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Abstract 

We reconsider Hara’s theorem in its relation to the vvell-known properties of P-decay. 

All assumptions necessary for the theorem to be true are explicitly formulated. Fur- 

ther. we study the I,\‘--exchange contribution to weak radiative decays and show that 
it does not violate Hara’s theorem. However. this contribution reveals the essential 
role of particle mixing in symmetry considerations and some peculiar features of gauge- 
invariant amplitudes under perturbative expansion. Together they explain an effect, 
which was treated as contradicting Hara’s theorem. without any violation. The proper- 

ties of W-exchange we describe here may have more general importance and should be 

taken into account in further detailed calculations of weak processes. 
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1 Introduction 

It is a common belief that weak and electromagnetic interactions may alnays be treated 
perturhativel>., generally in contrast to strong interactions (SI). This makes many lveak or 
electromagnetic processes in\-oil-ing hadrons a good arena for anal>-zing details of (nonper- 
turbative) SI. They continue to provide a lot of phenomenological information on SI and 

present a vast testing ground for their theoretical description. 

A special role could he pla>-ed here by- weak radiative deca>.s (1VRD) of hadrons. They 
exemplify rather rare hadron processes which are clearly of higher order in perturbations. 
Therefore. their interplay \vith SI might give further insight into details of nonperturbati\-e 

SI. 1Ioreover. experimentall?. available \\-RD h ave quite simple tIvo-body kinematics. \-er>- 

similar to weak nonleptonic cleca>-s. It is therefore surprising that. up to now. there is no 

generally acceptable theoretical description of !VRD (see the recent [I] and older [‘3] reviews 
and references therein: see also recent talks [:3]. [A]). 

The last decade has witnessed significant experimental progress that has produced a large 
set of data on 1VRD. mainl>- from C’ERS and FS.4L hyperon beams (see. e.g.. summarl 

table in ref. [.?I). ‘Tl lough still incomplete. the data gix-e good e\-idence for an essential role 
of T1~y-exchange in inducing \j-RD. Those deca\-s in Lvhich a TI,7-bosorl can be exchanged 
betiveen valence quarks are at least an order of magnitude more copious than decays that 
do not allow such an exchange. 

This fact revi\.ed the old problem of the so-called Hara’s theorem [6]. According to the the- 

orem. the exact A’C(3) .I-. 51 mmetry of SI would make some deca>-s (in particular. X+ + pei ) 
have \-anishing parit>.-violating amplitudes and. thus. vanishing decay asymmetries. Of 

course. the S17(:3) : symmetry is violated in nature. so the de\-iation of experimental asymme- 

tr?. [5] for X+ + pei from the prediction of Hara’s theorem could arise quite naturally. But 
the large \.alue of the asymmetq. and its unexpected sign continue to be a hard problem of 

\\-RD theory. 

‘The absence of a satisfactor)- simultaneous description for the Xf + py decay width and 
as!.mmetry. together with the rather complicated character of the original proof. has. again 
and again. stimulated skepticism as to the correctness of Hara’s theorem. As an example. we 
recall ref. [i’]. that was opposed by Gaillard [S]. S ow that experiment suggests the important 

role of I\‘--exchange. the essential contribution to such skepticism comes from the paper of 
I\amal and Riazuddin [9]. Tl ley argue that explicit calculations of It’-exchange at the quark 
lc\.el directly contradict Hara’s theorem. even for exact ,5’1-(3) qmmetry. So the question 
as to why the asymmetry for Y’ + p7 strongly deviates from the simple Hara’s prediction 
becomes again topical [:3]. [3]. It: : 1 t 5 50 u ion has been e\-en assumed to be closely related to 
the general problem of correspondence between the quark and hadron levels [/I]. 



In the present note we reconsider the above problems. First i\-e repeat in more detail Gail- 

lard’s arguments [S] f or correctness of Hara’s theorem and its similarity to usual .3--deca>-. 

i1-e formulate explicitly all the assunlptions necessaq. to prove the theorem. 

Then. in the case of exact I--symrnetr?.. we consider structure and properties of yuark- 
and haclron-level lI~y-eschange contributions. both by themselves and accompanied by a 
photonic transition. On one side. \ve again pro1.e Hara‘s theorem. for this particular case. 
On the other side. ne demonstrate some simple. but unfamiliar properties of gauge-invariant 
amplitudes being expanded as perturbation series in weak interactions. These properties 
provide us the basis to understand the effect observed by Kamal and Riazucldin [Y] without 
in\,oking a violation of Hara’s theorem. An interesting point of our consideration is the 
essential role of quark and hadron mixing which ma?; be also important for rnore detailed 
studs of all i\‘RD’s or. even more generally. of higher order corrections in weak interactions. 

2 P-decay and Ys +py 

1i-e begin with the usual .3-cleca\- n -+ ~6. Its Lagrangian is proportional to 

& x JV)jP + ,pt .wt 
P p J . 

where j, is the lepton weak charged current and .Jh*‘) is the nucleon weak charged current: 
note that here jve are not interested in the exact form of constant factors. It is lvell knolvn 
that ,JiS’) consists of t\vo parts. the \-ector current .1tz3Jr’ P and the asial one .JL,3)_1. Their matrix 
elements between neutron and proton have the additional structure 

< JlI.Jy”ln >= C/1 [f,(k’)y, + f2(k2)c7,,k” + S,(k2)k,i yn. i’) 

< pl.p4~n >= L’p [yl(k2)-[p;5 + g2(k2)ic7/355 + &“)i&] tin. (4 

Here k is the momentum transfer and functions .fi.,q are real at k2 below ha&on production 
thresholds. e.g.. at space-like k. For the Dirac matrices. we use the notations of ref. [lo]. 

Let us assume that isotopic symmetr>* is exact. Then e\.ery term of eqs. (2).(:3) is a 
component of an isotopic \.ector. Due to the fact that p and n are members of the same 
isotopic doublet. all isotopic \.ectors in\Fol\-ccl in eqs. (2).(:3) transform into themselves un- 
der G-transformations [ll] and 1iaL.e some definite G-parity. Terms lvith fl. f2. qr are 
G-even. and ones with yl. yrj. f3 are G-odd. i\inberg [12] suggested further to separate 
hadronic weak charged currents in strangeness-conserving processes into two classes. Then 
terms with fl . f2. yl . y3 b e ong to the first class. and ones Cth .fs.y2 arc of the second class. 1 
From G-parity conservation 1~~. strong interactions. \\einherg concluded [12] that first-class 
bare interactions can induce onI>. first-class pl~enonienological currents. -4s we knon- toclal. 
strangeness-conser\-ing haclron weak currents in the Standard Model are indeed of the first 



class. ‘Therefore. axial weak magnetism (the term with a,,-ls) is forbidden in .3-decay (to- 
gether Lvith the induced scalar term J3kil) while \-ector iveak magnetism (the term f?iPykV) 

is permitted [1:33 (t ogether with the induced pseucloscalar term yiiT5k’ii) and obser\-able. 

Sate that in .3-deca\:. all the first-class currents ha\.e the same. and negative. C,‘P-parit>-. 

while the GP-parit). of the second-class terms would be positive. ‘This allo\vs one to relate 

absence of axial magnetism clirectly to C’P-conserl-ation in J-decay. Lvithout an indepen- 
dent assumption of absence of the second-class currents. Indeed. the lepton iveak currents 

j, and ji are known to transform into each other by C‘P transformation. So. if the La- 
grangian (1) is to be C‘P-conserving the hadron weak currents J, and JJ should also be 
related to each other bx C’P-transformation. .An essential additional feature which comes 
from exact isospin s>-mmetr>. is that the two currents are various combinations of components 
of the same isotopic vector. 1Ioreover, the>, may be transformed into each other bJ* isospin 

rotation around the 2nd asis. without changing coefficient functions in eqs.(2).(3). These 
two properties together lead just to the necessity of negati\-e GP-parity. The opposite sign 

betiveen the C’P-parity of the Lagrangian (1) and the GP-parity of the currents arises 
from the rotation of isotopic-vector components involved into G-transformation. 

Of course. all the above is true only up to electromagnetic radiative corrections (or. more 
exactly. up to violation of isotopic symmetry and. therefore. G-parity conservation). Thus. 
the axial magnetisrn is not forbidden at the level of racliatil-e corrections. 

Sow we turn to the Fp? interaction. \\P will follow the same logic as briefly presented 
b)- Gaillard [S]. In particular. we will use not the whole 5’1;(:3) qymmetry but a more narron 

group. I--spin svmmetr\* (the analog of isotopic I-spin s>.mmetry which mixes cl. s quarks 
instead of U. d). \vhich is known [l?] to be sufficient for Hara’s theorem. 

The effecti\-e Lagrangian responsible for the X+p? interaction has the form 

L$’ x (p + p) .-I” 

which recalls eq. (1). Here .AP is the photon field. Currents JL”) and .J(‘)+ satisfy strangeness ir 
selection rules 1.5 = il respecti\.el\-. 

If the IL-spin symmetr>. of strong ancl electromagnetic interactions is exact we ma\ 
introduce the G,-transformation analogous to the G-transformation of the usual isotopic 

group. Noiv Ive can simply modify the previous consideration of J-decay and apply it to 
i\-RD’s. 

Acain the current J(‘) has \-ector and axial parts. ‘Their matrix elements are 0 ’ P 

< pI,p”I\‘+ >= cp [fiS’(k2)?, + p(k2)cTp,,kv + fg)(k”)k,j 7-k-t. 

< plJy IIf >= L’p -I tJ[.S)(k2)7p?j + g~“)(k2)if7,,~5k” + y,i”( k2)i?sk,] t’xt. (V 



.An important point is that p and X+ are members of the same [;-spin doublet. just as 

p and 12 helon, c to the same I-spin doublet. In full similarit! to the above .3-deca) 

cons~tlerations. currents ./:I and .JhSJ+ arc related to each other by both Hermitian con- 

jugation and C’P-transformation. Exact I--spin s~mmetr?- gives possibility to connect 

C’P-transformation of ,JisJ into .JiS)+ with G,P-transformation of JL”) into itself. Then we 

arrive at the result of Hara [6] which arises exactly as the above statements on .3-decay. 

Solv we can generalize and collect together necessar:. requirements for Hara’s theorem: 

1. Exact I--spin symmetry for strong and electromagnetic interactions (\*iolated. of 
course. by weak interact ions). 

2. Hermiticity of the effecti1.e Lagrangian for k\‘RD. 

3. C’P-conseri-ation. 

3. Initial and final haclrons in a particular \\‘RD hein g members of the same C--spin 
multiplet . 

5. ii’eak interactions ha\ving a structure that produces a nonvanishing transition ampli- 
tude for the \\‘RD. with a unique I--spin structure (vector in the case of Yf j p-i). 

The meaning of the first 3 conditions is obvious. The last tivo conditions guarantee 
a definite G,P-parit>- for all parts of the current .JP (‘). They can be further generalized so 
to admit the transition amplitude hein g a mixture of \.ariolls I--spin representations. The 
only problem is that all the inx.ol\-ed representations should have odd integer C--spin to 
pro\.icle the same. negatix-e. C;,P-parit>.. 

Let us consider some particular cases. The pair (pY+) surely satisfies conditions 1 and 
5 as they are. Its both members belong to the same l--spin doublet. and the transition 
amplitude can he onl). an I7--\-ector. The same is true for another pair. (S-Z-). Thus. 
these pairs correspond to two cleca>-s where Hara’s theorem could be applicable. 

On the other side. transition amplitude. e.g.. in the tleca\- .\ j 171. have more complicated 
I---spin structure. El-en -1 itself is the mistureof [,--singlet and l--vector components. while 
I! is a pure I----vector. So the current can halve se\-era1 parts. with x-arious properties under 
I--spin rotations and \.arious G,P-parities. \1h see that conditions 1 and 5 are violated 
(e\.en in a more generalized form: there are I--vector and I--tensor parts in the amplitude). 
As a result. IIara’s theorem is definitely inapplicable here. 

The above conditions are simple ancl very general. Escept I--symmetry. they are surel>- 
respected by man). approaches that have been used to describe i\‘RD. In particular. these 
assumptions are true for the II--exchange considered in ref. [!,I. 



L-p to noiv our consideration has been rather formal and could not be applied to ex- 

periment . Tl le necessar!. next step ivould be using gauge invariance. For the real photon 

(k’ = 0) it should 1 e iminate the first terms in expressions (.5). (6). The last terms gi1.e no 
contribution when multiplied by the real-photon polarization vector. Then the vector and 
asial magnetic terms become the only ph>-sical terms. and Hara’s theorem becomes oper- 
at ive for experiment. But here we postpone this step. k\C return to it after the stud>- of 

IIjv-exchange. 

3 Structure of the W-exchange contribution 

To understand in more detail some specific features of I\,--exchange in $i’RD. we begin b\ 
considering this exchange by itself. Lvithout any photon emission. 

The V-exchange for the transition X+ + p corresponds to an interaction of the form 

lvith summation over color indices ;.j. Here we explicitly shoiv which quark pairs exchange 
the 14~7-boson just to emphasize the color structure of their interaction. The coefficient 
contains product of the corresponding elements of the C’I\;1I-matrix. .Also possible are inter- 
actions 

(~,od,)[II~](cl,oll,) and (II,0.9;)[rr~](cl,0.sj). 

lvhere the hadrons may sta!. untransformed. 

If I.-symmetq- is exact the masses of d and s quarks coincide. The same is true for p 
and T+. Hence. we ma\. mix these degenerate quarks (and hadrons). It is con\-enient for our 
purpose to choose the mixed quarks d’ and .s’ so as to eliminate the transition s’ -+ u in the 
C’I<Jl-matrix (note that in the case of 3 or more generations this does not mean \-anishing 
of the relative transition ~1’ + c). Then the interaction 

becomes impossible and X’+ can not be transformed to 1~’ by single IL--exchange. 

Sow the only possible interaction between light quarks clue to It--exchange is 

Lrv x (T7,0tI:)[Tl-](;f:oll,). 

It interchanges quark fla\.ors without permutation of colors. So the question arises ivhether 
interaction (7) is capable of transforming p’ into itself without any excitation. The answer 
is yes. clue to colorlessness of hadrons. Indeed. the color wave function of baryons is totall? 



antisymmetric. and color permutation rna\r onl>- re\.erse the sign of transition amplitudes. 
For the standard (I’- -4) \.ertices in the limit miI* -+ x this sign re\-ersal may be eliminated 
by Fierz transformation. Then the II--exchange interaction (i’) efficiently becomes totall! 

symmetric under transposition of u and cl’ (or ii and a’). Tl .: p 11% oin-like A-quark interaction 

can be effecti\.ely rewritten in the diagonal form 

where initial quarks retain their quantum numbers. Such interaction is surely able to pro\Gcle 
diagonal transition p’ -+ ~1’. 

Thus. \ve ha1.e achieved cliagonalization of the degenerate hadronic states p’ and Y’+. 
when no transition between them (through II--exchange) is possible. though they both can 
transform into heavier states which contain. e.g.. c or b quarks. Aloreover: the interaction 

also becomes impossible. so that I\--exchange can not transform X’+ into itself. while being 
able to transform p’ into itself. 

Consider. for comparison. neutral members of the bar>Ton octet n. 11. S”. 2’. If the 
I--spin symmetry lvere initiall>- exact. it lvoulcl be useful to consider states n’ = (d’d’u). 
ZfO - - - (s’s’u) and tn-0 states S’” . .\’ I\-hich ha\-e the same quark content (s’d’u). but. re- 
spectivel!.. symmetrized or antis~mmetrized spin and i--spin wave functions. 1%7-eschange 
1vould not influence E’O. The other three states ~voulcl be influenced. but clifferentl\.. II’ 
can not go into an>* other of those states. while -1’ and Y’O mix to each other since the 
interaction (7) can violate s~mmetrization of cl’ and s’. 

Therefore. if the C--spin s!ymmetry of strong and electromagnetic interactions were es- 
act. \I,‘--exchange would eliminate degeneracy of states ancl separate definite combinations 

of them. One of the corresponding ph>%cal states. Y. would be unchanged by single 
It--exchange. whereas another. p’. would be changed. In particular. the mass of p’ would 
shift from the unchanged mass of I’+. From now on we can discuss problems related to 
Hara’s theorem without invoking I--spin symmetry. Its onl: role has been to make possible 
the mixing of d and s quarks. 

SOLV \ve are read>. to consider the photon emission vertex. S’ lnce the photon has been as- 
sumed from the beginning to be I--spin inlvariant, and IT,7-exchange itself can not transform 
S’+ to 0 or vice \-ersa. they can not do it together as well. So photon emission (or absorp- 
tion) can transform each of these two states either to itself or to heavier quark haclrons. but 
not to the other. Here we are interested in diagonal vertices. It is purely electromagnetic 
for v’+ - (remember that we account onI>. for the lowest order. i.e. single kt7--exchange). The 
photonic vertex of p’ has an additional contribution clue to IT--exchange that’ violates P- 
and C.-parity. However ive assume it to conser1.e combined C’P-parity. Then the axial part 



of the L7erte.u should be C’-e\-en and. therefore. can not contain an>- axial magnetic term (it 
~vould be axial. but C’-odd. just as the usual magnetic term). 

This fact proves Hara’s theorem specifically for 13,7-eschange since it is just this aclclitional 

vertex contribution that protlllces photonic transition betn.een X’ and p. Such an approach 
does not work for the transition between E- and S- since iI--oxchange is impossible for 

this pair, because of absence of (l-quarks. 

4 Photonic vertex and gauge invariance 

Sow we discuss ho\v gauge invariance manifests itself in the \-ertex ~‘$7. Remember that 
we take into account the Il.--exchange contribution that violates space and charge parities 
separately. Therefore. the effective interaction takes the form 

L, = t.J;.Y (W 

ivith current .Jb ha\.ing both \.ector and axial parts. Their matrix elements for p’ are 

< p’i.J;jp’ >= rpl [f;(k’)yp + j-;(k*)~,k~ + ~;(k*)k,] ~‘~1. PI 

< p’l.J;41p’ >= L’p/ [g;(k*)-/,?; + y;(k*)ia,,+” + y;(k’)i;,k,] L’$. (10) 

r\-i\-e. Standard application of the L\lien k + 0 onl\. terms J(O)?, and c$(O)“/~~; can su 
gauge-in\.ariance condition leads to the conclusion 

y’,(O) = 0. 

thus lea\.ing us Ivith 0111). one term. Sormalization to the usual electric charge gives the 
further relation 

f;(o) = 1. (12) 

These relations are quite usual and familiar. and should not raise any questions. However. 
explicit calculations in perturbation theor!. directly violate them both. To see this. one can 
repeat the calculations of ref. [9]. appl>.ing them to diagonal transitions. The calculations 
are straightforward. and we will not describe them here. Instead we consider what is the 
reason for and meaning of such results. 

Denote the “bare” propagator of p’ (i.e.. with strong and electromagnetic interactions 
taken into account but without an\- weak interactions) with 3-momentum q as .S,(qj. It ma>. 
be written as 

-’ 1 
3; (y) = a&*)4 - M&*). (13) 

On the mass-shell. y’ = rni. Sear the mass-shell 

so zz (cj - n7#. (13) 



i.e.. (10( 7~2) = 1 and -110(rni) = m0. 

\\eak interactions (in particular. IL--exchange) produce an additional self-energy part 

E(y). So the total p’-propagator .5’(y) is determined b>. the expression 

5-‘(y) = S&J) - Y(y). (15) 

Analogously. we denote the “bare” ’ p p ‘-[-vertex as Tjp)(yl.yz.k) where y1 and y2 are the 

momenta of the initial and final p’ respectivel!.. and k is the photon momentum. rip) is 
purely vector. ii-hen both y1 and y2 are on the mass-shell it takes the standard form nith 

Dirac and Pauli fern-factors. \1\eak interactions produce an additional contribution ST, to 
the total p’p’-,-vertex. 

It is time non to recall that weak interactions (and I\--exchange, in particular) Golate 
parity. Therefore. S(y) ma>- be n-ritten as 

Y(y) = -u+(y’)cj - a-(y2)@f5 + .If+(y’) + Jf-(y*)&. (W 

Similarly. ST, contains both \.ector and axial parts. 

L\.ith weak interactions snitched on. the mass-shell is determined by the physical mass 
112. Sear it ne ma>- ivrite 

P(y) z (uo + u+)@ + if&~ - (Jf, + .If+) - Jf-i-+ uv 

lvliere all functions are taken at y2 = m2. Therefore. the Dirac equation for a free ph>.sical 
p’ (i.e.. without an>. csplicitl?. applied external field. but ivith complete account for the 
self-interaction) should be written as 

[((lo + Q+)(i + a-@;5 - (J&l + -\I+) - .\f-i~;]L*],I = 0. (18) 

The physical mass m is certainly related to parameters entering this equation. but we consider 
the relation somewhat later: for now we discuss the structure of the electromagnetic vertex. 

\\e emphasize here that the photonic \.ertes is not b mauge in\-ariant bv itself. Instead. 
gauge invariance gives a general relation between propagator and vertex: 

as-'(y) 
r,kb~.oj = c')yp (19) 

at y* = m*. So tve ha\-c 

f,‘(O) = no(m’) + u+(m”). g;(O) = a-(m*). (20) 

The same result appears from ey. (18) for the minimal electromagnetic interaction. Sote 
that generally uo( m’) # 1 . since ao( m% j = 1. and the strong interactions make uo(y*) f const 

8 



(compare eqs. (13).(14)): by th e same reasoning A11,,(m2) # mo. Thus. \ve see that the 
violation of the usual relations (ll).( 12) is directly traced to the non-canonical form of 

the Dirac equation (18) and to the correspondin g changes in applying gauge invariance. If 
parity Lvere conserved. eq. (1 1) \vould be satisfied. hut eq. (12) . cou c nevertheless be violated. 1 1 
This situation is really well known. since ey. (12) should work onl\: after renormalization of 
both propagator and vertex. Ey. (18) can also be transformed to the canonical form by. a 
transformation of the nave function that may be considered as a generalized renormalization. 
Correspondingly. the propagator of p’ admits a transformation giving it the standard form 
near the physical mass-shell. 

L\e clefine 
L” = z-lPL,* c’ = c p/“* ,s;‘(y) = z-‘l”,yy) p/2. (21) 

Here Z is a constant matrix and 
propagator and Dirac equation ne 

z = [(a0 + u+:2 - uy2 

Corresponclingly. 

2X [(U” + u+;z - u’]‘/” 

2X 7Ozt-,O. To arri\.e at the canonical form for the 
take Z as a product of three factors 

((10 + u+) - a--/5 MO + .\I+ - -II-iys . 

[(a0 + cl+)* - uy/* . [(MO + J1+)2 + My . 
(22) 

(Cl0 + a+) + u-y.5 .\I, + .\I+ - M-i-,, 
[(uo + u+)2 - uy* . [(MO + Jr+)2 + My* . (23) 

\\-e consider the operator part (in square brackets) of eq. (18) as S-‘(y) at q* = m” and 
transform it in accordance ivith eq. (21). Then the above factors work as follows. The factor 
containing parameters _\I takes 7: aivay from the mass terms of eq. (18). The matrix factor 
with parameters u does the same for the coeficient of 4. .hcl the purely numerical factor 
normalizes this coefficient to unity. After that the Dirac equation for L” takes its familiar 
form with the physical mass 

nx* 1 (-11” + -\I+ )” + M” 
((10 + u+)’ - a: . (23) 

In accordance with eq. (19) the vertex function should also transform as 

r;tyr. y2. I;) = WI-,,(yl: (72. k)Z"'. (2.3) 

C’onsicler how the matrix renormalization influences the i.ertex. The factors of expressions 
(22). (23). containing parameters AU. mix to each other the vector and axial magnetic terms. 
as well as the induced scalar and pseudoscalar terms. and change their relative intensity. But 
the transformation may not remove an>. of them totally. The matris factors kvith parameters 
u mix \-ector and axial terms of the vertex and provide the relation (11). After that the 
remaining numerical part of the renormalization makes the relation (12) be true as well. So 
the new vertex r: has just the conventional limit as X: + 0 . Sate that yi (k*) at k’ # 0 111 a\- 
he non-vanishing even after the total renormalization. 



Note also that all the aho\-e arguments which should lead to the vanishing coefficient 
function yi for the axial magnetic term in eq. (10) can be applied only to the renormalized 

\,ertes FL but not, to lYP. The reason is that the non-canonical form of the Dirac equation (18) 
generates a non-canonical expression for the charge-conjugation transformation. ‘Therefore. 
familiar notions on charge-conjugation behavior of various vertices become distorted. 

Formally. the renormalization by the matrices (22). (23) is true only at 

Ia-1 < la0 + a+I. 

which is satisfied since u. - 0 (1). while u+ and cl- are induced by weak interactions. 
Eq. (23) shows that the opposite case would lead to the tach>.on (m' < 0). 

The matrix renormalization can also be formulated in terms of the unmixed states p and 
Sf. In such a form the renormalizing matrix nould have even more complicated structure 
to account for both parit?. violation and particle mixing. 

Now we are ready to understand the origin and meaning of the results obtained by Iiamal 
and Riazudclin [9]. They studied amplitudes for the transition S+ -+ p which is closel> 
related to our amplitudes for the diagonal transition p’ + p’. So we will discuss their results 

in terms of our amplitudes. 

Consider < p’lrPck‘II’I > where the vector 6’ ma>. be thought of as a photon polarization 
\.ector. Sote that WC do not make an>- additional renormalization (just as in ref. [Y]). If 
we stud>. 0111~. terms of zeroth orcler in k (i.e. take the limit k + 0. again as in ref. [9]) ne 
obtain 

< p’lr,(y. Y.OP~~ >= ~~,~(~~[f;(o)i + ~;(o)E~++(Y). (26) 
It is simplest to calculate the right-hand side in the rest frame. Then. clue to properties of 
the Dirac matrices. onl?. the time component co contributes to the first term in r.h.s.. ivhile 
the second term contains (e - a) with onl). space components contributing. If we take e” = 0 
(again. as in ref. [9]: it 1 oo 5 onl). natural for the photon polarization \-ector) then we see k: 
an axial contribution without an>. vector one. 

It is just this result that was promoted [9] as contradicting Hara‘s theorem. according 
to which one would expect to find only a 1.ector contribution. without an axial one. L\:e see. 
however. that the result has reall!. no relation to terms for which we should apply Hara’s 
theorem. Those terms ma>. appear onl). in calculations which completely account for the first 
order in k. Aforeover. the correct relation between the physical \-ector and axial magnetic 
terms arises only after matrix renormalization (2.7) of the full photonic vertex. This means 
that only after such renormalization one may compare results of perturbative calculations 

and Hara’s theorem predictions. 

Sote. ironicall!*. that in the case of initially exact I--spin symmetry the decay I+ + p: 
would be impossible at all (again. to lowest order in 11~7-excl~ange). Indeed. as we have seen. 
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real physical states in that case would be not Y+ and p. but Yf and p’ which are incapable 

of transforming into one another h\- photon emission. though their differing masses allow the 

decay kinematically. 

It is instructive. nevertheless. to see how the transition amplitude X+ + p? would look in 
the case of the initially exact I--symmetry. To do this we reverse the mixing transformation 
and express S+ and p through Y’+ and p’. Then we may substitute the vertices p’p’y and 
ys v+^i (which is pure electromagnetic: remember that transitions between Y’+ and p’ are 
absent) and obtain the desired amplitude. If we apply the inverse mixing transformation to 
the non-renormalizecl p’ we arrive at the amplitude ha\-ing a structure that violates canonical 
expectations of both gauge invariance and IIara’s theorem. It contains non-vanishing \.ector 
and axial terms at k’ = 0 as well as axial magnetic term. Only if we apply the transformation 
to the renormalized p’ (IS’+ is not influenced by I$--exchange) the resulting amplitude looks 
as expected. Hence. renormalization of p’ touches both p and S+. 

This demonstrates importance of matrix renormalization e\-en for the case of exact k-spin 
symmetry. If symmetry violation is more intensi1.e than the influence of W-exchange. the 
states p’ and Y’+ do not arise. But then we should renormalize both p and X+ taking into 
account their transitions to each other through the Il.-exchange. 

5 Conclusion and discussion 

Let us briefly summarize the abo\-e discussion. Here we 1laL.e reconsidered Hara’s theorem 

and explicitly formulated its assumptions. Results of the theorem are in a very close re- 
lation to the well-kno\vn properties of usual &decay, as was noted earlier by Gaillard [S]. 
Assumptions of the theorem are rather simple and clear-cut. i\‘hen they are satisfied the 
theorem is surely true. A4ncl the!. are satisfied in man?; approaches used in the literature. 

Of course. one of the assumptions for Hara’s theorem. 17-spin symmetry. is violated in 
nature and in calculations. Hone\-er. in man\- applications its \-iolation may be consiclered 
as small. ‘That a similar possibility does not work for \\*RD’s has causecl a long-standing 
problem of their description which is still unsolved. 

iYe have demonstrated. in particular. that for IJ7--exchange Hara’s theorem should also 
be true. More detailed study of II--exchange contributions shows that an effect stated some 
years ago as manifesting \.iolation of Hara’s theorem for Il,y-eschange at the quark level does 
not really necessitate such \*iolation. Instead. it can be explained as revealing insuf?icienc>. 
of standard purely numerical renormalization in perturbation theory for weak interactions. 
If parity is \.iolated the fermion renormalization “constants” should be taken as combination 
of the unit matrix with 7%. 
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The “violation” of gauge invariance described in the preceding sections may look strange 
and even mysterious. But its reason is really quite clear. Conser\.ation of the current J 

means that its matrix elements (9) and (10) taken o\.er real ph>xical states should \.anisi 
tvhen being multiplied by k”. But each r.h.s. of eqs. (9). (10) consists of three elements. 
The square brackets contain the effective vertex with various matrix terms and corresponcl- 
ing coefficient functions. Two other elements are wave functions. initial and final. \\-hen 
expanding into perturbation series. all the three elements should he expanded. Aleann-hile. 
standard application of gauge in\-ariance implicitl>r assumes that wa\-e functions have simple 
free structure and need not be expanded. It is true. but onl>. after renormalization. 

This familiar and trivial fact becomes not so trivial. when the mixing of various parities or 
even various particles is in\-011.ccl. Admixture of p to I+ (and \.ice versa) induces admixture 
of “hare” electromagnetic vertices to the transition vertex. “Ideologically“ the situation is 

reminiscent of the so-called pole approach to \VRD. but the formulas may look unlike. 

The present consideration ~1~0~~s that previous calculations of \\-RD amplitudes ma>* need 
some revision since they halve not taken into account necessity of a non-standard renormaliza- 
tion procedure. The possibility. of particle mixing in weak interactions makes this procedure 
even more complicated. 

In this regard. WC woultl like to emphasize the large role of particle mixing in the present 
discussion and its possible role in future calculations. Such mixing is essentially nonpertur- 
bati1.e. in the sense that while its coefficients depend on symmetr>T properties of the per- 
turbation. they are independent of its intensity. 1loreoLw. the mixing may complicate the 
apparent consequences of gauge invariance. Therefore. an accurate account for the mixing 
might open new wa\.s to describe large sJ.mmetr>.-\-iolation effects observed in \VRD. 

One more lesson which may also be of general character concerns properties of renormal- 
ization constants. It is clear that they need to be Lorentz-invariant. But if parity is violated 
there are no arguments why the renormalization of fermionic propagators and vertices could 
not use the matrix 75 . instead of being purely numerical. .And as the above discussion. tc- 
gether with calculations of Iiamal and Riazuddin [9]. h s 01~s. at least in that particular case 
one should apply matrix renormalization (i.e.. include -;5 into renormalization constants) to 
have canonical expressions for the Dirac equation. gauge and charge-conjugation t ransfor- 
mations. and so on. The same question arises. therefore. for radiative corrections in an> 
weak processes. 
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