
F Fermi National Accelerator Laboratory

FERMILAB-Conf-97/003-E

E823

Front-end Software for the D� Silicon Tracker

Q. Jia, D. Buchholz, S.Y. Jun, Y. Li, R. Snihur, T.L.T. Thomas and R. Tilden

Northwestern University
Evanston, Illinois 60208

J.A. Wightman

Iowa State University
Ames, Iowa 50011

J.F. Bartlett, H. Lan and L. Paterno

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

January 1997

Presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference,

Anaheim, California, November 2-8, 1996

Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy



Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of

their employees, makes any warranty, expressed or implied, or assumes any legal liability or

responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe privately owned

rights. Reference herein to any speci�c commercial product, process, or service by trade

name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the United States Government or any agency

thereof. The views and opinions of authors expressed herein do not necessarily state or re
ect

those of the United States Government or any agency thereof.

Distribution

Approved for public release; further dissemination unlimited.



1996 IEEE Nuclear Science Symposium and Medical Imaging Conference, November, 1996

DØ Conf–96–63
FERMILAB–Conf–97/003–E

Front–end Software for the DØ Silicon Tracker 1

Q. Jia, D. Buchholz, S.Y. Jun, Y. Li2, R. Snihur, T.L.T. Thomas, and R. Tilden
Northwestern University, Evanston, IL 60208

J.A. Wightman
Iowa State University, Ames, Iowa 50011

J.F. Bartlett, H. Lan3, and L. Paterno
Fermilab, Batavia, IL 60510

Abstract

Fermilab’s DØ experiment is constructing a new silicon
microstrip detector as part of its upgrade detector. This will
have nearly 800,000 instrumented channels and combined with
the rest of the tracker accounts for nearly one million channels.
Being able to monitor, calibrate, and diagnose problems with
this many channels is a daunting challenge. We propose to use
distributed processors to “spy” on the data as it is collected.
These processors will be resident in the VME data acquisition
crates and will be able to access the data over either VME
or a secondary bus which is independent of the main data
acquisition path. The processing of the monitor data will
take place in these local processors. Communication with the
online cluster will be over ethernet and will employ a graphical
interface for user control. The design uses a client/server
architecture in this network of processors. We describe the
software and hardware which has been tested as part of the
verification of this design.

I. INTRODUCTION

The design of the front-end software for the DØ tracker
includes support for diagnostics, calibration, and monitoring of
the approximately one million channels of readout electronics.
All these processes are capable of being run while portions
of the detector are being tested as well as after it is installed
and taking data. A design criterion for the diagnostics is that
they be capable of being run in situ without removing any
electronics. The calibration must also be done under the same
conditions. The monitoring must be done while the normal
data acquisition is underway, but it must operate in such a
way as not to impact the data acquisition adversely by causing
any deadtime. Although the upgraded DØ detector will not
be operational until 1999, the construction of the readout
electronics and the silicon microstrip detectors has begun.

1This work was supported in part by the U. S. Departmentof Energy.
2Now at Hughes Information System, Landover, MD 20785
3Visitor from IHEP, Beijing, P.R. China

This paper discusses not only the proposed solution for the
final detector but the work in progress which must support the
production testing of all assembled silicon microstrip detectors
with their bonded readout chips and the test beam efforts for
measuring the performance of these detectors.

II. MOTIVATION

A major component of the DØ upgrade involves replacing
the present tracking system with a combination of a silicon
vertex detector [1] and a scintillating fiber tracker [2]. The new
tracking system replaces the � 7000 instrumented channels
of the existing tracker with � 1; 000; 000 channels. With this
many channels to monitor, we can no longer continue as in
the past where we read events in the host computer from the
Global Shared Common, the data pool available to all the
monitor programs, and analyzed them to monitor the detector
performance with the results displayed in a series of histograms
for the detector shifter to examine. Trying to maintain one
million histograms in a single location is a very daunting task.

To illustrate the scope of the problem we consider the
following simple example where we round off some of the
numbers for simplicity. We assume we have 1M channels that
we wish to analyze by histogramming the ADC spectrum for
each channel. The SVXII chip [3] uses an 8–bit ADC, so we
have 256 possible values. We assume that we only need to
allocate 2 bytes per histogram channel, and we assume that
HBOOK [4] is used to create and maintain the histograms.
With HBOOK we need 40–50 words (again assume single
precision) for header information, like the identification, the
title, number of channels, and lower and upper bins. Therefore,
we need � 300 words (600 Bytes) per readout channel for the
histogram or� 600 MBytes for all of the histograms. Trying to
handle this in a central location would mean a fairly high page
fault rate in the processor, at the very least. It can be argued that
this number is an upper limit on the memory requirements since
not every possible ADC value needs to be histogrammed; also,
we might be able to reduce the number of channels monitored
but it would be short–sighted to preclude the possibility of
monitoring all channels at this point in the design.



In addition, with the Silicon tracker expected to have an
occupancy of � 3 � 5%, using the events from the data pool
does not guarantee high sampling statistics. Finally, it is not
entirely clear whether using fully triggered events (Level 1 –
Level 2 – Level 3), like those in the data pool, might not bias
the results.

III. PROPOSED SOLUTION

Our proposed solution encompasses both hardware and
software and is discussed in the following sub–sections. First
we address the question of how the hardware can handle this
proposed solution.

A. Hardware

As discussed above, monitoring all of the channels of the
Silicon tracker requires a very large number of histograms.
The simplest way to handle a large number of histograms is to
do so in a distributed environment; that is, we can have many
processors handle the task rather than demanding a single,
central processor do the entire job. The detector readout system
provides a very natural distributed environment with the
readout spanning some number of VME crates. In particular,
the present layout of the Silicon tracker readout uses 10 VME
crates. To do the processing we propose to use an embedded
processor in each of the front–end crates which solves the
problem of shipping large amounts of data around the DAQ
system. This is technically feasible as processor boards
based on the 680x0 family of processors which include VME
interfaces are readily available in today’s market with next
generation processors, like the PowerPC, just now becoming
available. Therefore, we should be able to obtain the necessary
local processing power to do the job.

We can make a very conservative estimate of the sampling
statistics assuming old technology, a 68040 processor. With
this configuration we can expect to make 10K histogram entries
per second so that at the end of a 4 hour run we should have
over 1400 entries per histogram, assuming 100K channels to
be monitored in the crate. This corresponds to 100 entries in a
little over 15 minutes, which should be sufficient statistics to
determine if the channel is out of tolerance. This estimate only
gets better with time as we use the PowerPC or its successor.

One potential concern with this solution is the incorporation
of a processor in the front–end digitization crates due to
the presence of high–speed clocks. High–speed clocks can
potentially produce high–frequency noise which can be picked
up by an ADC. This is not a problem for the silicon tracker
since digitization is performed in the SVXII chip and not on the
readout board. The standard network interface is to Ethernet so
that all communication with these crates will be over Ethernet.

There remains the challenge of how to get the data into the
VME–resident processor without impacting the DAQ system.
One design criterion we set for ourselves is to find a solution
that does not add any deadtime to the experiment. Using some
representative design parameters from the silicon detector, like
a maximum of 128K channels per crate and 10KHz Level 1
accept rate, there are not sufficient unused VME cycles to meet

our sampling requirements. Therefore, we are forced to look to
a private databus. This requirement for a monitor interface has
become a part of the design specification for the readout board,
the VME Readout Buffer (VRB) [5]. At present the design
uses IEEE P–1394 [6] and data FIFO separate from the VME
data FIFO’s.

The IEEE P–1394 is a high–speed serial bus that is gaining
attention from the electronics industry. Some features of
this standard are live insertion of the modules, simultaneous
asynchronous and isochronous operations, and compatibility
of different bandwidth devices on the same bus. An interface
chip set is presently available from Texas Instruments [7] that
supports 100Mbs (Mega–bit/sec) operation with 200 Mbs
due for release shortly. Plans are to have a 400 Mbs interface
available within a year. With several of the industry giants
looking favorably on P–1394 and proposals to increase the
bandwidth to as much as 1.6 Gbs, it appears that we will be
adopting an interface with a relatively long lifetime.

There is an additional advantage to be realized with using
an embedded processor in each VME crate. We could allow
it to control downloading the SVXII chips via the Port Card
if we also incorporate a 1553 interface in our crates, see [1]
for details. Since there will be a very standard download
for each chip for global data runs, this will simplify the
download procedure as only a simple command to download
is necessary. The pattern could be resident in a local database
in the front–end thus obviating the need for sending it with the
download command. Figure 1 shows a schematic of the layout
of the host connections to the front–end processors and their
connections to the silicon readout.

ethernet backbone

UNIX
Host

local ethernet

VME crates with VxWorks +EPICS+DART

L
oc

al
 C

P
U

V
B

D
V

R
B

C
V

R
B

V
R

B
V

R
B………….

L
oc

al
 C

P
U

V
B

D
V

R
B

C
V

R
B

V
R

B
V

R
B………….

to level 2

trigger and clock

to SVX

Fig. 1 Schematic of host connection to the front–end processors in
VME crates along with the connections that continue to the SVX
readout chips.



B. Software
Now that we have specified a workable hardware solution

we address the question of the software environment. We have
chosen to use VxWorks[8] for our real–time kernel since the
Fermilab Online Support Department (OLS) fully supports it
for both the Sloan Digital Sky Survey as well as for the DART
project, the DAQ system being used in most of the fixed–target
experiments in the 1996–1997 run.

However, the real–time system must be able to communicate
via the current controls system protocol. At present we use
the ACNET protocol developed by the Fermilab Accelerator
Controls group, but are evaluating EPICS [9], the Experimental
Physics and Industrial Control System, as a replacement. One
feature of EPICS is that it uses VME–based processors running
VxWorks with TCP/IP communication over Ethernet. Thus, no
matter which solution for the controls system is adopted, either
ACNET or EPICS, we will use VxWorks.

We are using the VxWorks cross development system which
includes a C compiler for the 68040 processor on the Motorola
processor boards, MVME162, 166, and 167. Wind River
Systems[8], the developers of VxWorks, also supports C++,
but we have opted to use C for now. However, we have not
precluded upgrading to C++ in the future as we are undertaking
an object-oriented design of the front-end software.

IV. SOFTWARE DESIGN

We have divided the software into two basic categories,
“system” processes and “user” processes. The “system”
processes provide the software framework since they are
independent of the specific sub–detector. The “system”
processes will be restarted whenever the node is restarted. The
“user” processes are the ones that are sub–detector–specific
and will only be started when requested. Both are explained in
more detail in the following sub–sections.

A. “System” Processes

The first of these is the DAQ Front–end Process which
makes the node have the look and feel of one of the control
system nodes. It will speak the control system protocol,
whether that will be ACNET or EPICS. This means that it
will also handle all of the network communication which will
be over Ethernet in the control system protocol. It will also
handle all of the alarm system functions, like the alarm scanner,
the local database of nominal values and tolerances, and
connection to the DØ alarm system. If EPICS is adopted, then
it will fill the role of the DAQ Front-end Process. In connection
with this we have requested that COOR (the main DØ runtime
control program) broadcast all Begin/End Store and Begin/End
Run messages so that we can allow the front–end software to
respond to these events if necessary.

The second of these processes is the Event Manager. This
process will be responsible for obtaining the data from the
readout board and distributing it to the “user” processes that
request it. The Event Manager software will provide a standard
Application Programmer’s Interface (API) for the “user”
processes. We expect this data collection to be interrupt driven.

To make this process more efficient, the Event Manager will
use an interrupt service routine to signal when data is available.
The Event Manager will maintain a circular buffer of pointers
to individual data buffers, so that when a “user” process
requests a buffer of data, it will simply be given a pointer to the
buffer. In this way we avoid having to move the data any more
than is necessary. It will be the responsibility of the “user”
process that requested the buffer to return the pointer when it is
finished processing the data. This implementation of the Event
Manager allows acquisition of the events to be asynchronous
with the processing of the events.

In addition to these processes which will be running
whenever the node is running, we will also have supporting
software systems available to the “user” processes. One of
these is the histogramming system. At present we support
1– and 2–dimensional histograms with user–specified lower
and upper limits and equal bin widths. Complementing the
histograms are distributions which are running sums for
calculating the statistical moments of the distributions being
histogrammed. This precludes having to loop through the
histograms every time one of these quantities is requested.
Currently, we calculate the mean and variance for the
distributions.

B. “User” Processes
We currently envision three distinct “user” processes, but

the system we are designing is flexible enough to allow this list
to expand if needed. These are the Online Data Monitoring,
Calibration, and Diagnostics.

1) Monitoring

The first of these processes is the Online Data Monitor. This
process will operate during a run and will “spy” on the data as
it is being collected. It will create histograms and distributions
and fill them accordingly. The exact histograms have not been
specified, but we anticipate that these will include spectra
to study pulse heights and bit frequency, both of the Gray
code and the binary ADC output. The alarm scanner will
be triggered periodically to check the mean and variance of
these distributions against the nominal values and tolerances
maintained in the local database. An informational alarm will
be generated and sent to the Host whenever the mean is found
to be out of tolerance.

For data monitoring we expect that the IEEE P1394 will
provide the secondary bus so that the data being “spied” on
does not interfere with normal data transfers over the VME
backplane. For the testing we have been doing up-to-now
we rely on using the regular VME backplane for both data
collection and data monitoring. During normal data collection
a maximum of one-eighth of any event will be available in the
“spy” buffer that is accessible over the secondary bus. The
local VME processor will acquire its monitor data from this
memory and analyze the event fragment. We are designing
the online data monitor to be sensitive to any changes in
the operation of the detector and/or readout electronics in
real-time. We expect to monitor such distributions as the pulse
height spectrum of each channel and will periodically compare



various statistical moments of these distributions to locally
stored reference values to signal any changes in the operation
of the detector and/or readout electronics in real-time. Any
out-of-tolerance conditions will be communicated to the online
system through the DØ alarm system. These can be entered
into a detector-specific database for incorporation in the off-line
reconstruction of the physics data. The ability to monitor the
performance in real-time is of paramount importance to the
successful operation of the DØ upgrade detector.

2) Calibration

The calibration of the silicon microstrip detectors is
accomplished by injecting a known charge into the digitizer
readout chip and comparing to the output of the chip. For the
silicon tracker using the SVXII chip this is most easily and
efficiently accomplished in the readout crate since this chip
generates its own calibration pulse. Readout of this data by the
processor will be over the VME backplane to take advantage
of the increased bandwidth. The processor has full control over
the procedure as it selects the amount of charge injected and
compares with the digitized readout. Before the calibration
sequence can begin, the SVXII chip has to be downloaded with
a proper set of values. This is best accomplished by having the
local processor having the download control after having been
given permission by COOR.

Under normal operating conditions we envision the various
bits of information that must be entered into the calibration
database, like the various statistical moments, will be sent up
to the Host. In addition, there will be an expert mode in which
the full event will be sent to the Host for study and debugging.

3) Diagnostics

The third “user” process we envision will be the Diagnostic
process. We have developed a unique programming language
for writing programs that can access VME-based hardware.
This language, which we call TE, resembles certain aspects
of Basic, Pascal, and C but is simpler to use. The code can
be run interactively through the interpretive mode, or it can
be converted to C code and compiled. The current version
runs both in our Motorola 68K processors using the VxWorks
operating system and in a PC with a Bit3 VME interface.
The interactive code can be quickly modified for testing
hardware, while the compiled code is run when the highest
speeds are required. The design of this software allows us to
run diagnostics under the same conditions, including speed
of execution, as will be used in the final installation. It also
supports diagnostic testing at the test bench facilities. This has
been used to debug and test some of the prototype electronics.

While TE has proved to be very convenient for ease of
debugging hardware, the final diagnostic programs may very
well be code written in C or C++ to take advantage of speed
of execution that can be realized when code is produced
specifically for a certain processor.

V. USER INTERFACE

Since VxWorks is a single user system, it is not desirable to
have the user, be it the detector shifter or the electronics expert,
logging into the front–end node to use it. Instead, we will
develop and maintain a GUI for the user on the Host which will
obviate the need for remembering arcane commands however
clear they may be to the original author. We will assure that this
software adheres to the DØ online standards, that is, we will
communicate with the control program to obtain ownership
of resources whenever we want to start the Calibration or the
Diagnostic process. This communication will be through the
user interface and not with each front–end crate individually. In
addition, the user interface will include the ability to display the
information returned from the front–end nodes, like graphically
displaying histograms, for example.

VI. PRODUCTION TESTING OF SILICON

DETECTORS

ethernet backbone

SGI UNIX
Host

local ethernet
M

V
M

E
16

2
V

B
D

V
R

B
C

V
R

B

15
53

T
A

B
L

E
G

P
IB

SVX and Si microstrips

VME
crate to power supplies

to movable table

to SVX chip

Fig. 2 Schematic layout of the host for production tests of silicon
detectors and the VME crate with its associated readout electronics
and connections to other standard buses.

After each silicon microstrip detector has been bonded
to its substrate and SVXII readout chip, it must be tested for
errors and to measure its response. The detectors will be placed
on a computer controlled movable table which has a laser
suspended above it. The laser can produce a focused spot of
light smaller that the strip width of the microstrip. Many of
the programs described above as part of the software design
for the DØ upgrade have been implemented as part of the
production testing of the individual silicon detectors after they
are fabricated. A TCL/TK GUI interface for a Silicon Graphics
workstation has been tested which allows the user to initiate
standard tests and also complete expert level testing. The code
for calibration, monitoring, and diagnostics is run as local



code on the VME based 68K processor in a server mode. The
workstation is a client to the 68K processor and communicates
via an ethernet link. The user on the workstation is able to click
buttons to initiate a specific task. The 68K can access GPIB,
CAMAC, and 1553 buses via VME interfaces. It can control
the movable table through a VME interface card. This is shown
in a schematic view in figure 2.

VII. CONCLUSION

Some of the software described above is still in the design
stage but substantial portions have been implemented. Those
parts necessary to control and monitor the production testing
of the silicon microstrips have been written and tested with
prototype detectors and readout electronics. The software
will continue to evolve as we get more experience with the
production testing of the microstrip detectors and in a test beam
early next year. The final product will be used for the next data
taking stage of the DØ detector which is expected in 1999.

VIII. ACKNOWLEDGMENTS

We gratefully acknowledge the support staffs at each of the
participating institutions. Financial support has been provided
by the U. S. Department of Energy.

IX. REFERENCES

[1] “DØ Silicon Tracker Technical Design Report,” DØ Upgrade
Collaboration, DØ Note 2169 (unpublished).

[2] “DØ Upgrade Technical Design Report.”
[3] “A Beginners Guide to the SVXII,” R. Yarema, DØ Engineering

Note 3823.112–EN–399 (unpublished).
[4] “HBOOK, Version 4.20,” CERN Reference Manual Y250

(unpublished).
[5] “VME Readout Buffer,” H. Gonzalez, D. Mendoza, M. Bowden,

T. Zmuda, M. Johnson, and E. Barsotti, Document # ESE–SVX–
950719 (October 25, 1995).

[6] On WWW, http://www.firewire.org/ gives the 1394 Trade
Association home page.

[7] On WWW the Texas Instruments Product
Information and Document Search Page (http://www-
s.ti.com/sc/docs/psheets/pids2.htm) allows you to search for
current 1394 support.

[8] VxWorks is produced by Wind River Systems, Alameda, CA.
[9] On WWW, http://www.cebaf.gov/accel/documents/epics doc.html.


