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Abstract 

The properties of Majorana fermions in hot plasma are studied. One-loop re- 

summed propagator, dispersion relations and their interpretation are discussed. 

It is shown that particle and hole -like solutions appear as in Dirac/chiral fermion 

case. The dispersion relations are, however, crucially different. We find that, 

in presence of a large zero temperature bare mass, hole -like excitations posses 

a negligible effective mass. As an example of real application, we consider the 

neutralinos in the minimal supersymmetric extension of the standard model and 

argue that for realistic values of the soft supersymmetry breaking masses the ex- 

istence of practically massless hole -like excitations have a considerable effect on 

the thermal properties, e.g. the thermalization rate, of particles interacting with 

these Majorana excitations. 
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The knowledge of the behaliour of a high temperature plasma is crucial to explain 

many puzzles in cosmology, e.g. the generation of the presently observed baryon 

asymmetry in the Universe during the electroweak phase transition [l]. It is well- 

known that the interaction of a fermion with a plasma in thermal equilibrium at 

temperature T modifies the fermionic dispersion relation and the poles of the fermion 

propagator with respect to the zero temperature case [2, 3, 41. For istance, for an 

exactly conserving parity gauge theory at finite temperature (like QCD or QED), it 

has been shown that dispersion relations for a Dirac fermion are characterized by 

two possible solutions of positive energy. The addition of a quark to the equilibrium 

plasma, described by the incoherent superposition of many states ]a), produces a 

fermionic excitation (particle) bt(p, A)]@) with momentum p and helicity A, while the 

operator d( -p, A) d oes not annihilate the ground state as it does at zero temperature. 

On the contrary, the removal of an antiquark d(-p, A)]@) produces a state with all 

the same quantum numbers as the particle and is referred to as a hole state (or, more 

precisely, antiparticle hole state). The energies of particles and holes is not the same 

since there is no combination of parity, charge conjugation and time reversal able to 

relate them. Moreover. in the limit of vanishing bare mass m (or ]p] >> m), particles 

have the helicity equal to their chirality, while holes have the helicity opposite to 

their chirality. Consequently the hole solution propagates with the wrong correlation 

between chirality and helicity. 

Many other different cases have been analyzed in the literature, but, to our knowl- 

edge, attention has been devoted only to the study of the properties of Dirac/chiral 

fermions propagating in a thermal background. However, in many attractive exten- 

sions of the Standard hlodel (SM) there may appear Xlajorana fermions with a non- 

negligible mass at zero temperature. In some cases these Majorana fermions have only 

chiral interactions. A striking example characterized by these features is provided by 

the Minimal Supersymmetric extension of the Standard Model (MSSM) [5] where the 

neutrally charged fermionic superpartners of the boson fields present in the SM, called 

neutralinos, posses a Majorana nature and may have a nonvanishing bare mass due 

to soft sypersymmetry breaking interactions even in the presence of unbroken gauge 

symmetry. The purpose of this Letter is to study the properties of this kind parti- 

cles, their resummed propagator, dispersion relation and interpretation. This study is 

strongly motivated by the recent observation that light stops, charginos and neutrali- 

nos may play a crucial role in generating the baryon asymmetry during the electroweak 

phase transition [G]. Since a detailed calculation of the final baryon asymmetry must 

incorporate the effects of the incoherent nature of plasma physics on CP-violating 

observables [7], a careful computation of the thermalization rate of supersymmetric 

particles in the thermal bath by making use of improved propagators and including re- 

summation of hard thermal loops is called for. In this paper we will confine ourselves 
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to the inspection of the properties of improved propagators for Majorana fermions 

having nonvanishing bare mass and chiral interactions and the full computation of the 

thermalization rate of supersymmetric particles will be presented elsewhere [8]. 

In the MSSM chiral interactions with the surrounding thermal bath produce cor- 

rections to the inverse propagators of Majorana fermions of the general form’ 

s-‘(p) = p,yp + fpy-yS - m, (1) 

where m is (renormalized) chiral mass. Notice, the absence of the term fb*tp which 

may be traced back to the nature of Majorana particles. 

The general form given above is easily shown to be valid by computing, for instance, 

the corrections to the inverse propagators of the lT3- and B-neutralinos which are 

mass eigenstates in the unbroken gauge symmetry case2. Corrections come from the 

quark-scalar quark-neutralino interactions 

- Jz 92 C qi Pn [Tsi E” - tan& (TJi - ei) B] GiL 
i 

+ Jz@ tanhI 1 ei Qi Pr, B Gin + h.c., 

and the chargino-neutralino-IV* interaction 

-G3 
g w; w y 1% 

At finite temperature the one loop correction function f, is of the form 

with 

and 

fp = +J, P)P, + 60,WJ~ P) 

m’(T) 
a(w, p) = - 

P2 

W,P) = T[-z+($-l)~ln~~~]. 

(2) 

(3) 

(4) 

(6) 

Here w = ~0, p = IpI and m(T) E T is the finite temperature plasma mass, rn?- = 
W3 

(3/16)g2T2 and mE 2 = 2 9)gfT’ for the example sketched above. The normal fermion ( / 

mass m is generated in LISS!LI by soft supersymmetry breaking terms, usually denoted 

‘In this paper we will confine ourself to the case of unbroken gauge symmetry since the computation 

of the baryon asymmetry is usually made by making an expansion of the propagating Higgs bubble 

configuration H( 2) around H(z) = O! see M. Carena et al. in [6]. 

2The case of Majorana higgsinos $’ and @ is more involved since they mix even in the unbroken 

gauge symmetry case due to the presence of the term pHiH2 in the superpotential. This case will 

be extensively considered in [8]. 
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by 1112 and Ml for IT3 and 6, respectively. Sote that possible nonchiral interaction 

corrections would be easy taken in the account by replacing p, with p, + fb where f’ 

would be of the same form than f but with different thermal mass m(T). 

To obtain the propagator one has simply to invert eq. (1). The propagator can in 

general be given in the form 

S(p) = F + Ff5 + F/f + FPyp-/5 + FP”dy (7) 

where the sixteen parameters F, F, F,, p,,, F,, are to be determined. The calcula- 

tion of propagator is now somehow more tedious that in the cases of massless Dirac 

fermions and/or fermions without chiral interactions because in these cases some spe- 

cial properties may be used. In the present case, however, by virtue of tha Lorentz 

structure of the system the functions F,,, fP, F,, are possible to write in the form3 

4 = Fppp + Fffp 

Fp = FpP, + Fff/lY 

F P" = Fpfbpfu - f,pJ + Frt,,vadf’. 

03) 

(9) 

(10) 

where E~,,,D is the usual completely antisymmetric tensor and coefficients Fp, Ff, Fp, 

PI, FPf and F, are now (pseudo)scalars like F and F. After some long, but straight- 

forward algebraic manipulations the coefficients read 

m(f2 - m2 -p’) 

F = -(p- f)2(p+ f)2-m4’ w 
F = 0, (12) 

Fp 

f 2 + m2 + p2 

= (p - f )“(p + f )2 - m4 ’ 

Ff = - 2CP.f) 

(P - f J2(P + f )2 - m4’ 

Fp 
2CP.f) 

= (p - f )2(p + f)2 - m4 ’ 

f2 - m2 + p2 

Ff = -(p- f)2(p+ f)2 - m4’ 

F Pf = 0, (17) 

F’ = (p - f )2(pY f)2 - m4’ (18) 

(13) 

(14) 

(15) 

(16) 

One can establish that in the special cases m = 0 and/or f,, = 0 the propagator 

coincides with the known ones. 

3Note that inverting S-’ one has no need to take care of the fact that at finite temperature the 

Lorentz symmetry is actually broken to simple O(3) symmetry. 
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iFrom the denominator of the propagator one can read out the dispersion relation 

(naturally coinciding with det S-’ = 0) 

(p - f)2(p+ f)2 - m4 = 0. (19) 

This equation appears to have two different positive energy solutions w*(p). Even 

in massless limit m t 0 only two different positive energy solutions exist, because 

it is easy to show that (p - f)2 > 0 for w > 0. Note that only the positive energy 

solutions are physically independent, because for hlajorana particle the antiparticle, 

corresponding the negative energy solution coincides with the particle itself. 

The zero momentum limit p -+ 0, however, can be solved exactly. It appears that 

the effective masses are given by (m* > 0) 

rn: = d:(O) = i (j/m f m2) (20) 

Here we make the crucial observation that in the limit of large bare mass. m > m(T), 

the hole excitation effective mass m- becomes much smaller than m(T) and the tem- 

perature, m- << m(T) < T. Expression (20) could be compared to the correspond- 

ing one for the effective masses of pure Dirac case (with nonvanishing bare mass m) 

where f,, = 0, but with a j Pqip -term: effective masses are given by (L$~~~(O))~ = 

$[m2 + 2m2(T) f 4 + 4m2m2(T)]. Th e reader should remember that SM Dirac 

fermions do not posses a bare mass in the case in which the SU(2)L @J U(l)y gauge 

symmetry is unbroken and their effective mass at finite temperature reduces to the 

the plasma mass m(T). On the contrary, supersymmetric Majorana fermions receive a 

bare mass from supersymmetry breaking even in the case of unbroken gauge symmetry 

and are characterized by the novel feature that the hole -like excitation may posses a 

very small effective mass. This property will necessarily affect the kinematics involved 

in the computation of the thermalization rate of the degrees of freedom interacting 

with these hole -like excitations. 

It can be also proved that for m # 0 the derivative of w with respect to spatial 

momentum is zero, i.e. 9 = 0. This is in contrast with the knowledge about the 

massless Dirac and chiral fermions, where it is possible to show that %$l = &$. It 

can be, however, shown that this peculiar property is not general but is closely related 

to vanishing of mass m = 0. Thus Majorana case represents no exemption in this 

sense. Indeed, at the massless limit m = 0 the solutions of Eq. (19) coincides to the 

known ones with y = f $. 

Although no simple formula for the solutions can be given, asymptotic formulas 

for small and large p are possible to calculate. For small momenta p r~ 0 they read 

w*(p) = mk + k& (21) 
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where 

1 d’w* K*z-- 
1+$(g4sp&y8 

2 dp2 +) = 2m* [l - ($$)‘I . 
(22) 

iFrom this we can read out that there exists a critical value for the ratio m/m(T), 

+jl.,, = (+J” = o.772 (23) 

such that for values smaller that it, u-(p) has a minimum for some value of p. This 

phonomenon is similar than occurs in Dirac field case and can be undestood because 

at the limit m + 0 the solution of llajorana case tends smoothly towards the Dirac 

one. However the derivative of in* at p = 0 is not continuous at the same limit. This 

reflects the fact that free field theory contains naturally the mass term, too. So from 

the point of view of naturalness m = 0 is a kind of pathological case. In Figs. 1 and 2 

the dispersion relations are schematically given in two cases m/m(T) = 1 > --&I 
crit 

(Fig. 1) and m/m(T) = l/A < +iCrit (Fig. 2). 

For large p values the functions w* are asymptotically given 

W-(P) (24) (24) 

and 

W+(P) - P + 
drn4 + 4 m4(T) 

2P 
(25) 

These relations coincide with the ones known in the literature for the Dirac fermion 

case [2] at the limit m + 0. It should be noted that, for non-zero m, w- tends towards 

the asymptote w = p even faster that the massless case, and therefore these modes 

also disappears from the spectrum very fast when momentum increases. 

Let us now discuss the nature of the thermal excitations for the Majorana fermions. 

To do so, let us first remind the reader what happens for a Dirac fermion. ‘At zero 

temperature, the ground state is the vacuum. Only four different excitations may 

be created from the vacuum: b+(p,X)]vac) (fermion) and d+(p,A)]vac) (antifermion) 

each with two values of helicity A. At finite temperature, the ground state of the 

plasma contains a large number of fermion-antifermion pairs, which are not the virtual 

present at T = 0 because of quantum fluctuations, but real [2]. In such a case there 

are eight different operators that are able to create elementary excitations: Bi(p, A) 

and Bi(p, A), which are a linear combinations of the usual T = 0 fermion creation 

operator bt(p, A) an d antifermion annihilation operator d( -p, A), and Di( -p, A) and 

ol( -p, A), which are a linear combinations of the usual T = 0 antifermion creation 
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operator d+(-p, A) and fermion annihilation operator b(p, A). The features of the hole 

states become clear in the massless limit when, for instance. BA(p, A> - d(-P, A). 
Consider an antifermion in the plasma with momentum -p and spin polarized along 

the direction -X0. It has chirality A. 1Vhen applied to the T # 0 ground state 

d( -p, A) produces the removal of this antifermion and the creation of a hole with 

momentum p and spin along A@. The hole has, therefore, chirality -A, but helicity A. 

The hole has the wrong correlation between chirality and helicity (21 and it is referred 

to as an antifermion hole. 

In the Majorana case, since at T = 0 particles and antiparticles coincide, the oper- 

ators bt(p, A) and dt( -p, X) h ave to be identified and there is no longer any distinction 

between a fermion and an antifermion. In other words, when Bi(p, X) z Dj(-p, X) is 

applied to the ground state, it generates a Majorana fermion with spin along Xi, and 

helicity A, while BA(p, X) G Dl(-p, X), h ,h en applied to the ground state, it generates 

a Majorana hole (or Majorana fermion hole) with spin along -Xi> and the wrong he- 

licity A. Only the positive energy solutions associated to the operators Bi,h(p, X) are 

physically independent, because for hlajorana particle the antiparticle, corresponding 

the negative energy solution coincides with the particle itself. 

In conclusion, in this letter we have studied the structure of Majorana fermions 

with chiral interactions in hot plasma. An example of such theory is provided by the 

MSSM where neutralinos are such fields. For them, the value of the ratio m/m(T) 

is usually larger than the critical value m 
m(T) crit 

z 0.772, even though smaller values 

are not excluded. !Ve have also found that for large m the Majorana hole excitation 

effective mass m- may be very small, m- << T, and therefore it may have remarkable 

effect on, e.g., the thermalization rate (and thus on the coherence length) of particles 

interacting with them. In AISSM the usually adopted values of the soft supersymmetry 

breaking masses are larger than the corresponding thermal masses and therefore the 

smallness of m- may drastically affect the properties of the other degrees of freedom 

present in the hot plasma [8]. 
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Figure captions 

Figure 1. Dispersion relations of Llajorana particles with m/m(T) = 1. 

Figure 2. Dispersion relations of r\Iajorana particles with m/m(T) = l/4. 
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