

 
h�

kT

+ �

!
� 1

(8)

where T
 and � ( the dimensionless chemical potential) are determined by

the total energy available and the total number of photons available. If one

starts out with a thermal distribution of photons at temperature T
 and

injects a fractional increase in the energy density, �U
U
, without signi�cantly

increasing the number of photons one obtains

Tb � T


�
1� �

�
0:456� 1

x

��
�U

U
= 0:714� �� 1 (9)

Since one must �t the observations to both T
 and � one really can only

measures the 1

x
term. Double Compton scattering and free-free scattering

become increasingly more e�cient at lower frequencies and there are usu-

ally corrections to this formula at small frequencies x � 1[9, 10]. These

corrections are not liable to be important for FIRAS measurements.

This distortion to the spectrum is greatest at small x, however the

FIRAS measurements at high frequencies are so accurate that they yield

much better constraints on � than does the low frequency experiments.

Comparing with the FIRAS data one �nds j�j < 9�10�5 at the 2� level[30].

We compare the maximal allowed distortion to the low & high frequency

data in �gs 3&4, respectively.

Thus we �nd the extremely stringent constraint at a very early epoch

�U

U
< 6� 10�5 105 < z < 2� 106 (10)

Of course this is not to say that one expects large energy injection at these

epochs.

Note that for z > 106 the CMBR spectrum is not telling us much about

the energetics of the universe. However one can use Big Bang Nucleosyn-

thesis to probe the total energy of the universe up to z � 1010.

5.3. Y DISTORTIONS

If energy is injected into the universe after z � 104 Compton scattering

is unable to thermalize the distribution. The fact that we observe very

little deviation from a blackbody spectrum tells us that not much energy

could have been injected compared with the thermal energy of the CMBR.

If a small amount of energy is injected then one may solve for the linear

perturbation from a blackbody spectrum under the action of Compton
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scattering as was done by Zel'dovich and Sunyaev[83]. One �nds that the

perturbation in the photon occupation number is

�n = y
xex

(ex � 1)2

�
x
ex + 1

ex � 1
� 4

�
(11)

where the \y-parameter" is

y =

Z
dt �T cNe

k(Te � T
)

mec2
; (12)

Ne is the number density of free-electrons, and �T is the Thomson cross-

section. If one could manage to cool gas below the radiation temperature

one could produce a distortion with negative y, but typically this distortion

is produced by ionized gas which is much hotter than the photons. In the

early universe when the density of electrons is large even a small heating of

the gas over the photon temperature may lead to a signi�cant distortion.

This distortion is generally referred to as a y-distortion when applied to

the mean CMBR spectrum, but is usually called the Sunyaev-Zel'dovich

distortion when referring to an anisotropy in the spectrum because there

is more or less hot gas in one direction than another. Large amounts of

hot ionized gas exist in clusters of galaxies and the \S-Z e�ect" has been

observed in the directions of several clusters. There is no evidence for a y of

the mean CMBR spectrum, although with sensitive enough measurements

we should see the hot gas we know is out there. Fixsen et al.[30] have

placed a limit of jyj < 1:5� 10�5 from the FIRAS data. We compare the

maximal distortions to the FIRAS data in �g 5. Note that a positive y-

distortion produces a negative change in Tb at low frequencies and positive

change in Tb at high frequencies, just what one expect if one was heating a
�xed number of photons. This negative �Tb is sometimes called the \S-Z

decrement", for the S-Z e�ect was �rst looked for at radio wavelengths.

5.4. DISTORTION FROM FREE-FREE

Another important process for the CMBR spectrum is free-free scattering,

which is the scattering of a free electron o� of a charged nucleon either

emitting or absorbing a photon; in most cases of interest emitting rather

than absorbing. This is the same process which produces the X-rays ob-

served from hot cluster gas operating at microwave and radio frequencies.

The e�ect of free-free scattering on the CMBR spectrum is mostly likely to
be seen at the very longest wavelengths measured. In this Rayleigh-Jeans

limit the distortion it produces may approximated by[3]

�Tb

T

� Y�

x2
Y� =

Z
dt

Te � T


Te
� dt (13)
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Figure 6. Plotted is the constraint on the temperature of a fully ionized universe as a
function of redshift. The horizontally hatched region is excluded since jyj < 1:5� 10�5

while the diagonally hatched region would be excluded if Y� < 10�4. The solid line
indicates where the gas temperature equals the photon temperature and the dashed line
gives the temperature as a function of redshift for a model where the gas is ionized by
very massive stars (VMOs - see Stebbins & Silk 1986). The cosmological parameters used
are H0 = 65km/sec/Mpc, 
0 = 0:4 and 
b = 0:10.

where

� � 8�e6h2N2

e
g

3me(kT
)3
p
6�mekTe

(14)

and the Gaunt factor, g � 2 in most cases of interest. Note the T
� 1
2

e factor

in � which means that the e�ect is suppressed for higher temperature gas.

The 1=x2 dependence on this distortion means that it is the low frequency
measurements which will constrain it's amplitude. In �g 3 we plot free-free

distortions with Y� = �10�4. We see that this size distortion is close to

what is being constrained by these measurements, although no proper sta-

tistical analysis has been done. This size free-free distortion would produce

no signi�cant e�ect in the FIRAS data, although if one went far enough

into the Wien tail one would �nd large distortions from free-free emission.
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Figure 7. The same as the previous �gure except with 
0 = 1 and 
b = 0:06. The
constraints are less severe for for larger 
0 and smaller 
b.

In �gs 6&7 we have used constraints on y and Y� to put constraints

on the temperature and epoch of a reionized universe, assuming presently

favored cosmological parameters. We see that it really the y-distortion

which is most important, the free-distortion only being detectable on the

o� chance that the gas was ionized and cold. Even though the limits on y

are quite small we see that there is not too much of a constraint of ioniza-
tion after z � 100. The constraints could be made stronger if one assumes

a larger baryon density or a smaller total density.

6. Physical Processes

Now we will take a closer look at the physical processes which could cause

a distortion of the spectrum. Here we will only discuss Compton scattering

although free-free emission and double-Compton deserve an equally thor-

ough treatment.
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6.1. COMPTON SCATTERING

6.1.1. Collisional Boltzmann Equation

One may describe the state of the primeval gas of photons and electrons

in terms of the the density of particles in phase space, i.e. momentum

and position space. Here we are not interested in the polarization state

of electrons and photons so we average over the two polarization states 1

It is convenient to measure the phase space density in units of h = 2��h

which gives the the quantum mechanical occupation number, n
 and ne for

photons and electrons, respectively. The evolution of n
 can be described

by the collisional Boltzmann equation which has the form

Dn
(p
)

Dt
= C(p
) (15)

where C(p
) is the scattering term which describes the interactions with

other particles. Here D
Dt

is a convective derivative along the photon's tra-

jectory in phase space, while the right-hand-side gives the collision integral.

If there were no collisions then the Boltzmann equation states that the oc-

cupation number remains constant along photon trajectories. 2 Included

in this convective derivative are the all the e�ects of gravity on the pho-

tons, which include many of the e�ects which produce anisotropy. We will

not discuss these e�ects further as they are covered extensively in Bunn's

lectures.

The collision integral for Compton scattering of unpolarized particles

after averaging over the polarization state if scattered particles is of the

form3

CC(p
) =
2

(2��h)3

Z
d3pe

Z
d2n̂0 c (1� n̂�~�) d

2�

d2n̂0

�
h
(1� ne(pe))ne(p

0
e
) (1 + n
(p
))n
(p

0

)

�(1� ne(p
0
e
))ne(pe) (1+ n
(p

0

))n
(p
)

i
(16)

1Compton scattering in an inhomogeneous medium will produce some polarization
of the photons, which can be measured, and also e�ects the anisotropy at the several
percent level. See Melchiorri and Vittorio this volume.

2This is true for a phase space de�ned by a position, xi, and it's canonically conju-
gate momentum, pi, n(p) measures the particle density with volume measure: d3xid3pi.
In general relativity there is both the covariant momentum, pi, and contravariant mo-
mentum, pi. If one measures the density of particles per unit d3xid3pi the Boltzmann
equation as expressed above does not apply!

3This form is determined by the principle of detailed balance which results from the
time-reversal symmetry of the S-matrix (or classical or quantum mechanics)[45].
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where we have (or will) use the notation

p
 =
�

c
n̂ p0
 =

�0

c
n̂0 jn̂j = jn̂0j = 1 E =

q
(mec2)2 + (cpe)2

pe = (mec)
~� � = j~�j 
 =
1p

1� �2
: (17)

In eq 16 the values of p0
e
and �0 is determined by energy-momentum conser-

vation. The 2nd term in square brackets describes the scattering p
+pe !
p0
 + p0

e
while the 1st term results from the inverse process, p0
 + p0

e
!

p
 + pe. The 1 + n
 factor represents the increased scattering rate due to

the stimulated emission of the bosonic photons, while the 1�n
 is the Pauli
blocking factor giving the exclusion principle for fermionic electrons. The

factor of 2 in the prefactor counts the two polarization states of the incom-

ing electrons. The factor c(1 � n̂�~�) in eq 16 is a measure of the relative

velocity between the ingoing electron and photon.4 Of course, d2�
d2n̂0 is the

di�erential Compton cross-section5

Note that this form of the collision integral guarantees that a thermal
distribution is a �xed point. Substituting a Fermi-Dirac distribution for the

electrons and a Bose-Einstein distribution for the photon, i.e.

ne(E) =
1

exp( E
kBT

+ �e) + 1
n
(�) =

1

exp( �
kBT

+ �
) + 1
(18)

will cause the integrand of the collision integral to zero so long as the

temperature is same for both. Here �e, and �
 are (dimensionless) chemical

potentials given by the total electron and photon density, each of which is

conserved by Compton scattering. We expect such a thermal distribution
to be a stable �xed point since it is the highest entropy state and entropy

increases according to Boltzmann's H-theorem[45]. In the contexts we are

interested in the density of electrons is su�ciently low that �e � 1 and

Fermi-blocking is unimportant so we may set 1 � ne ! 1. In this limit

the equilibrium distribution for the electrons becomes a simple Boltzmann

distribution, i.e.,

ne(E) = exp(� E

kBT
� �e) : (19)

4This relative velocity factor is really determined by the de�nition of the cross-section.

The factor is equal to
p
jv1 � v2j2 �

1
c2
jv1 � v2j2 which reduces to the above expression

when one of the particles is massless. If both incoming particles are non-relativistic then
it reduces to the \usual" de�nition of relative-velocity: jv1 � v2j.

5The outgoing particle momentum pe and p
 are described by six numbers however
four are �xed by energy and momentum conservation. The di�erential cross-section is a
function of the remaining two parameters, which in this case we have taken to be the
outgoing photon direction, n̂0. Any two parameters would do!
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Henceforth we will ignore Fermi-blocking.

We are not really interested in the scattered electrons, so we may \in-

tegrate out" the electron distribution function. The idea is that we know

the electron distribution function a priori - which is often is a true since

Coulomb scattering is usually very e�ective in thermalizing the electron

momenta. Thus we may rewrite the collision integral as

CC(p
) =

Z
d2p̂0


"
�2

�02
S(p0
;p
) (1+ n
(p
))n
(p

0

)

�S(p
 ;p0
) (1+ n
(p
0

))n
(p
)

#
(20)

where

S(p
 ;p
0

) =

2

(2��h)3

Z
d3pene(pe) (1� ~��n̂) d

2�

d2n̂0
(pe;p
 n̂

0)
�(�0 � �(1 + ��))

�02

(21)

and ��(pe;p
 ; n̂
0) gives the fractional change in the energy determined by

energy-momentum conservation, i.e. is the solution to the equationq
(mec2)2 + jcpej2 + cjp
 j
=
q
(mec2)2 + jcpe + cp
 � � (1 + ��)n̂0j2 + c jpej (1 + ��): (22)

A unique solution always exists with �� 2 [�1;1).

We know that the CMBR is very nearly isotropic today, and it is rea-

sonable to assume that the background radiation was alway isotropic. Since

we are interested in changes in the spectrum and not anisotropy we may

also average the collision integral over n̂ to �nd the mean change in the

spectrum. Performing the two averages n̂ and n̂0 the collision integral be-

comes

CC(�;�) =

Z
d�

"
1

(1 + �)3
S(

�

1 +�
;�) (1+ n
(�))n
(

�

1 +�
)

�S(�;�) (1+ n
(�(1 + �)))n
(�)

#
: (23)

where

S(�;�) =
�3(1 + �)2

4�

Z
d2n̂

Z
d2n̂0 S(

�

c
n̂;

�

c
(1 + �)n̂0) : (24)

To obtain eq 23 we have used a little trick of changing the variable of

integration for inverse scattering from � to 1

1+�
� 1, and renaming this
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new dummy variable �. If one looks closely at eq 23 one can see that the

total photon number is preserved by scattering no matter what the form of

S(�;�).

6.1.2. Fokker-Planck Equation

One important property of cosmological Compton scattering is that, at the

low redshifts we are interested in, the background radiation photons have

much lower (total) energy and are moving much faster than the electron

they are scattering o� of. One is bouncing a very light object (the photon)

o� of a much more slowly moving heavy object (the electron) and energy

and momentum conservation dictates that that energy of the light object

is nearly unchanged by the scattering (consider bouncing a ping-pong ball

o� of a bowling ball). The electrons are not in�nitely massive nor are they

completely stationary so that the photon energy will change slightly in each

collision. All this will be re
ected in the fact that S(�;�) when considered

as a function of � will be a very narrow function sharply peaked around

� = 0 with width much less than unity. In contrast the �-dependence of

n
(�(1 + �)) and S( �
1+�

; ) is a much smoother function in the sense that

they do not vary much over the region in � where S(;�) is signi�cantly

non-zero. Thus it should be a good approximation to Taylor expand the

integrand of eq 23 in � about � = 0, but excluding the rapid dependence

through the 2nd argument of S and truncating at a given order. This is

a kind of Fokker-Planck equation6. If we expand to 2nd order in � the

Boltzmann equation becomes a partial di�erential equation (see eq 8 of

ref [1])

Dn


D�
=

1

�2
@

@�

�
�3
�
1

2
��2

@n


@�
+

�
��+ 2�2 +

1

2
��20

�
(1 + n
)n


��
(25)

where

�n =
1

Ne�T

Z 1

�1
d��n S(�;�) �n0 =

1

Ne�T

Z 1

�1
d��n @S(�;�)

@�
(26)

6Fokker and Planck actually considered the case where the momentum is only slightly
changed in each scattering and proposed Taylor expanding to 2nd order in the small
change in momentum. For Compton scattering the direction of the photon will change
signi�cantly so the momentum change is not small, but the energy change is, and ex-
panding in the small fractional energy change, �, is an obvious generalization. It is useful
to consider expanding to higher order than 2nd.



19

and we have used the electron density, Ne, introduced the Thomson cross-

section7, �T, and de�ned the Thomson optical depth, � :

Ne =
2

(2��h)3

Z
d3pe ne(pe) �T =

8�

3

 
e2

mec2

!
2

d� = Nec �Tdt :

(27)

This optical depth gives the expected number of Compton scatterings of

low energy photons o� of non-relativistic electrons.

The form of the equation is reminiscent of a di�usion equation which

is good description of the physics, the small changes in photon energy at

each scattering causes the photons to di�use in energy space. The
@n

@�

term causes a net drift toward increasing energies while the (1 + n
)n

will cause a net drift to lower energies (if it's coe�cient is positive). We

expect these drifts and di�usion to sum to zero in thermal equilibrium,

i.e. when n
 has a Bose-Einstein distribution (eq 18), the electrons have a

Boltzmann distribution (eq 19), and the two share a common temperature.

This consideration alone suggest that for a thermal electron distribution

with temperature Te that we should expect

�2� + 4�2 + ��20

�2

=
�

kTe
: (28)

Another feature of eq 25 is the di�erential operator 1

�2
@
@�

in front, which

guarantees conservation of photon number. This will persist to all order in

the �-expansion. In fact one can pretty much guess the 2nd order Fokker-

Planck equation without knowing much about the Compton cross-section.

We will take a more constructive approach below.

6.1.3. Compton Cross-Section

To compute the Compton collision integral, or it's Fokker-Planck approxi-

mations one needs to use the Compton cross-section. The relativistic (Klein-

Nishina) di�erential Compton cross-section in an arbitrary rest-frame is[1]

d2�

d2n̂0
=

3�T

16�

1� �2

[1� n̂0�~� + �
�1(1� n̂�n̂0)]2

�
"
1 +

 
1� (1� �2)(1� n̂�n̂0)

(1� n̂�~�) (1� n̂0�~�)

!
2

+
�2(1� �2) (1� n̂�n̂0)2

(1� n̂0�~�) [1� n̂0�~� + �
�1(1� n̂�n̂0)]

#
(29)

7Thomson scattering is the non-relativistic and classical limit of Compton scattering
as �rst described by J.J. Thomson.
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Figure 8. Plotted is the distribution of fractional energy changes, �, experienced by low
energy photons scattering o� of an isotropic distribution of electrons with velocity �c.
The left panel shows the distribution for � = 0:01, 0.02, and 0.05; while the right panel
shows the distribution for � = 0:1, 0.2, and 0.5. For graphical clarity we have adjusted
the heights of the curves to have unit amplitude at � = 0. The maximum and minimum
values for � are dictated by energy and momentum conservation. The distribution is
narrow and symmetric for small � and becomes wider and more skew for larger velocity
electrons. This positive skewness gives the heating of the photons by the electrons. The
Fokker-Planck equation approximates the photon distribution function by the �rst few
terms in it's Taylor series about � = 0 when convolving with these distributions. This
is liable to be a good approximation for scattering o� of low velocity electrons since the
�-distribution is sharply peaked around � = 0.

where

� =
�

mec2
: (30)

For many astrophysical applications, and especially those related the the

CMBR there are two small numbers which enter this cross-section. Firstly �

is very small for the microwave photons we see observe today, roughly 10�9.

Clearly as we go to higher redshifts the background photons become more

energetic, but � remains small in the redshift range relevant to the CMBR

spectrum z <� 107. The 2nd small number is � since we are almost always

interested in non-relativistic electrons. If one is interested in a thermal

electron velocity distribution then a small � expansion is equivalent to

a small kTe
mec2

expansion. In most applications the � � kTe
mec2

so we will

concentrate more on the higher order terms in Te and not �.

To proceed it is probably easiest to follow the methodology of Barbosa

[1], where one expands the cross-section in � but not �. For a thermal elec-

tron distribution one can compute the moments, �n, in the Fokker-Planck
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expansion analytically, and only at the end one should Taylor expand the

result in Te about Te = 0. One may rewrite eq 24 as

S(�;�) = Ne

�
(1� ~��n̂) d�

d�

�
n̂;n̂0

(31)

where d�
d�

gives the di�erential cross-section wrt to the fractional change in

photon energy. So for example, expanding everything to zeroth order in �

(which we denote by the superscript (0)) we �nd

�
(1� ~��n̂) d�

(0)

d�

�
n̂;n̂0

= �T F (�; � sgn(�)) (32)

where

F (�; b) = sgn(�)�H(1 � (1� b)�

2b
)

�
"
3(1� b2)2(3� b2)(2 + �)

16b6
ln
(1� b)(1 + �)

1 + b

+
3(1� b2)(2b� (1� b)�)

32b6(1 + �)

�
4(3� 3b2 + b4)

+2(6 + b� 6b2 � b3 + 2b4)�

+(1� b2)(1 + b)�2

�#
; (33)

and H() is the Lorentz-Heaviside function which is unity for positive argu-

ment and zero otherwise. We see that this function is only non-zero for

� 2
�
� 2�

1 + �
;

2�

1� �

�
(34)

and, as promised, for small � is sharply peaked around � = 0. We plot this

function for various values of � in �g 8.

6.1.4. Moments of �

With this general expression for d�(0)

d�
given above one can compute, to 0th

order in �, the �-moments which are the coe�cients in the Fokker-Planck

equation (some of these may be found in ref [1]:

�0

(0)

= 1

�1

(0)

=
4

3

2�2 = 4

�
kTe

mec2

�
+ 10

�
kTe

mec2

�
2

+ O
"�

kTe

mec2

�
3

#
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�2

(0)

=
2

15

4�2(5 + 16�2) = 2

�
kTe

mec2

�
+ 47

�
kTe

mec2

�
2

+O
"�

kTe

mec2

�
3

#

�3

(0)

=
4

25

6�4(21 + 23�2) =

252

5

�
kTe

mec2

�
2

+ O
"�

kTe

mec2

�
3

#

�4

(0)

=
4

525

8�4(147+ 1554�2 + 859�4) =

84

5

�
kTe

mec2

�
2

+ O
"�

kTe

mec2

�
3

#
:

(35)

and we also �nd that �n0
(0)

= 0 since d�(0)

d�
has no dependence on �. The

fact that �0

(0)

= 1 tells us that, to 0th order in � and all orders in � the

scattering rate per unit volume is cNe�T.
8 The coe�cients in the Fokker-

Planck equations are determined by the average of the electron velocities

indicated, and these expressions hold whether or not the electrons are in

thermal equilibrium. For a thermal distribution these velocity moments can

be computed exactly in terms of modi�ed Bessel functions[1], however we

have found it convenient to expand these functions to the appropriate order
in temperature. It seems that a Taylor series to a given order in � is less

accurate than the same order Taylor series expansion in Te. To keep track

of the various terms in the expansion let us devise the notation

O(n;m) = O
��

kTe

mec2

�n � �

mec2

�m�
(36)

There are no terms � O(0; 0). One �nds that

�2n�1
(m) � �2n

(m) � O(n;m) : (37)

so to include all the terms of order � O(n;m) in one must make a Fokker-

Planck expansion to order 2n in �. It is probably not worthwhile to go

to high order in these expansions, since one can circumvent this expansion

by doing the collision integral. Nevertheless the �rst few terms give useful

analytical expressions.

8The total (Klein-Nishina) cross-section starts to fall below the Thomson cross-section
when the center-of-mass photon energy rises to close to mec

2, i.e. when 
� >
� 1. A careful

look at eq 29 will show that by setting � = 0 in this equation we are ignoring terms of
order �
. For microwave photons this approximation should be good for computing the
total cross-section as long as 
 <� 109 i.e. for anything less energetic than � 500TeV elec-
trons. In contrast to compute the small e�ects on the spectrum from Compton scattering
one should include 1st order terms in � whenever � >

� �2.
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6.1.5. The Kompaneets Equation and Relativistic Corrections

The lowest order non-zero Fokker-Planck equation, given by the expansion

of eq 25, is the Kompaneets equation

@n


@�
=

1

�2
@

@�

�
�3
�
kTe

mec2
�
@n


@�
+

�

mec2
(1 + n
)n


��
j j

O(1; 0) O(0; 1) (38)

where the order of the two terms are indicated. This equation was �rst

published by Kompaneets[42] in 1957 and probably developed earlier as

part of the Soviet thermonuclear weapons program. For hotter gas one can

add terms O(2; 0) which yields an extended Kompaneets equation[72]

@n


@�
=

1

�2
@

@�

"
�3

 
kTe

mec2

�
1 +

5

2

kTe

mec2

�
�
@n


@�

+
7

10

�
kTe

mec2

�
2

 
6�2

@2n


@�2
+ �3

@3n


@�3

!

+
�

mec2
(1 + n
)n


!#
(39)

Further terms in this expansion will be derived in ref [72] although it is not

clear how useful they will be since extensive numerical work has been done

with the more accurate collision integral (e.g. ref [56]).

6.1.6. The Generalized Sunyaev-Zel'dovich E�ect

The idea of the Sunyaev Zel'dovich distortion is that one starts out with a

background radiation which is close to a blackbody spectrum, just what we

expect to be produced by the early universe, and it is slightly distorted by

the action of hot ionized gas through the Compton scattering process we

have just described. In this small distortion limit we need just substitute

in a blackbody spectrum, nBB of eq 2, into the right-hand-side of the Kom-

paneets equation. Let us generalize this idea a bit by instead considering

the more general Fokker-Planck expansion which is an expansion in Te and

�. In this small distortion limit the di�erent terms will add linearly to the

total distortion which we may write as a sum

�n
 =
X
n�0

X
m�0

Y (n;m)

C �n(n;m)

SZ (x) x =
�

kT

(40)

where

Y (n;m)
C =

Z
d�

�
kTe

mec2

�n � kT


mec2

�m
(41)
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Figure 9. Plotted is the small deviation in intensity from a blackbody divided by the
classical y-parameter caused when blackbody photons pass through a hot gas of electrons.
This is computed using the extension of the y-distortion given in the text. The gray band
is centered on the classical y-distortion which applies when kTe � mec

2. The black lines
are for electron temperatures of 1, 2, 5, 10, 15, 20, and 25 keV. We have of course assumed
Te � T
 . The curves intersect at the zeros of the function �n(2;0)

SZ .

and the superscript (n;m) correspond to the O(n;m) contributions to the

Fokker-Planck expansion. Substituting nBB(x) into the various terms of

eq 39 we �nd that

�n(0;0)SZ (x) = 0

�n(1;0)SZ (x) =
xex

(ex � 1)2

�
x
ex + 1

ex � 1
� 4

�

�n(0;1)SZ (x) = � xex

(ex � 1)2

�
x
ex + 1

ex � 1
� 4

�

�n(2;0)SZ (x) =
xex

(ex � 1)2

 
�10 + 47

2
x
ex + 1

ex � 1
� 42

5
x2

e2x + 4ex + 1

(ex � 1)2

+
7

10
x3

(ex + 1)(e2x + 10ex + 1)

(ex � 1)3

!
: (42)
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One does expect that to each order in energy that a blackbody spectrum

is a stable solution when the electron and photon temperature are equal so

one should expect the sum rule

NX
n=0

�n(n;N�n)

SZ (x) = 0 (43)

and this does seem to be true for N = 0 and and N = 1.

The classical Sunyaev-Zel'dovich y-distortion contains only the O(1; 0)
and O(0; 1) terms and may be written

�n = y
xex

(ex � 1)2

�
x
ex + 1

ex � 1
� 4

�
(44)

where

y = Y (1;0)

C � Y (0;1)

C =

Z
d�

k(Te � T
)

mec2
: (45)

This is the y-distortion plotted in �g 5 and used in eqs 11&12. To see how

much this classical formula errs we compare the di�erent expression for a

range of electron temperature in �g 9. We see that the O(2; 0) corrections
become signi�cant when Te >� 5keV. This 2nd order distortion agrees well

with the computation of the collision integral by Rephaeli[56] so higher
order corrections do not seem to be important for Te <� 15keV.

7. The Future

In the past decade we have witnessed astounding advances in the measure-

ment of the CMBR spectrum. After decades of tantalizing evidence of devi-

ations from a blackbody spectrum we �nd that the spectrum is amazingly

close to a perfect blackbody. No longer is it possible to consider a universe

with a very hot inter-galactic medium, or that hydrodynamic forces could

have played a large role in forming the large scale structure. There is also

little room for non-equilibrium energetic events in the early universe at red-

shifts < 107. In a way this is most unfortunate. The thermal equilibrium

state contains the least information - all remnant of events in the universe

before z � 107 have been thermalized to nothing, or more precisely to one

number: the temperature. At the moment we really don't know how to in-

terpret this number, other than to make a rough comparison to the number
of baryons which is observationally rather ill-determined. Perhaps some day

we will have cosmogenic theories which will predict the baryon-to-photon

ratio with great accuracy.

Observationally we are approaching a brick wall which is the Galaxy. At

the present level of sensitivity Galactic contamination from dust and syn-

chrotron radiation is an important contaminant at all wavelengths. Galaxy
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modeling which makes use of a spectral and spatial structure of the Galaxy

observed at a variety of wavelengths will improve as sensitivities improve

however there will be a limit to how accurately one can subtract o� the

Galaxy even given perfect data. We won't be making observations outside

of the Galactic plane any time soon!

Yet there is still a lot of room for improvement on the decimeter and

meter scale anisotropies. Also there is this tantalizing evidence for negative

spectral deviations ....9.

Things are not bleak. In fact spectral distortions of the CMBR is a

rapidly growing �eld. Multi-frequency observations is beginning to be the

norm for CMBR anisotropy experiments, and with the CMBR satellites we

can expect literally millions of measurements of the CMBR spectrum in

di�erent directions on the sky. Admittedly there is a big di�erence between

absolute measurements of the CMBR 
ux and di�erential measurements

which are required for anisotropy since the anisotropy spectral measure-

ments are modulo any DC spectral distortion. However it is just his sort

of measurement which will make improved Galaxy subtraction possible.

The spectral information obtained will tell us mostly about the Galaxy

and extra-Galactic radio sources, however with millions of measurements

one can always hope for something a little more interesting. Along these

lines there is the cluster S-Z e�ect which is a rapidly growing �eld. With

increased sensitivity we can look forward to S-Z selected cluster catalogs,

measurements of radial cluster velocities through the kinematic S-Z e�ect,

and these studies can work their way down to galaxy groups and even large

scale structure �laments of hot gas. We can even hope to measure the gas

temperature from spectrum if it is hot enough. In the future we can ex-

pect the spectrum and anisotropy measurements to become increasingly

intertwined.
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readers will �nd it a useful reference.10
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