# Fermi National Accelerator Laboratory

Fermilab-Pub-96/094-T
KA-TP-12-1996

ELECTROWEAK RADIATIVE CORRECTIONS

TO RESONANT CHARGED GAUGE BOSON PRODUCTION

DOREEN WACKEROTH"

Fermi National Accelerator Laboratory
P.0. Boz 500, Batavia, IL 60510, U.S.A.

WOLFGANG HOLLIK

Institut fiir Theoretische Physik, Universitit Karlsruhe
D-76128 Karlsruhe, Germany

Abstract

The electroweak O(a) contribution to the resonant single W production in a general 4-fermion
process is discussed with particular emphasis on a gauge invariant decomposition into a QED-like
and weak part. The cross section in the vicinity of the resonance can be represented in terms of
a convolution of a ‘hard’ Breit-Wigner-cross section, comprising the (m¢, My )-dependent weak
1-loop corrections, with a universal radiator function. The numerical impact of the various
contributions on the W line shape are discussed, together with the concepts of s-dependent and
constant width approach. Analytic formulae for the W decay width are also provided including
the 1-loop electroweak and QCD corrections.
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1 Introduction

Future experiments at LEP and the Tevatron will access sectors of the Minimal Standard Model
(MSM) [1] yet unchallenged: the Yang-Mills structure of gauge boson self couplings and mass
generation by the concept of spontaneous symmetry breaking [2]. With LEP II operating above
the threshold for W pair production, for the first time a precise direct measurement of the
triple gauge boson coupling (v, Z)W+W ™ can be performed, allowing to test the non-Abelian
structure of the MSM [3]. Moreover, our current knowledge of the W boson mass (world average
value [4])
My = 80.33 £0.15 GeV

will be improved up to an uncertainty in the range of 30-50 MeV at LEP II [5] and 20-30 MeV
at the Tevatron upgrade [6).

Thus, in order to meet the precision of these future experiments the knowledge of the observed
cross sections beyond leading order perturbation theory is crucial.

The W pair production cross section in the limit of stable W bosons beyond leading order is
already known [7], but not sufficient at CM energies only a few W boson decay widths above the
threshold. In the course of the calculation of the corrections to the realistic scenario at LEP 11
with the subsequent decay of the W bosons into fermions: ete™ = WHW ™ — 4f the following
problems arise:

1. the production and decay of W bosons in the vicinity of the threshold, where two
energetically strongly varying phenomena occur: the resonant cross section at /51 =
Myw (s+: invariant masses of the outgoing fermion pairs) and its increase at the
threshold /s = 2Mw;

2. the consistent treatment of unstable charged gauge bosons within perturbation theory,
which involves infra-red singular interactions with real and virtual photons.

At present, there exists no complete calculation of the electroweak O(a) contribution to the
off-shell W pair production cross section: explicit results have been derived only for parts of the
photonic corrections. An overview on the present knowledge of the off-shell W pair production
beyond leading order and the concessions to the consistency of the theory in order to gain it is
given in [7].

The idea of this paper is to contribute to the description of charged unstable gauge bosons
beyond leading order perturbation theory by studying the second problem separately and dis-
cussing the electroweak O(a) contribution to the resonant single W production in a 4-fermion
process: 15’ — W+ — ff'. It appears as part of the t-channel W pair production process and
its better understanding can show a way to an improved description of the off-shell W pair
production. Moreover, it represents the W production process via the Drell-Yan-mechanism at
the Tevatron and thus, in view of the future improved W mass measurement at hadron colliders,
requires a careful treatment beyond lowest order in perturbation theory.

The discussion of the electroweak radiative corrections to the W production in the vicinity
of the resonance is guided by the successful treatment of the Z line shape beyond leading order
[8], which has been precisely measured at LEP I and SLC [9]. In contrary to the Z resonance the
electroweak radiative corrections to the resonant W production can not be naturally subdivided



into a gauge invariant photonic and non-photonic part. A separated treatment is motivated by
the following reasons:

e Usually, the photon contribution depends on cuts imposed on the photon phase space and
thus is dependent on the experimental setup.

o The enhancement of the fine structure constant o due to large logarithms log(s/m?) arising
in connection with infra-red (IR) and collinear singularities requires either the considera-
tion of higher orders in perturbation theory or the performance of a suitable resummation
procedure.

e The interesting model-specific contributions are contained in the non-photonic sector.

Therefore, in analogy to the description of the Z resonance, we seek a consistent gauge invariant
representation of the resonant W production cross section of the inclusive process 4’ — wt >
ff'X with X =photons as a convolution integral of the following form [10]:

o(s) = /S _ds' G(2) ou(s)) (1.1)

s 0=4mf

The shift of the invariant mass squared s’ = zs of the final state fermions is due to initial state
photon emission, which is described by the universal radiator function G(z). The latter also
takes into account the possibility of multiple soft photon emission. The model dependent ‘hard’
cross section oy, (s) has a Breit-Wigner form. In next-to-leading order perturbation theory oy (s)
comprises the weak (m;, My)- dependent O(a) contribution.

The paper is organised as follows:

In Sec. 3, after recalling the Born-cross section and the tree level W width (Sec. 2), we
concentrate on the gauge invariant separation of the electroweak O(a) contribution to the W
production into a QED-like and (modified) weak contribution. Our starting point is a thorough
perturbative treatment of the 1-loop corrections to the lowest order matrix element. For check-
ing the cancellation of the unphysical gauge parameter dependence the calculation is performed
in Re-gauge. The application of the procedure developed in [11] in order to extract a gauge in-
variant multiplicative factor to the Born-cross section from the IR-singular photon contribution
leads to QED-like form factors describing the initial, final state and interference contribution,
separately U(1) gauge invariant. In the resonance region, the remaining interference term can
be absorbed into a modified weak contribution, which then also factorises. After performing an
equivalent discussion of the electroweak O(a) contribution to the partial W width (— App. B),
the numerator of the Breit-Wigner can be represented as a product of W partial widths describ-
ing the W production and decay, respectively. At the end of Sec. 3, after a detailed discussion of
the QED-form factors and the modified weak contribution, we present the cross section including
the electroweak radiative corrections to the W production in the vicinity of the resonance in
terms of the convolution integral given by Eq. 1.1. After a brief summary (Sec. 4) we provide
numerical results for the various contributions in Eq. 1.1 accompanied by a numerical discussion
of the W decay width including 1-loop electroweak corrections and QCD corrections (Sec. 5).

In App. A, we discuss the aspect of gauge invariance in the description of an unstable charged
gauge boson beyond leading order from a more fundamental point of view. The problem of a



consistent description of an unstable particle together with a definition of mass and width,
which meets the requirement of gauge invariance order by order in perturbation theory, already
had to be solved in the context of the precision measurements at the Z resonance. There, two
approaches have been discussed: the S-Matrix theory inspired ansatz and the quantum field
theoretical approach, yielding a description with constant and s-dependent width, respectively.
The resulting prescriptions derived for the Z resonance need to be tested with regard to consis-
tency and applicability to the W resonance, facing the additional difficulty of having IR-singular
interactions of the W boson with virtual or real photons. At the end of App. A the correspond-
ing prescriptions for the case of a charged vector boson resonance will be provided, especially,
a transformation will be derived, which connects both descriptions and enables the considera-
tion of an s-dependent W width in Eq. 1.1 in an easy way. In the remaining appendices the
explicit expressions for the electroweak O(a) contribution to the W production and W width
are provided and some details of the calculation are shown.

2 W production and W width in leading order

The decay width of a W boson into quarks or leptons in leading order perturbation theory,
which is graphical represented by the decay process in Fig. 1 (with q®> = M},), is given by [12]

0 aMwy 1
W = Tz M Vil Ve VMG — (g +mp)2)(ME, — (my —mp)?)
2 2 2 212
_mptmy  (my—mp) @1)
2ME 2M}, ’ ’

where o and s,, denote the fine structure constant and the sine of the Weinberg-angle, respec-
tively. The quark mixing is taken into account by the Kobayashi-Maskawa-matrix elements V;;
[13] with Vi = §; for leptons. N/ denotes the colour factor with N/=l4 = 1,3. By using the
leading order relation for the Fermi-constant G, (measured in the u-decay)

Ta
M3 = ——— (2.2)
V2G,s2,
the partial W width in the limit of massless decay products turns to
—(0 V2G, M}
T = ——12“7r—w N{ Vil (2.3)

This G ,-representation has the advantage to being independent of s,,. The total width results
from the summation of the partial decay widths into all fermionic final states compatible with
energy momentum conservation
Y =3 T, (2.4)
(£
The production of a W boson in a 4-fermion process in leading order perturbation theory
is graphical represented by the Feynman-diagram shown in Fig. 1. We choose the Mandelstam
variables
s = ¢ =(py+pp) = (pi+ps)’

s
t = (pr —pi)? = (s —pi)? = —5(1 — cos )

u = (pp—ps)’=(pp —pi)?. (2.5)
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Figure 1: W production in the 4-fermion process at leading order

8 denotes the scattering angle of the outgoing fermion f with respect to p;. The differential
cross section for this two-particle scattering process can be written as follows:

d_cr
dt 167rs2

Z|M|2(s t) (2.6)

with the matrix element squared and averaged (summed) over the initial (and final) state spin
and colour degrees of freedom. With the momentum assignment of Fig. 1 the Born-matrix
element of the W production in the limit of massless external fermions yields as follows:

uf(pfv Sf)'Yll(l - 75)'Uf’(Pf’ Sfl)'v, (pz’ 31')7”(1 - '75)“1(?1’ 31) (2 7)
§ — MW )

LT
M(O) = Zz—sg-milfo
w

In the vicinity of the resonance the Dyson-resummed propagator has to be used (Eq. A.3), so
that the differential Born-cross section of the resonant W production has Breit-Wigner-form

Nc 11 (s +t)?

o0 (s, t) T
2 G Mg s T

dt 42|

Vi 2 [V ? (2.8)
The square bracket takes into account, that for the case of incoming leptons the spin average
yields only a factor 1/2, since the neutrino is a purely left-handed particle, whereas the average
over quark spins leads to a factor 1/4. After performing the integration over the Mandelstam
variable t (—s < t < 0) the total cross section of the resonant W production in leading order
perturbation theory yields

NS s
o0(s) = m P Virl® 5+ [ : (2.9)
g P IV [(s — M)+ M (T
which in G,-representation is given by
2G2 My, N 11 s
7O (s) = ——= Vi P VirI* 7 (2.10)

74 [(s - M2,)?2 + M2, (T2

3 Electroweak radiative corrections in O(a) to the W produc-
tion

As motivated in the introduction, our aim is to provide a consistent description of the W
resonance beyond lowest order perturbation theory in form of a convolution integral given by
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Figure 2: 1-loop corrections to the W production in the 4-fermion process (®*: Higgs-ghost,
ut,u?: Faddeev-Popov-ghosts; the non-photonic contribution to the W self energy is symbolised
by the shaded loop; an explicit representation can be found in [22], e.g.)

Eq. 1.1. To this end, a gauge invariant separation of the electroweak radiative corrections under
consideration into a QED-like and weak contribution is required.

The starting point is a perturbative treatment of the W production in the 4-fermion process
in O(a®). The electroweak O(a) contributions under consideration are schematically represented
by the Feynman-diagrams depicted in Fig. 2 and Fig. 3. The virtual electroweak contribution,
shown in Fig. 2, consists of vertex corrections due to photon and Z boson exchange (diagram
LIII), self energy insertions to the external fermions (diagram II), the W Z and W box diagrams
(diagram V) and the W self energy contribution (diagram IV). Since the calculation is performed
in Re-gauge, the latter also involves Higgs- and Faddeev-Popov-ghosts. After renormalisation
(here we work in the on-shell scheme [14]) the virtual contribution can be described by means of a
gauge parameter (£;,t = v, Z, W) independent, UV-finite, but [R-singular, form factor Fire.(s,1)
(~ denotes renormalised quantities) multiplying the Born-cross section given by Eq. 2.8. When
taking into account the real soft photon emission (photon momentum |I-5 | < AE < /s), shown
in Fig. 3, which can also be done in form of a multiplicative IR-singular factor Fgg(s,t), the
IR-singularities cancel as expected [15]. Finally, the W production in O(a?) in a 4-fermion
process can be described by

do@V(s,t)  do©(s,1)

= o [1+2Re Fyine.(5,1) + Fp(s,1)], (3.1)
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Figure 3: Real photon contribution in O(a) to the W production in the 4-fermion process

where the explicit expressions for the contributions to Fyire.(s,t) and F' Br(s,t) of Eq. 3.2 and 3.21,
resp., are provided in App. D. For the special choice {; = 1 the electroweak 1-loop corrections
described by Fin.(s,t) can also be found in [14]. The remaining photon phase space integration
over the hard photon region is done in App. E.

In the following, we concentrate on the virtual electroweak contribution and discuss the
photon contribution F., separately from the non-photonic pure weak contribution Fyeqk

Fvirt.(ss t) = (F'y + Fweak)(sa t). (32)

The virtual photon contribution comprises all Feynman-diagrams in Fig. 2 involving a photon,
where the photonic correction to the W self energy is explicitly represented by the first three
diagrams of the subset IV. In contrary to the Z production, these Feynman-diagrams do not
build a gauge invariant subset and thus F,(s,t) and Fyeqk(s,t) are UV-divergent and gauge
parameter dependent.

Since, finally, we are only interested in the cross section in the vicinity of the W resonance,
we have a closer look on the resonance structure of the different contributions to the virtual
corrections depicted in Fig. 2. It turns out, that the WZ-box diagrams can be neglected as a
non-resonant contribution of higher order, so that in the vicinity of the W resonance the pure
weak contribution in next-to-leading order evaluated at s = Mg,

Fueak(M%) = (Figar + F ) (MF,) . (3.3)

is determined according to the prescription given in App. A (Eq. A.13). The resulting form
factors FS ;ﬂ(M 2,) describe the non-photonic 1-loop corrections to the W production and decay,
respectively, and are explicitly given by Eq. D.27.

Far more involved is the calculation of the photonic form factor F, (s, t): the non-factorisable
W+-box diagram is a resonant contribution and has to be considered at the required level of
accuracy, the arising IR-singularities have to cancel and logarithms of the form log(s — M3,),
which diverge for s — MSV (on-shell singularities), needed to be regularised in a gauge invariant
way, when approaching the resonance region. In order to obtain a separation of the 1-loop

corrections into a QED-like and weak contribution, we first extract gauge invariant form factors,



so-called YFS-form factors F‘ﬁFS(s), from the IR-singular Feynman-diagrams LIl and V (Fig. 2),

so that the virtual photon contribution can be written as follows:

F,(s,t) = > ﬁ‘}‘iFS(s)+F.{i”ite(s,t). (3.4)
a=initial, final,
interf.

These YFS-form factors together with the real photon contribution build IR-finite gauge in-
variant form factors Fogp (s,t), which are independent from the internal structure of the W
production and thus can be interpreted as a QED-like correction. For that, the bremsstrahlung
contribution, shown in Fig. 3, needs also to be represented by a separately conserved initial and
final state current, which cannot be easily obtained due to the YW *W ~-coupling in diagram

III. The sum of the remaining IR-finite contribution F.,f inite(5 1), a part of the QED-form factor

Fmter f.

describing the interference of initial and final state bremsstrahlung Fppp ** and the pure weak

part F"eak represents a form factor Fw’f{ak, which is independent of the external fermions and

thus can be interpreted as a modified weak contribution. For the sake of clearness, the charac-
teristics of the electroweak corrections in O(«) are summarised and the different steps, which
lead to a description of the W resonance given by Eq. 1.1, are schematically presented in Tab. 1.

FéR(S,t) Fvirt.(sﬂ t)
FER(sat) F‘Y(sat) Fweak(MI?V)
Fig. 3: 1,11, 111 Fig.2: I1II V I v I...IV
=~ —— —_——
UV, IR & IR, 0s UV&i,o0s UV &
C . 1 initia inal int
Fipitiel (s) + Fp® £ (s) | FAS(s) + ') | Flpv(s,0) | Fiaw(s) | Fulu(My)
~ - e S————
IR,0s e IR UV,E,,(subtr.) UV &, (subtr.) Uvg:
mterf ( t) ;?;rf( t)
IR,0s IR,08
1 l .ﬂi .p
(el 4 Fimal)(s)  +  Fimerl-(s, 1) Ffinite(s, 1) waak (M)
S — —_—— ~— et N e’
0s Finterf. ginterf. UV UV.&;
QED  ltog. 8,4,
1
(FEub +Flgs")(s) (Fieat + Fleat) (M)
os
Fggﬁ” Ilog.(sa t)

Table 1: Scheme to the extraction of a QED-form factor to the W production (UV,¢;, IR, os
denote the UV-divergence, £;-dependence, IR-singularity and on-shell singularity, resp.; (subtr.)
is refered to a prescription concerning the on-shell singularities, which will be given in detail in
Sec. 3.1 '

In the following, this briefly outlined method to find a gauge invariant separation into QED-
like and weak part, where even the O(a) contribution to the W production and decay process
are separately represented by gauge invariant form factors, is going to be performed in detail.
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3.1 The definition of a QED-form factor to the W production

In the context of a general treatment of IR-singularities occurring in QED, Yennie, Frautschi and
Suura (YFS) [11] gave a prescription how to separate these singularities as a multiplicative gauge
invariant factor to the Born-cross section. The basis of the perturbative treatment & la YFS is the
observation that the singularities arise only in connection with soft photons emitted by external
particles. The cross section of this soft photon radiation (virtual or real) can be described as the
Born-cross section and factors, which only depend on the four momenta of the external particles
and not on the internal structure of the process under consideration. This enables the treatment
of soft photon radiation, especially the demonstration of the cancellation of the IR-singularities,
to all orders in perturbation theory. In the following, the YFS-method will be applied to the
photonic 1-loop contributions to the W production and later on also to the W width. By the
example of the photon exchange between the final state fermions the extraction of the YFS-form
factor Fyrps(s,t) from the diagrams LII and V in Fig. 2 will be illustrated. The IR- and UV-
singularities arising in the course of the calculation are made mathematically well-defined by
introducing a fictitious photon mass A and by dimensional regularisation [16], respectively. The
external fermions are considered in the massless approximation unless they occur in singular
logarithms of the form log(s/m?), where a finite fermion mass has been retained. The explicit
expressions for the IR-singular and -finite parts of the diagrams under consideration can be
found in App. D.1.

The application of the Feynman-rules of the electroweak MSM leads to the following expres-
sion for the photonic final state correction described by diagram I:

f’pf

DAL = gy = s) [FI%H(s) + FL 7 (s)]

[gw - 2\/653,,,] (3.9)

£’ » Pr-
L If _ [ _alBi= Fu( = )+ E®
Dy Brf val

Following the prescription given by YFS, the numerator of the IR-singular Feynman-integral
in Eq. 3.6 sandwiched in between the spinors describing the final state fermions can be written

as follows:

numerator = T(ps)valBr— Klvu(l —v){Bs+ Klv*v(ps)
(ps)[2P5a — Yo Klvu(1 —75)[20F+ Ky Ju(ps)
= a(pp)v.(1 = v5)v(ps)(2ps — k)(2psr + k) + terms o o*kg (3.7)




where the following relations have been used:

1 .
Ky =k, I+ 5[[6,’)'”] =k,I —io,,k"

and

U(ps) pr = mysu(ps) =0, Ppv(py) = —mpv(pgp) =0.
The first term in Eq. 3.7 leads to the IR-singular contribution of diagram I, which will be part
of the YFS-form factor

. -k '+ k
FfR(s) = (i4ma) Qs Qg /D i D,\l))(le];fn+ ) ) (3.8)

whereas the IR-finite ‘magnetic’ part contributes to F.{ inite(s t) in Eq. 3.4.
The application of this procedure to the photonic self energy insertions to the external final
state fermions and to the photonic box diagrams leads to the following IR-singular form factors:

f’ Pt f’ Pr
A
W', q W', q
1 ? l »
2 + 2
£ » Pr> > f’ » Pee
LA = gy (1= ) [Fif(s) + FITF(s)] (39)
with ) .
IR _ 2 f 2 f
FII,f(S) = 5(147!'0) {Qf D W + Qf’ D —D;\—b—g,—_— (310)
and
Y . w
i —>— A AN I — > f
Y A + Y A
b w+ £ ] ’Y 1]
eI At  f (D y YAV VAVAV, VoV V, Sty |
. iBY(s,t) = iMO(s) [FIR + Ff7")(s,0) (3.11)
with

IR : (2pf — k)(2p; — k) / (2pg + k)(2py + k)

t)=—(u4 ; a Qg . (312
Ffi(s,t) = (i vra),{Qfo B e [ (3.12)
The form factors describing the initial state vertex corrections F(III?}{)TM (s) can be derived from
the final state ones by the substitution

(vaQf’vmf’mf’) - (QiaQi"miami’) 3 (313)
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which in the following will be abbreviated by (f,f’) — (¢,¢'). The u-channel form factors
F{,ﬁ'f mite (¢ 1) describing the crossed box diagrams in Fig. 2 follow from F‘I,}j’f mite (s ) by the
substitutions

(6, ), (@, f) = (G, f), (0", f) and t > u (3.14)

and, additionally, by multiplying with a global minus sign. The Born-matrix element MO g
given by Eq. 2.7.

These IR-singular form factors are extracted from the virtual photon contribution in such a
way, that their sum has a structure similar to that of the amplitude describing real (soft) photon
radiation

1. 1
Fyrs(s,t) = 5(i4ma) /D 5o

k? J,=0 2
Qu2pi—k)y , Qv+ )y _ Qr(pr =)o _ Qp(pp+k)p (3.15)
k2 — 2kp; k2 4 2kpy k2 — 2kpy k2 + 2kps '

Thus, the U(1)-gauge invariance of the YFS-form factor is guaranteed by the existence of a
conserved current. The initial and final state contribution to the YFS-form factor, however,
distinguished by the corresponding charge quantum numbers (Q;, @ and Qf, Q) are not sep-
arately gauge invariant. Therefore, a ‘zero’ will be added, so that the YFS-form factor can be
written as a sum of two separately conserved U(1)-currents, which describe the virtual photonic
correction to the W production and decay process, respectively.

1,. 1
Fyrps(s,t) = 5(247!’a)£) D_,\x

kpj':'niﬁal=0
Qupi—h), | QuCpr+h)y 1(Qi=Qu)(2q—k)p  1(Qi=Qi)(2+k),
D,’ . D,'l 2 (k2 - 2kq) 2 (k2 + 2kq)
ka‘;ﬁn“‘=0 2
L 1@r-QmQCi-k), 1@Qr=QnQRa+k), Qspr—k, Qplps+ k)
2 (k2 = 2kq) 2 (k2 + 2kq) Dy Dy
= F{bo(s) + Flnel(s) + Fypel(s,1) . (3.16)

This, at the first sight, arbitrary extension will receive its justification from the structure of
the real photon contribution and its interpretation in the course of the corresponding discussion
of the photon contribution to the W width (App. B). The explicit expressions for the gauge
invariant form factors after the evaluation of the loop integral in Eq. 3.16 can be found in
App. D.1. Before we deal with the real photon contribution a closer inspection of the occurring
mass singularities log(s/m?) and logarithms of the form log(s — M3,) is needed. Since the
occurrence of those singularities is a pure QED phenomenon, they build a gauge invariant
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subset

[F}i,?;éial,final,interf + Ff‘zmt)e F‘»ﬁt(?;l:; + FIII]mass—sing. = 4i Z Qk2 log < ) (317)
k=i f,f'
and (Bin:. of Eq. 3.37)
i 1 M2
[F"ﬁ (T:; + FIII + FIV}on—shell—sing. = '2' ﬂznt (S t lOg (l _ I) (318)

which can be assigned to the initial state, final state and interference YFS-form factors according
to their structure and under the maintenance of gauge invariance. It has to be mentioned, that
the sum of the IR-finite photon contributions which are not included in the YFS-form factors
develops a further QED-specific term

o'

4_71' Z Ql2c s

k=i, f,f!

which thus can be absorbed in a modified YFS-form factor, as well. Finally, the resulting
modified YFS-form factors in Eq. 3.4 are connected to the original ones (Eq. 3.16) as follows:

F)(}Frg'tml;final) — F}(};‘z;twl;final) _ [F)(};z;tial,final)]mass ving
«
+ i Z Qk|: log( k)—l]
k=(i4'))(f.f")
interf. mterf mterf M‘?V
FYFS = F [ ]mass sing. + = /Bmt (S t) log IS——]\J_‘?VT . (319)

It is this modification which guarantees, that the inclusive cross section including the hard final
state photons fulfills the KLN-theorem [17] and that the occurrence of the on-shell singularities
is restricted to the initial state contribution.

The last step to extract a QED-like form factor from the electroweak radiative corrections
to the W production is to find a gauge invariant separation of the real photon radiation into
initial and final state contribution. It turns out, that diagram III in Fig. 3 can be divided into
one part, which develops the propagator structure of a initial state contribution and another
one, which can be assigned to the final state [18]

1
diagram III
(42 — M3, )[(q — k)2 — MY]
1 1
= — . (3.20)
llg— k)2 — My )2kq]  [¢° — M,1[2kq]
(—initi;l state —>ﬁna‘lrstate

Using this separation the contribution of the real soft photons shown in Fig. 3 can be described
by a multiplicative factor being composed of separately conserved initial and final state U (1)-

currents
km7£.m‘al=0
Br | s— M2 Qip! Quph  (Qi—Qu)g’ )
I3 _ _ w L L z z
FBR(S,t) = ( 47f01) /|I'c']<AE 2(21r)3k° (S_MEV —2kq) [ kpi kp,-: kq
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kpj;inal=0

—

- 3
Q= Qe _ Qur} , Quey
kq kpy — kpy
= F""tml(S)'f' fmal( )+ mterf.(s,t) ) (321)

+

There the impact of a photon radiated by a initial state fermion to the W propagator has been
taken into account, as well. The explicit expression for the gauge invariant form factors Fg(s,t)
after performing the photon phase space integration in the soft photon limit can be found in
App. D.3.

Finally, the QED-like form factors of the W production, which correspond to the QED-
form factors describing the next-to-leading order photonic corrections to the Z production, are
determined by the YFS- and bremsstrahlung form factors derived above as follows:

Fdgp = 2 Re Fypg + Fp with a = initial, final, interf. . (3.22)

Up to now, we only considered the radiation of soft photons, since they develop IR-singularities,
which have to be cancelled in the sum of the real and virtual contribution. In the following, it will
be shown that in Eq. 3.22 this cancellation works. Moreover, the radiation of hard photons will
be considered by performing the integration over the remaining photon phase space: kmm = AFE
up to kS,,. = Mw /2 as it is described in App. E. Since we are interested in the cross section of
the W production in the vicinity of the resonance, those terms, which would vanish for s — My,
have been neglected. Furthermore, the W width will be introduced in order to cope with the
arising on-shell singular logarithms by the replacement

s— M2 2 Aw =5 — MY +iMy TS

which can be done without spoiling the U(1)-current conservation as it can easily verified by
Eq. 3.21. The replacement of (%9 (s) with 50 (s) (Eq. 2.9 with 1"&),) — 1"&?,“)) in the vicinity of
the resonance follows the prescription developed in App. A.

The initial state QED-form factor:

The gauge invariant QED-like contribution to the total cross section in O(a?) in the vicinity of
the W resonance, which has been extracted from the virtual and real (soft) photonic initial state
correction to the W production in the 4-fermion process, yields (Egs. D.43,D.10 with Eq. 3.13

and Q; — Qi =1)

olans (8) = 50(s) (1+ FGEE"(s))

= 50(s) {1 + Bi(s) [log (235 Ay —Azw\/s'AEl) +6 (S)] +268,4,(s )}
(3.23)

Bi(s) = % [Q2 (log (%) - 1) +Q2 (log (-‘%) - 1) - 1] : (3.24)

12

with



2

i = 2003 () 20 5 4 s
8is(s) = 41r{Q’ [2log(m?)+ 3 2]+Q,,[z—)z]+3+12} (3.25)

and the phase-shift of the resonance

— M2 2/sAE — s + M?
5,(s) = (__TZ_VI)) [arctan (s—(o?—,l)) + a.rctan( Ve (j_:) W)] . (3.26)

This represents the main contribution to the entire electroweak 1-loop corrections due to the
occurrence of large logarithms, for instance log (m—sz) ~ 24 for s = M{,. In the case of the

Z resonance a procedure has been developed how tg cope with those large contributions [10].
The achieved description of the initial state photon contribution by the QED-form factor given
by Eq. 3.23 enables now its application also to the W resonance. For that purpose, the phase
space integration over the hard photons will be rewritten in accordance with Eq. E.12 by using
z=1—k=1—2—q%9asfollows:

SV _ =) |AW|2(1 (alils oy Ok
urals) = 2900) [ a2 [z 5o (-2 + 25
_ /dzeu—z-e)a")(sz){ﬂ’( )+5h(s)} (3.27)
0
with e = %;E- and d, is given by
5u(s) = algz—%(1+z)ﬁ,'(s). (3.28)

As it can easily be verified, the term oc 1/(1 — z) of Eq. 3.27 cancels the AE-dependence of the
soft QED-form factor. Thus, the cut-off parameter AE can be chosen to be so small that it
can be neglected in Eq. 3.23 as compared to the W width. As a consequence, the initial state
bremsstrahlung to the W resonance can also be written in form of a convolution integral

0+ 0+1 1
g; s+h (S) = 1(v+s) + 1(h)ard
/ dz GO+D (2) 50 (s) (3.29)
0

with the radiator function at 1-loop level
GO(z) = §(1-2)
+ 31 =2) [Bils) log(e) +25}.,(s)]
+ 0(1—z-%¢) lﬂ—fs% + Sh(s)] . (3.30)

This representation enables the consideration of the remaining electroweak 1-loop corrections
and the effect of an s-dependent width in a simple way. After performing the summation of
the logarithms connected to the soft photons to all orders in perturbation theory (soft photon
exponentiation) the convolution integral in Eq. 3.29 reads as follows:

Green ) = [ 42 G(2)80(s2) (331)
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with the radiator function in the exponentiated version
G(z) =B (1—2)% 1 (1+28,,,)+ 6. (3.32)

The calculation of the initial state bremsstrahlung at 2-loop level in the case of the Z resonance
[10], either performed explicitly or by using the structure function method, has shown, that the
soft photon exponentiation together with the remaining 1-loop contributions of the virtual and
hard photons represents the main part of the initial state bremsstrahlung. A renormalisation
group analysis [19] confirms the method of the summation of the leading logarithms arising in
connection with the emission of soft photons (— Eq. 3.32).

The final state QED-form factor:

The gauge invariant QED-form factor describing the soft photons radiated by the final state
fermions is given by (Egs. D.10,D.44 and Qf — Qs = 1)

Fst(s) = By(o)log (252) +2 8Ll (3.33)

where (¢(s) and 5,{+8(s) again can be derived from the corresponding initial state expressions
(Egs. 3.24,3.25) by applying the substitutions (z,3') — (f, f’). After taking into account the
radiation of hard photons the so-defined soft photon contribution to the resonant W production
cross section fulfills the KLN-theorem [17] provided that no constraints on the invariant mass
of the final state fermion pair will be imposed: the mass singularities cancel out and finally a
QED-form factor ‘%ED remains multiplying the inclusive total Born cross section

aftih(s) = 60(s) (1 + 8gp) (3.34)
which has the following form:

; o« 7 ff=wl
‘SQED'W (Qf+Qf,)+ +24 =~ 0.0072. (3.35)

Thus, as in the Z resonance case, this small effect of the final state bremsstrahlung can be taken
into account by attaching a multiplicative factor to the convolution integral in Eq. 3.31

50(s) — 50(s) (1+ 6Lgp) -
The interference contribution:

The interference of initial and final state soft bremsstrahlung leads to the following QED-form
factor (Eqs. D.11,D.45 with Q; — Qi = Qf — Q= 1):

in 2AE M2 inter f.

—0 for s=M2,, AE> T
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with
Bine.(s,1) = - [(QiQf + Qi Q) log (%) - (QiQp + QuQy) log <3—2> + 2] (3.37)
and

stert (s, t)

2 2
{(Qfo + Qi Qy) [—l log (2—2) - 2Sp(1+ %) + %log (%)]

(@@ +QeQp)t— u] —6— %vr?} . (3.38)

Sp(z) denotes the Spence-function described in [20]. The integration over the scattering angle
of the remnant of the IR-singular logarithm in Eq. 3.36

)

1 2AE M
a,(nlerf.(s)hog_ = / dcosO Bint. (s, 1) log( 75 B = zv:’/_AEl)

= 202 (__) [5(QiQs + QuQp) +4(QrQs + QpQ)]

2AE M2,
log( N lAw—zﬁAEl) (3.39)

leads to a contribution, which will be completely compensated by the hard photon contribution
mterf (s) in Eq. E.17 evaluated at s = M%,. The remaining factor (5,’,’_'::” "(s,t) together with the
IR—ﬁmte parts of the box diagrams F‘j,r’(';'fj( ,t) (Eq. D.12), where on-shell and mass singularities

have been subtracted according to Eq. 3.19, are independent of the charge quantum numbers

characterising the external fermions

. o 5
U+ P o= M) = - [ +8+ 577 (340

and, thus, can be absorbed into a modified weak contribution to the differential Born-cross
section. This compensation of the non-factorisable ¢(u)-dependent remnants of the photonic
box diagram by 5;1_:::rf " is essential to the factorisation of the numerator of the resonant cross

section into partial W widths describing the W production and decay, respectively.

3.2 The modified weak 1-loop correction to the W production

The IR-finite rest of the virtual photon contribution Fy finite(s t) of Eq. 3.4 consists of the
remnants of the YFS-prescription F}.,, (s,t) and the IR- ﬁmte Feynman-diagrams IIT and IV

Flmite(s,1) = F,, (s,8) + (Fijy g + Fjy; + F?v)(s)lsubtr. (3.41)
with
finite finite finite fzmte
rem (s t) - Z (E],f + F’j,i )(S) + (FV,t )(S t) ’ (342)
j=Lia subtr,

where |supr. Teminds of the subtraction of the mass and on-shell singularities described by
Eq. 3.19. After taking into account the remaining part of the interference QED-form factor
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5:,':f§rf (s, t) from Eq. 3.38, as it has already been discussed in Sec. 3.1, these photon contributions

can be absorbed into a modified weak contribution to the W resonance
Fweak(s = MI?V) ( eak + F, eak + F{inite + 6:.)?:1‘}")(3 = M‘%V) > (343)

where F:;;Efak denote the pure weak contributions given by Eq. D.27. With this UV-finite and
&;-independent form factor the separation of the electroweak corrections to the W resonance
aimed for is completed.

Finally, it remains to check, whether Fweak(M W) can be represented as a sum of the modified
weak corrections to the W width: 6T/ » and 6T - According to Eq. B.11 this is equivalent

wea wea

to the verification of the identity
(Ffimite 4+ 87457 (s = M) = 2 6T,

with oI'Y

rem.
proven to be true and Fweak(M%/) can be written as follows:

given by Eq. B.10. In fact, by performing its explicit calculation this identity is

Fweak(M‘?V) = Fi eak(Ml%V) + 6F2em +Ffeak(MW) + JFrem

= Pl (M3,) = Fufmk(Mz )
= (srnweak + JF{ueak . (344)

By using this result and by following the prescription derived in App. A the W production
cross section in the vicinity of the resonance including (modified) weak 1-loop corrections has
Breit-Wigner-form

. ~(0+1 0+1
6r (5-N)  sDwe Wik

Mi  NE (s - ME)?+ Mp (TRT0))

ou(s) = (3.45)

where I denotes the QED-subtracted W width defined by Eq. B.12.

4 Summary

In order to match the requirements of future precision experiments at LEP II and the Tevatron
the corresponding cross sections for resonant W production have to be calculated beyond leading
order perturbation theory. Having in mind the successful treatment of the electroweak O(c)
contribution to the Z resonance [8], we strove for the analogous description of the resonant W
production in a 4-fermion process at the required level of accuracy. After a thorough perturbative
discussion of the electroweak ©O(a) contribution to the W production we succeeded in extracting
a gauge invariant QED-like form factor from the photon contribution. We showed, that, when
approaching the W resonance, the occurrence of on-shell singularities is restricted to the initial
state contribution and can be ’regularised’ by introducing the W width as a physical cut-off
parameter in a gauge invariant way. The similar structure of the resulting initial state QED-
form factor to that of the Z resonance allowed us to apply the same technique to cope with
the enhancement of the electroweak coupling by large mass singular logarithms (soft photon
ezponentiation). By separating the electroweak 1-loop corrections to the W width into QED
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and weak contribution, too, it turned out, that the (modified) weak corrections to the resonant
W production cross section also factorises into QED-subtracted partial W widths.

In summary, we achieved a representation of the electroweak radiative corrections to the W
production cross section in the vicinity of the resonance, which is in analogy to deep inelastic
hadronic scattering a convolution of a process specific ‘hard’ cross section o, (s) (Eq. 3.45) with
an universal radiator function G(z) (Eq. 3.32) describing the initial state photon contribution,
where the possibility of multiple soft photon emission has been taken into account

1
o(s) = /0 dz G(2) 0u(sz) (1 + hp) |- 4.1)

JéED, defined by Eq. 3.35, denotes the final state photon contribution, which is free of large mass
singular logarithms. As a result of the comparative discussion of the S-matrix inspired ansatz
and the perturbative approach a transformation of the parameter of the resonance (Eq. A.27)
connects between the two descriptions.

5 Numerical discussion

In the following the numerical relevance of the different contributions to the electroweak radiative
corrections and their impact on the line shape of the W resonance will be discussed. For the
numerical evaluation the following set of parameters has been used [9],[13]:

a = 1/137.0359895 Gy = 1.16639 - 107% GeV ™2
a, =0.123 Mz =91.1884 GeV

mg = my, = 0.0468 GeV m, = 1.55 GeV

ms = 0.17 GeV my = 4.7 GeV

[Vual = 0.975 [Ves| = 0.974

[Vis| = 0.999 [Vas| = |Vea| = 0.222

[Veb| = |Vis] = 0.044 [Vas| = [Via| = 0.007

The masses of the light quarks are effective quark masses in the sense, that they reproduce the
correct hadronic vacuum polarisation given by the dispersion integral calculated in [21] and have
no further physical meaning. Using this set of input parameters the W boson mass is determined
via the relation

M2 dra 1 1 |

My =—=2|1+ /1~ 5.1

LA [ V2G, MZ1- Ar (5-1)

as a function of the not precisely known or even unknown parameters of the MSM: m; and My.

A detailed description of Ar, which comprises the radiative corrections to the muon decay, can
be found in [22},{23].

The W width is an important ingredient of the description of the resonant W boson produc-

tion. The numerical results for the W width at leading order ﬁ;?/) (Eq. 2.4) and at next-to-leading
order fggﬂ) (Eq. 5.2) are summarised in Tab. 2. Besides the electroweak O(a) contribution cal-

culated in App. B, the latter contains also the contribution of virtual and real gluons, so that
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]."(OH) yields in G -representation (Eq. 2.3) as follows:

Nf
T ) T sp (L+2Re 8T — Ar + 6hpp + —— 6qcu) : (5.2)
(Ff).f#

where the modified weak correction and the QED-form factor are given by Eq. B.11 and Eq. 3.35,
respectively. The QCD corrections are derived in the limit of massless decay products [24]

2
(04 (0 4 (04
Socp = — |1+ 1.40 =2} -12. = )
Qp = {+ 932 (W) 12.76706 (W” (5.3)

which for our case represents a sufficient approximation. In the course of the calculation of
the W width the Kobayashi-Maskawa-mixing has been neglected, but the final result has been
multiplied with the square of the corresponding physical matrix element V;;. From a numerical
point of view, this procedure does not significantly differ from a consideration of the Kobayashi-
Maskawa-matrix in the renormalisation procedure as it has been pointed out in [25]. In order to

F0+)

illustrate the variation of My and with the electroweak input parameters, they are given

in Tab. 2 for different values of m; and Mpy. The ratio F /MW illustrates the very weak
dependence of the W width on m; and Mp: due to the cancellation of large leading (quadratic)
m,;-dependent contributions in 8T yeak and Ar only a logarithmic dependence on m; (and Mg)
survives and thus the variation of I‘( ) s mainly a consequence of the variation of My . Our
result obtained for the W width in next-to-leading order is in very good agreement with the
total W width derived in [12]: relative deviation < 0.005%.

In the subsequent discussion of the line shape of the W resonance the top quark mass and
the W boson mass are chosen to be the central values of their current world average ([26] and

4], resp.)
my = 175 £ 9 GeV

Mw = 80.33 £0.15 GeV .

Using these input parameters the Higgs-boson mass and the total W width yield
My =273 GeV = T\0 = 2.0406 GeV and Ty~ = 2.0887 GeV
compared to the measured value of T'w [13]

I'w =2.08£0.07 GeV .

The ‘hard’ cross section o,(s)

The effect of the (modified) weak 1-loop correction described by Eq. 3.45 to the W line
shape is shown in Fig. 4 for the example of a pure leptonic process: veet — v,ut. There is
no noticeable impact on the location of the maximum of the resonant cross section 7,(s) (in
G-representation)

Smaz = M3 \J1+92, (5.4)
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My [GeV] 60 300 1000

my = 165 GeV
My [GeV]  80.3648 80.2618 80.1647
Ty [GeV] 2.0433 20354  2.0280
("“) [GeV] 20911 2.0834¢  2.0759
°+‘ )| My 0.0260 0.0260  0.0259
my = 175 GeV
80.4275 80.3228 80.2244
2.0481  2.0401  2.0326
2.0960 2.0882  2.0806
0.0261  0.0260  0.0259
m: = 185 GeV

80.4927 80.3861 80.2862
2.0531 2.0449 2.0373
2.1012  2.0932  2.0854
0.0261  0.0260  0.0260

Table 2: The total W width (and Mw ) in G,-representation including the described radiative

corrections

=(0+1)
where the abbreviation v = %— has been used, due to the smallness of 7y in the above equation

(ASmaz = 0.6 MeV). The maximum of the cross section, however,

Z(0+1)  =(0+1)
6r 5— Ni Dw_rp Pwois

Temes <3 N (@

a+37) (5.5)

is reduced as compa.red to the peak value in leading order perturbation theory aﬁnL, (= Tw,maz

with T'0+1) — [M9)), For the case of the leptonic process this reduction yields
Tuwmaz = 0.9347 O

and is mainly due to the QCD correction to the total W width given by Eq. 5.3. Thus, when
considering the W production process veet — ud the reduction of the maximum cross section
only amounts to

Fuwmaz = 0.9720 70,

=(0+1
since now the QED-subtracted partial W width Fi)y _,,)‘g of Eq. 5.5 also includes the QCD con-

tribution. Tab. 3 shows the negligible small dependence of the peak value Gy maz on the top
quark and Higgs-boson mass due to the aforementioned cancellation of leading (quadratic) m,-
dependent contributions in the partial W width calculated in the G-representation.

The further discussion is dedicated to the QED-like contribution, especially to the initial
state photon radiation. The final state QED contribution described by ‘%ED of Eq. 3.35 has a
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me [GeV] || My [GeV] | TN [GeV] | Bumas [0b]

166 124.19 2.0886 52.5449
175 273.32 2.0887 52.5451
184 549.30 2.0888 52.5452

Table 3: The W width ﬁ,?/ﬂ) and the peak value Gy, ma, for different top quark masses. Besides

the top quark mass the W boson mass My = 80.33 GeV has been used as an input parameter,
so that the Higgs-boson mass is determined by Eq. 5.1.

tiny effect on the peak value: 6{;31’; ~ 0.0072 for leptons and 56;}‘, ~ 0.0069 for quarks, but has
no impact on the peak position of the resonant cross section. The leftovers of the interference
contribution have already been absorbed in the ‘hard’ cross section as it has been described in
Sec. 3.1.

The initial state bremsstrahlung

The initial state bremsstrahlung, described by Eq. 3.23 (soft photons) together with Eq. E.15
(hard photons), does not only carry the main contribution to the reduction of the peak value,
but is also responsible for the distortion of the line shape, especially for the shift in the peak
position. The main effect to the reduction of the maximum can roughly be estimated by the

factor

M
1 = Bize(M3) log (;(O—i"ﬁ) = (.81
FW

with ,8,-=5(M3V) given by Eq. 3.24. For comparison, the corresponding factor for the case of the

Mz Mz) _
me)log<rz =0.6.

The effect is much smaller, when the soft photon is emitted by quarks

Z resonance is given by [22]

a
—4—1
1 - og(

M
1 — Bi=u(Miy) log (;ﬁ%) =094,
Ly

where the numerical evaluation has been performed by using the effective quark masses. They
have no physical meaning, but in a realistic hadronic scattering process they are rather included
in the parton distribution as parts of the interacting hadrons, with which the parton cross section
has to be convoluted in order to obtain an observable cross section [27].

In Fig. 5 the impact of the initial state bremsstrahlung to the W line shape in a pure leptonic
process veet — v,pt is shown. The shift of the peak position due to the energy loss in the
resonant W propagator in O(a) amounts to

AMy = +53 MeV ,
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which reduces to
AMw = +42 MeV

after performing soft photon exponentiation as it is described by Eq. 3.31. This shows, that
the calculation performed in O(a) overestimates the W boson mass by 11 MeV. Due to the
different charge structure for the case of quarks in the initial state only a shift of the peak
position by AMwy = +14 MeV can be observed, which still amounts to AMw = +13 MeV after
the resummation of the soft photon contribution. Since these soft photons represent the main
contribution to the resonant W production, we expect no significant contribution from hard
photons at 2-loop level, which has been confirmed by an explicit 2-loop calculation in the case
of the Z resonance {10].

In summary, the electroweak () contribution to the resonant W production develops the
same characteristics as the corresponding corrections to the Z line shape. Fig. 6 shows the
total cross section of the W production in the vicinity of the resonance as it is described by the
convolution integral of Eq. 4.1, where the s-dependence of the W width has been considered by
applying the transformations of Eq. A.27. The main impact of the discussed radiative corrections
on the W line shape can be summarised as follows:

e The peak position 8,4, of the resonant cross section (Eq. 5.4) is shifted about +42 MeV
(Z : +96 MeV) (constant W width) and suffers an additional shift about —27 MeV (Z :
—34 MeV), when assuming an s-dependent width.

e The peak value of the resonant cross section is reduced by a factor 0.82 (Z :~0.6) with
(0)

respect t0 Omaz.

For comparison, the corresponding values in case of the Z resonance are also provided [22] (in
brackets).
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Figure 4: The ‘hard’ cross section 7, (s) of Eq. 3.45 compared to the Born-cross section for
veet = v, pt
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Figure 5: The effect of initial state bremsstrahlung in O(c) described by afgilh)(s) of Eq. 3.29
and after soft photon exponentiation (Eq. 3.31)
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Figure 6: The W production cross section in the vicinity of the resonance including the discussed
electroweak radiative corrections (Eq. 4.1)

Appendix

A TUnstable particles and gauge invariance

In S-matrix theory an unstable particle, experimentally seen as a resonance during the interaction
of stable particles, can be easily described when neglecting all singularities besides a single
complex pole close to the real energy axes with negative imaginary part [28]). Therefore the
S-matrix is approximately of the form of a Breit-Wigner resonance

M(s) =

—— +F(s), (A1)

where F(s) is an analytic function with no poles. The residue R of the complex pole M2 can

be interbreted as a product of coupling constants, with which the unstable particle couples to
the external particles [28]. The resonance in the scattering amplitude arises in the vicinity of
s = Re(M?), the physical mass of the unstable particle, and the width of the resonance is given
by Zm(M2): r

M(? = Mgh.ys. - iMphys.P or e.g. M(,? = (Mphys. - 7'5

The S-Matrix given by Eq. A.1 is gauge invariant in the physical region (s real and s > 0) and
thus -via analytic continuation- also in the complex energy plane, which enables its application

)2, (A.2)

in a gauge theory. The fact that the complex pole M., its residue R and the non-resonant part
F(s) are separately gauge invariant has been used to find a gauge invariant description of the
Z resonance at the required level of accuracy [29],{30].

From the quantum field theory’s point of view a resonance in the scattering amplitude is
caused by a pole in the propagator of an unstable particle. In the vicinity of the resonance the
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resummed propagator has to be used, which is a formal summation of a geometric series with
the 1PI self energy of the unstable particle as argument (Dyson-resummation) [31]:

m@m=mwm+m8~w+

o e[ ( B )]
ey v g sy S v ol Rl Gy v sy Il (A-3)

Mg denotes the unrenormalised bare mass and Tr(s) is the transverse part of the 1PI self energy.
Since the external particles are considered to be massless as long as no singularities occur, the

longitudinal part of the propagator does not contribute and will not be discussed. Veltman [32]
showed that the S-matrix constructed by using the Dyson-resummed propagator and assuming
only transitions between stable particles obeys the principles of unitarity, renormalisability and
causality. Thus, the field theoretical description of gauge boson resonances is given by the
following amplitude, after performing a renormalisation procedure:

Vi(s) V(s)

Mls) = s — M% + f}p(s)

B(s) . (A.4)

Vi, f(s) denote the renormalised vertices, describing the production and decay of the unstable
particle, Mg denotes the renormalised mass and $r(s) the renormalised self energy. B(s)
comprises the non-resonant contributions, e.g. box diagrams.

The S-matrix theory inspired construction of a gauge invariant amplitude using a Laurent
expansion of Eq. A.4 around the complex pole and afterwards performing a consistent evaluation
of the parameters of the resonance in the coupling constant g results in a description with
constant width. Choosing the field theoretical ansatz and carrying out a consistent treatment
of the inverse of the propagator in Eq. A.4 can lead to a scattering amplitude with s-dependent
width [33]. Analysing the Z line shape in the S-matrix theory approach yields a Z boson mass
which is about 34 MeV larger, at @(g?) accuracy, than the corresponding value obtained in an
s-dependent width prescription. Since these two descriptions are connected by a transformation
of the line shape parameters [34] there are equivalent and, thus, the difference in the Z boson
mass has no physical meaning.

The future precise measurement of the W boson mass at LEP II and at an upgrade of the
Tevatron raises the same questions for a charged gauge boson resonance. In the following, the
applicability of the prescriptions, derived in the context of the Z resonance, to a charged vector
boson resonance will be studied.

M, pp:(s) with constant width

After carrying out the systematic treatment developed by Veltman [29}, which can be directly
applied to the W resonance, a gauge invariant scattering amplitude and a definition of mass and
width to the required level of accuracy can be given:

o O(g°) accuracy:
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At 1-loop level the physical mass My is connected to the renormalised mass as follows:
Re(M?) = My = M — ReSr (Mg, g%) , (A.5)

which yields the equality of physical and renormalised mass when using the on-shell renor-
malisation condition 'Rei‘;T(M,QZ, g%?) = 0 in order to determine the mass renormalisation
constant M2, = Mg -M }22. In leading order perturbation theory the W width corresponds
to the imaginary part of the 1-loop corrected renormalised W self energy

My T =ImSr(My, 0% . (A.6)
Thus, the W resonance is described by

R(g%)

M(O)(s) = 5 - )
s — My, +iMw Ty

+ 0(g%) (A7)

with
R(g%) = Vi(9)Vy(g) .

O(g?) accuracy:

In next-to-leading order Eq. A.5 turns to

M}, = M3 —(1—Rellp(M2,4%) ReZr(M2,g°)
— ReLp(M3,g%) — ImIp(M3E, ¢°) Imllr (M3, ¢%) , (A.8)

where the following abbreviation has been used:

951 (s)

0s
Taking the renormalised mass as the zero of the real part of the inverse propagator, which
corresponds to the field theoretical definition of a stable particle’s mass, this reduces to

fr(s) =

M, = M%: — ImEr (M}, ¢%) Imlir (M3, ¢%) . (A.9)

Thus, one obtains a shifted renormalised mass with respect to the physical mass. By
considering a renormalisation condition, however, which reads at 2-loop level as follows:

ReLr (M3, %) + ImEr(ME, g%) Imllr(M3,¢%) =0, (A.10)

the equality of physical and renormalised mass is recovered [30]. Then the W width in
next-to-leading order yields

MwTYtY = (1 = Rellr (M, %) ImEr (MY, ¢°) + ImSr (M, g*) . (A.11)

The calculation of F(v?,H) in the MSM and for §; = 1 can be found in {12] and will be
additionally performed in App. B for R¢-gauge and in the limit of massless decay products.
Finally, a gauge invariant description of the W resonance can be given, which completely
takes into account the electroweak radiative corrections up to order O(g?)

R(g%) + R(Miy, g*)
s — M2, +iMy T

MO+ () = + 0(gh) (A.12)
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with the residue in next-to-leading order
R(Myy, g*) = Vi(My, 8°)Vy(9) + Vi)V (Miy, 6°) — Vi(g)Vy(9) TIr(Miy, 6) . (A.13)

The V,-, f(M‘?V,g3) denote the renormalised vertices including 1-loop corrections to the
production and decay of a W boson, respectively.

Miirp(s) with s-dependent width

Next we present the results obtained by using the field theoretical ansatz and we discuss the
equivalency of both approaches also for a charged gauge boson resonance. The latter cannot
be readily expected in the case of a W resonance, since the existence of a transformation given
by Bardin et al. [34] for the case of the Z resonance is due to the linear s-dependence of the
imaginary part of the Z self energy. Therefore a careful study of the s-dependence of the W
self energy is required. After evaluating the real part of the W self energy in Eq. A.3 (after
renormalisation) around s = M2 and using the on-shell renormalisation condition 'Ref)T(M,%) =
0 the W propagator is given by

1 — Rellr(M3)

T . - . (A.14)
s— Mz +iImXr(s) (1~ 'RBHT(M?{))

DY) = —ig"

Thus, following the argumentation of Wetzel [33] in the vicinity of the resonance the residue of
the complex pole in Eq. A.4 in next-to-leading order is given by

RO (M) = Vi(ME,, ¢*)Vi(9) + Vi(g) Vi (ME, ¢°) + Vi(g) Vi (g) (1 - Rellr(Miy,g%)) , (A.15)

where Mr = My has been used. Since the inverse W propagator is of order g2 in the vicinity of
the resonance the complete @(g*)-contribution to the denominator has to be taken into account.
Thus, after using the definition of the W width given by Eq. A.11, the following definition for
the s-dependent W width can be given:

denominator = s5-— Mv2v + iMWI‘E,?,H) + iﬂn[)f)r(s,g2) - i)T(Mgv»f)]
= s— ME +iMwT\tV(s). (A.16)

In contrary to the Z boson, where the imaginary part of the derivative of the 1Pl Z self energy
develops gauge dependent contributions only when [35]

Mz )2
2Mw ’

5WS<

the corresponding quantity in the W boson case ImfIT(M‘?V, g?) is gauge parameter dependent
for each gauge parameter &; # 1 (Eq. D.18). This is due to the existence of Feynman-diagrams
involving photons, which couple to the W boson via the triple gauge boson coupling. The 1-
loop contributions to the W self energy are shown in Fig. 7 for R¢-gauge. However, when the

Dyson-resummed contribution
s 2y _ ¥ 2 oy S Miy 2 2 2 2
Im[Yr(s, %) — X1(Miy,9%)] =" (s = My) Tnllr(Miy,g°)
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w* @ u’
Figure 7: Feynman-diagrams for the photonic 1-loop correction to the W self energy (the dashed
and dotted lines denote a charged Higgs-ghost ®* and the Faddeev-Popov-ghosts u® or w7, resp.)

is treated perturbatively in order to cancel the gauge parameter dependent contributions to
the imaginary part of the 1PI vertex corrections in R(O"'l)(M‘?V), the Breit-Wigner resonance
formula with constant width from Eq. A.12 in combination with the renormalisation condition
of erder O(g*) given by Eq. A.10 is recovered.

In order to obtain the physical description of the W resonance with s-dependent width, the
following approximation of the s-dependence of the photon contribution to the imaginary part

of the W self energy shown in Fig. 7 is useful (I(s): Eq. D.17):

(s — M) 6(s — Miy) I(s)
(s — M) 0(s —~ M) I(M) := (s — M) TnlI7(M§) . (A7)

ImE1.(s)

= I

Since the derivative ﬂnﬂ}(Mﬁ,) does not exist in a strict mathematical sense due to the thresh-
old at s = M3, the above equation has to be understood as a definition. The fermion contribu-
tion to .'E'ni):r(s), however, is linear in s in the case of massless fermions, so that the s-dependence
can be extracted as follows:
& 2y __ _S : 2 2 _oas2 Y (ag2 2
Im¥r(s,g°) = iR ImYr(Miy,g°) + (s — My ) Imllp(My,g7) (A.18)
w
By using this s-dependence in the W propagator given by Eq. A.14 and after undoing the
resummation of Iquw (M‘%,-, g?) the W propagator turns out to be as follows:

1 — Reflly (M, g%) — iZmll} (M, %) + O(g*)
s — Mp +ig- ImEr(Mfy) (1 - Rellr (M, g) — imIT}(Mf,, 6%) + O(6%)
(A.19)
where the validity of Eq. A.18 at least up to order g* has been assumed. In summary, the
scattering amplitude constructed with the help of this propagator and a subsequent consistent
evaluation in the coupling constant of the numerator and the denominator, which results in a

DEY — _,‘-g;w

gauge invariant description of a resonant produced W boson at the required level of accuracy,
will be given:

o O(g%) accuracy:

RO

2 : 5
s—MW+z——-MW

MO () = =0 + O(g?) (A.20)
w

with
RO = V;(9)V(g)

and the definition of the W width given by Eq. A.6.
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e O(g?) accuracy:
By considering the following renormalisation condition:

ReSr(Miy, g*) + ImEr(Miy, g%) ImII (M, ¢%) =0, (A.21)
which differs from Eq. A.10 by
MwT§) TmllfF™ (M, ¢%) = (TY)? (A.22)

the scattering amplitude is given by:

MO+ (5) = + O(g%) (A.23)

RO+V(MF)
s — M3, +igi Tigth

with

ROD(MZ) = Vi(g)Vi(g) + Vi(ME, g*)Vi(g) + Vi(g) Vi (M, 6°)
— Vi(g)Vy(g) [Rellr (M}, g%) + iZmITH (M), ¢*)] - (A.24)

The next-to-leading order W width I‘( 1 i again defined by Eq. A.11. RO+Y(MZ)
differs from R(M%,, g*) of Eq. A.13 concerning their imaginary parts by

(0)
Vi(g)V;(g) TmlHe™ (M3, 6%) = Vi(g)V}(g) F—W (A.25)

It remains to check whether both descriptions are equivalent. For that purpose Eq. A.23 will
(0+1)
be rewritten as follows (with v = EX“,!;
w

neor)
s(14+1iy) -
R(0+1 M2 ) 11_’}1
s—MW 1- 2)+zM2 (1 - 72y
H0+1) 5 r2
_ R (My) (A.26)

s— Moy +iMw T

M(O+1)(s) —

The evaluation of the numerator and denominator of the above equation up to the order required
for a ((g?) accuracy easily verifies, that exactly those terms arise, in which the s-dependent
width description differs from the constant width amplitude given by the Eqs. A.22, A.25. Thus,
a transformation of the parameters of the resonance: residue, position of the pole (— mass) and
width can be given, which connects both descriptions

01) ¢ 2r2 HO+1) 22\ pO+1)1y2 1~ 7)
RO (M2Z) - ROV (M2) =Rl )(Mw)m
My — Mw =My (1+12)}
Fg)?/+1) — F$+1)=F](£/+l) (1+72)_% . (A27)
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Figure 8: Real photon corrections in O(a) to the partial W width

Consequently, the W boson mass in the description with s-dependent width is about ~ 27 MeV
smaller as compared to the constant width approximation. With the help of these transfor-
mations the effect of an s-dependent width can be easily studied without the necessity to deal
with the - with regard to the s-dependence - complicated scattering amplitude from Eq. A.23,
especially when a convolution integral as it is given by Eq. 1.1 has to be calculated.

In recent publications, either in connection with the W pair production at LEP II [36] or with
the radiative W production at the Tevatron [37], several approaches to consider an s-dependent
width in the W propagator in a gauge invariant way have been discussed. The prescription
given by Baur et al. [37] results from taking into account the imaginary part of the virtual
fermionic correction to the yWW-vertex. We checked, that applying the transformation we
derived (Eq. A.27) in order to consider an s-dependent width yields the same modification of
the bremsstrahlung amplitude as presented in [37].

B The partial W width in O(a?)

The partial W width in @(a?) can be written as follows:
Tt =TW 1 (1+2Re 6Tuire. + T8R) , (B.1)

where I‘g?,) S ffr denotes the partial width in leading order given by Eq. 2.1. 8 yire. and 8TgR
represent the virtual and real contributions, resp., calculated in R¢ gauge and in the limit of
massless decay products. The discussion of the electroweak O(a) contribution to the W width
performed in Feynman 't Hooft gauge and under consideration of massive decay products can
also be found in [12]. In the following we concentrate on the gauge invariant separation into a
QED-like and weak part.

The Feynman-diagrams representing real photon emission described by
0lpr = 6T'gp + 51-‘%13

are shown in Fig. 8. The soft éI'gp and hard JI"I’;R bremsstrahlung contribution can both be
described by the same form factors we already have derived for the final state photon emission
in the W production process evaluated at s = M@2,: d0'% = Fl’;;?“l(M%,) given by Eq. D.44 and
6Thp is defined by Eq. E.22.
6T virt. comprises the renormalised vertex correction (diagram I,ILIII in Fig. 9 and the counter
term given by Eq. C.1) and the wave function renormalisation for the W boson (diagram IV
in Fig. 9 together with Eq. C.2). Again, we discuss the photon and pure weak contribution
separately
8T yire. = F!

wea

WM+ FL (M) . (B.2)
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Figure 9: Electroweak 1-loop corrections in O(a) to the partial W width (again, the non-photonic
corrections to the W self energy are symbolised by the shaded loop)

The pure weak contribution can be described by the same form factor Flﬁeak(M‘?V) of Eq. D.27,
which has been derived from the weak corrections to the W decay process of the resonant W
production in the 4-fermion process. In contrary, the structure of the virtual photon contribution
Ff (MW) differs from that of the W resonance and requires a separate discussion. For a W boson
belng on-shell all photonic 1-loop corrections in Fig. 9 develop IR-singularities. Thus, in order

f

weak

to gain a gauge invariant separation into a QED-like 5QED and a (modified) weak part 6T

0+1 0 ~
Fg’Vt*}f' = Fg’V)—*ff' (1+2Re ‘Srt{)eak + (SéED) ) (B.3)

the diagrams III and IV have also to be considered by the YFS-procedure. The application of
the prescription given in Sec. 3.1 to these diagrams

diagram III : z'AL”'f = 19w Yu(l — 715) [Fll}}z’f + F};}"fm](s = M%) (B.4)

with

_ ( (2pf — )(k 2q) (2pp + k)(k + 2q)
Fifh (s = Miy) = (i4me) {Qf /D DDy (k2 — 2kq) +er / DDy (k2 + 2kq) } B9

and
diagram IV : iALV = igwYu(l - 75) 3 [ g Ff"“te](s = My) (B.6)
with (2 F)?
— — ——q —
(s = M%) = (idma) / D5 (K% 2kg)? (B.7)

together with the IR-singular parts extracted from the diagrams LII (Egs. 3.8,3.10 evaluated at
s= M‘?V) yield a gauge invariant YFS-form factor multiplying the tree level W width, which is
the same as for the final state photon contribution to the W production

Fii(s = Mfy) = 3(ime) [ o
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k'pjpﬁ"ul=0

Qi —K), . Qrpr+ k), 1@ —Qr)2a—k),  1(Q—Q)(2a+k),
(k2—2kp;) | (K2 +2kpy) 2 (K2— 2kq) 2 (kZ+2kq)

(B.8)

The only difference is, that the ad-hoc addition of a ‘zero’ in Eq. 3.16 can now be traced
back to the IR-singular contributions of diagrams involving the 7WW coupling, when the W
boson is considered to be on-shell. The explicit expressions for Ffi} f(MW) HR(MZ) and the
corresponding IR-finite parts are given by the Eqgs. D.22-D.26. Consequently, the QED-like form
factor to the W width from Eq. B.3

a 7 =
= = [ (Q,«+Qf,)+3+24] (B.9)

is the same as for the final state QED contribution to the W resonance given by Eq. 3.34. This
result can be compared with the ‘QED-factor’ for a leptonic W decay given in [18]

5o = a [17 =2
OT T |2 3
which has been derived by considering from the photonic virtual contribution only the mass

singular logarithms being gauge invariant by themselves.
The IR-finite remnants of the YFS-prescription in the case of the W width yield

Jerm - Z fzmte Isubtr (MW) + Ffmzte(MW) _ __(2+ d 2)
j=I0r,1r
la (25 68 3 1

which can be absorbed in a modified weak contribution

6F eak(MW) + JF:em . (Bll)

weak —

This completes the gauge invariant separation of the electroweak corrections in O(a) to the
partial W width due to Eq. B.3. Finally, a QED-subtracted partial W width can be defined

0
Mot =T, (1 +2RedTL, ) | (B.12)

which will appear in the residue of the Breit-Wigner-form of the resonant W production cross
section.
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C Feynman-rules

In the following the Feynman-rules, which differ from the ones in Feynman-'t Hooft-gauge (¢; =
1) are explicitly given. The remaining Feynman-rules can be found in [14].

% Z W W .
. —t w, v —1g'¢
AV V.V V.V, ] SV R POy
g2 — M2 +ie q? — &v M2
+ .- 0
¢, 0,% . 1
o B . q2 - f(W,Z) M(Zw,z) + 1€
u',u, .
)
@ esecensecsacascacernsansan, -

@ = €w,z.) M(Qw,z,v) + 1€

n -
I My &2
----- -c:._... . te 2 Su [£W7 C%]

“.

As it has already been pointed out, a renormalisation procedure needed to be performed in
order to cope with the arising UV-divergences. Thus, after the multiplicative renormalisation
of the SU(2) gauge coupling constant and the gauge boson field W, the W ff '_vertex counter
term yields as follows [14]:

e
i ———7.(1 - 1) (1 +62) —62)) (C1
2\/§sw7"( 75)( f 2 ) (C.1)
and the renormalised W self energy is defined by
SW(s) =SW(s)+ (s — MZ) 6ZY — sME, . (C.2)

The renormalisation constants determined in the on-shell renormalisation scheme are given by
[14], (22]

3-2s2 T22(0) & [6MZ M

(52W = —-II _ w T “w Z __ W

1 (0) SwCw M3 +s,2‘, M2 Mg,

w20y 2 [6ME oM
§ZV = _mo) - Zr ) w2z W C.3
2 ©) Sw M2 s2 | Mz M (C.3)
with

(SM(2W,Z) = mzc(rw’Z)(s = M(2W,Z)) . (C4)
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117, E}Z denote the photon vacuum polarisation and the photon-Z-mixing, respectively.

It should be mentioned, that we do not perform an ‘explicit’ wave function renormalisation for
the external fermions, but rather take into account the modification due to their self interaction
by the consideration of the 1-loop contributions shown in Fig. 2 (diagram II). Therefore no
renormalisation constant for the fermion doublet §Zf occurs in the counter term for the W f f'-
vertex.

D The form factors

In the following we provide the explicit expressions for the different contributions to the form fac-
tor describing the virtual electroweak O(cx) contribution to the W production process ﬁ'v;,t_(s, t)
given by Eq. 3.2. They are calculated in R¢-gauge, where, following [35], the {;-dependent parts
are expressed in terms of the functions a;,v;j,7ij. The latter are described in App. F, where
the explicit expressions for the IR- and/or on-shell singular scalar 2-,3- and 4-point integrals
By, Co, Dy can be found, too. In order to regularise the arising IR-singularities a fictive photon
mass A has been used. After dimensional regularisation the UV-divergences have been extracted
in form of the following singular terms:

s m2
Ay = A —log (;2—) and A,, =A-log (—u—i-)

with A = ﬁ)— — vg + log 47 (yg: Euler constant).

D.1 The form factor describing the photonic 1-loop corrections

The photonic form factor Fy(s,t) of Eq. 3.2 is composed as follows:

Wy _ W ar2
Bst)= 3 Fl(s)-2L (s) R;f;’ M) _ 5797 173 (s,1) (D.1)
j=IILII . il B
=:Fp,(s)
with
Fl(s) = (Fj;+F];)(s)
Fy(s,t) = (Fv+Fv)(S,t)- (D.2)

In the following the explicit expressions for the different contributions to the photonic form
factor will be provided, starting with the final state photonic vertex corrections. By applying
the substitution (f, f') — (4,7') the corresponding intial state contribution can be easily derived.
diagram I:

84
Fi (s) = —QsQr {—23 Co(s,ms,my, A) + 2Bo(pF, A, my) + 2Bo(p}, A, m)
- 3Bo(s,mf,mf:) -2+ (f-, - l)a.,} . (D.3)
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Performing the loop-integration of Eq. 3.8 the IR-singular contribution is given by

a -
Fi%(s) = .99 {—28 Co(s,ms,mys, A) + Bo(p}, A, ms) + Bo(p}r, A, mpr)
- B[](S,mf,mf’)}

a s s A2
= Z’/?Qfo’ {As + 2log <mfmf:> + 2log (mfmf/> log (;) +2

+ %log2 (.;%.) 5 = log? ( Sf,) + 312 + iw[2log (%) - 1]} . (D.4)
diagram II:
Fii (o) = _%% {Qf [A +3log (—2) +4+2 log ('\?2) + (& - 1)a7]
my
+ Q¥ If =11} (D.5)

Computing the 1-loop integral of Eq. 3.10 leads to

diagram V:

_ 2
F‘t/(s, t) = f}; {QiQf [—Qt(s - M‘?V) Dy(s,t, m,-,mf,MW,/\) + %)‘vg—)' fV,t(S, t)]

+ Qi’Qf' [(1'7 f) — (zlafl)]} . (D7)

In order to provide a complete representation of the 1-loop corrections also the non-resonant
contribution fy(s,t), which is negligible in the vicinity of the resonance, will be explicitly given

fra(s,t) = 2(s+1) [Bo(s, A, Mw) — Bo(t, mi, mg)] — (2t + s + M) Co(1)
+ ((s+8)2+ 1 — sMP) [Co(3) + Co(4)] + t(s + My +22) [(s — M) Dy
— Co@)]+ (s+8)* [(€w — Dwy(s) + (v & W)]. (D.8)

From Eq. 3.12 the t-channel box contribution to the IR singular YFS-form factor is given by

Fif(s,t) = — {Q@Qs [~2t Co@) - Bo(t,mi,my) + Bo(p}, A, my) + Bo(p?, A, mi)]
+ Qi,Qf' [, ) = @ 1)

t2 A2 1. of s 1, of s
= {Q,Qf [log( f ?>log( )+§log (m—?f) +§log ;—n?
2 2 2
- —log (t >+F—+As+llog<t )+2log (-—s—>+2+i7r]
3 mem;

+ QuQpl(f,1) = (f,)]} . (D.9)

The application of the substitution described by Eq. 3.14 leads to the corresponding u-channel
form factors.
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From these IR-singular photonic 1-loop contributions the following gauge invariant YFS-form
factors of Eq. 3.16 have been extracted:

Fipl(s) = (F{% + Fif)(s)

22 1
+ Qi(Qf—Qy) [log ( sf) log ( ) + ElogZ (—n%) + log (mi%)

+ A+3-30- 3] - Q@ - Qo - /]

,\2
- Qr-Qp)? [IOg (;) + %As + -;—] } (D.10)
Fsl(s,t) = (R + F)(s,t)

2
- Qi(Qs—-Qp) [log <m ) log ('\ ) + %log2 (%) + log (%)

+ A +3_—(1_—7T2)]+Q1'(Qf_Qfl [1,—)2]
- QiQi—-Qi)[i— f1+Qp(Qi— Qi) [i = f]
2
+ (Qi—Qi)(Qf—Qy) [210g (%) + A, + 1}} . (D.11)

The IR-finite remainders of the YFS-prescription are determined by

finite __
Ff = Fy-Fj

F‘f‘(’:’f“; = F® _ FR R - ' (D.12)

The remaining photonic Feynman-diagrams shown in Fig. 2 are IR-finite and, thus, are not
considered by the YFS-prescription, but develop on-shell singularities in the vicinity of the W
resonance. In detail, they are described by the following form factors:
diagram III:

[0 M2
Flpss) = ype {Qf [2 Cols,ms, \, Mw) + 2Bo(p}, A, mg) + (2 + —S—W)Bo(Pff,mff, Mw)

2
- (1+ %“L)Bo(s, A Mw) + %[(ﬁw — D(vwy(s) +aw) + (v & W)]}

- Qplf =11

_ Aw]) _ =*
= o {Q;I:SA +2log( f>+3+210g( f)log(M‘?V 3

b fmg(5)+ HlEw ~ Dows(9) +aw) + (o W] - Qelf > A1}, (D19

where fp7,f(s) can be neglected in the resonance region (w= _A%IM)

o A 2
fmrj(s) = Qs {(1 — w) [1 + (1 + w)log (IM:ZI) - 2log (%—) log (IMQ) + ?]
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— 2wSp(1 — w) — wlog?(w) + log(w) — im8(s — MZ)[1 — w? + 2wlog (-%)]} .
m
f
(D.14)
diagram IV:
The renormalised W self energy contribution is described by FJ,(s) of Eq. D.1, where 5Z;V "

denotes the photon contribution to the wave function renormalisation of the W boson given by
Eq. C.3. The photon contribution to the W self energy reads

3

3
4

+ g(s— M‘?V)Bl(“"’ A'/ MW)

ETVY"Y(S) = (—%) {%M&VAMW + MI?V + %8 + 4sBy(s, A\, Mw)
1
— (s M3) (6w = Dowa (o) + (s = M) () + (v 0 W} . (D.15)
In App. A also the imaginary part of E;Y (s) has been carefully studied
InEW (s) = (s — MEy) 8(s — M) I(s) (D.16)
with
_ a 1 M“,ZV 2
I(s) = 41r{ 47r[1+6(1 5 )]
1
+ T ((Gw ~ Dlows () + 36— Midmwn () + (oW}, (©17)
where vy, (s) and mw+(s) (Eq. F.20) develop imaginary parts, when [35]

s> My, (Jé&w+1)EME, 46w My . (D.18)

Using Eq. D.15 the form factor Fjj,(s) defined by Eq. D.1 yields

Ry = o {13—0 Auy + 5 — tlog ('fl—g') ~ (6w = Dow(s) + (& W)
+ fv()}-02y7, (D.19)
where
frie) = (1-w [-2:,;(1 ~w) log (‘%') -2 e - D () + (r o W)
+ inb(s — M2) [%‘Z—EV- - 4} (D.20)

again describes a contribution, which vanishes for s = M}, Due to Eq. C.3 the photon contri-
bution to the renormalisation constant §Z¥ = §Z5"" + 6Z4™*** is determined by 6 M7

a [cp\2 19 89
sz = & (ﬁ) [? AMW+—9—] . (D.21)
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In the course of the extraction of a gauge invariant YFS-form factor from the photonic 1-loop
corrections to the W width the IR-singular Feynman-diagrams III and IV of Fig. 5 also needed
to be considered. In the following, we provide the explicit expressions for the complete form
factor F f(MW) and the IR-singular part FIR extracted according to the YFS-prescription, now
eva.luated at s = M7,.
diagram III:

«a M, M,
Fluf(Mi) = — {Q, [3AMW +4log (;f“i) +2log? (m—v;’> +3

Mw A
+ 4log ( ™y ) log (MW)
b2 lEw — Dlowy (M3) +aw) + (o W] - Qs £} (D22

Performing the loop-integration in Eq. B.5 leads to

Mw M
F111f(Mv2v) = o {Qf[AMW+2log( f)+2l (_m_w>+3

f
Mw A ,
+ 4log(mf)log(Mw)] Q,u[f—)f]}. (D.23)
diagram IV:
2 (s) — ReZWT(M2) w
24 2 — T T w/ _ Y
F ) = -l S )
Wy
O] — 8237 (D.24)
Os 2
s=My

Using Eq. D.15 Fy,(M2/) is given by

10 32 A
P13 = {2 v+ 2 — t10g () = ew = i, 03 + (v 0 WL} = 52377
3 9 Mw
(D.25)
The explicit expression for Eq. B.7 reads
FR(ME) = —3{AM +4+4log (L)} : (D.26)
v 4T w Mw

D.2 The form factors describing the pure weak 1-loop corrections

The pure weak form factor Fieqr(s = M‘?V) is given by Eq. 3.3 with the final state contribution

f 2\ __ weak 2 W w 1 aEWweak( ) 15 W,weak
Fweak(MW) - Z -FJf (MW)+6Z1 _6Z2 —-2-—-as—'s=M3V - 5 Z-2 . (D27)
j=r11r ~- —— -,
Fweuk(M )

Performing the substitution (f, f’) — (¢,1’) yields the corresponding initial state form factor
F:;, eak(M%,). In the following we provide the explicit expressions for the different contributions
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in Eq. D.27.
diagram I(Z-boson exchange):

we“k(s) 7('uf +ap)(vp +ap){Am; — (22 +3)log(z) — 22 — 4

+ 21+2)° [103(2) log (z—_':'l‘) - Sp(—%)] —im[22 + 3 +2(1 + z)% log (1 : z)]
+ (¢z-1az} (D.28)

2

—% and the couplings vy = (Ig{ - 252Q75)/(25wcw), ag = I:{/(2swcw).

diagram II(Z- and W-boson exchange):

with z =

Fpeek(s) = Ff (s) + Fif 5 (s) (D.29)
with 1
an(S) [(’Uf+af) +('Ufl+(lfl) ] {-AMZ+§—(£Z—1)QZ} (D.30)
1 a 1 1
F}’Xf(s) =51 32 { Ay + == (w — 1)aw} . (D.31)
diagram ITII(Z-boson exchange):
Fwea a 1 Mz
FEFE) = oyt ay— vy - ap) {3+ w2 (Bary + Bany) + (=)o (37 )
—  (w+ 2+ 1)Bo(s, Mz, Mw) + 2s(z + w + wz) Co(s,m5, sy = 0, M, Mz)
1
+odtwtsolEw —1)[vwz(s)+aw]+(W——)Z)]} . (D.32)
The scalar 3-point integral Cp evaluated at s = M‘?V yields as follows:
1 1 )
= M%,0, Mw,Mz) = — 1 .
CO(S WaOa W Z) M[24/ og (1'1 _1) log (.’132—1) (D 33)

with

M2 4M2

= 1+ wo—1).
127 oMz, ( "\ Mz

vertex counter part:

The explicit expression for the counter part to the W f f-vertex (Eq. C.1) reads as follows:

a 1
52y -2y = 1n sz ("20Mw - (éw — 1)ow (0)) . (D.34)

diagram IV:
The contribution of the renormalised W self energy to the weak form factor “’e“k(MW) of
Eq. D.27 is determined by

sz weak _ Z;{——ZQfAm,Hs 42 ))AMW+§ 2(€w—1)vw(0)}

(D.35)

(c_w) ReDF(M3) _ ReSp™*(M§))
Sw M% M&V
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and the derivative of EW weak siven by Eq. D.37, D.40. The ;-dependence of t';hc.a Z self energy
and the weak 1-loop correction to the W self energy reads as follows ((v,n);; =4 (v,m)i):

Dé(s) = TE(s)lg=

a2
+ —2 ‘cﬁ(s — M%) (¢w — 1) [ow(s) + %(s — M%)nw ()] (D.36)
EWweak( ) — EWweak IE.—
+ 4a o (3 - M%) [(éw — Dlvwz(s) + (S — ME)nwz(s)]+ (W < Z)],
(D.37)

so that, finally, the £;-dependent part of the weak form factor yields

| s

weak(MW) weak M‘?V)l{.—l - 521— (EW - 1) aw , (D38)

which cancels the £y/-dependence of the IR-finite photonic correction I}, from Eq. 3.44.
For the sake of completeness the explicit expressions for the Z self energy and the non-
photonic contribution to the W self energy in Feynman-'t Hooft gauge will also be provided,

although they are already given in [14]:
T4(s)e=1 = o {Z N/ [(vf +af) (sAm, + (2mf +s) F(s,mg,my) — —)
f#

8 5
- oo, ]+ E 0 [ (3) ¢
f=v

1

S [(-(12¢}, — 4c}, +1) B +2(-2sc}, — 2Miyc, + Miy) Bo)(s, Mw, M)
w Yw

2
+ (6ct —2c2 + %) Ao(Mw) — = 3 ct

+ (=BY+ M3 Bo)(s, My, My) + 7 (Ao(My) + AO(MZ))]} (D.39)
and
W,weak al ]l 3 m?, m‘} 9 m;
ET‘ (S)|£i=1 = E-‘% gfz (s—§mf) Amf+(S—T—'g) F(Som_f)+33—7
=e,u,T

1
+ Z N‘{ [(2Bg+§(s_m-2{- _m2—) Bo)(s,m+,m_)
(g+.9-)

1

~ F(Aolmy) + Ao(m))

+ [—(8e +1) BY + (s4 M3 — ¢ (4s + M, + M3)) Bol(s, Mz, Mw)
1 7 1

+ 23+ Z)AO(MZ) +(=c + E)AO(MW) —2M3 + 2c2 (M3, — §s)

1
+ [-B+ My Bol(s, Mw, My) + ZAO(Mn)} (D.40)
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with

Bi(s,m1,mg) =

1 1
3 [(mf By + 5(3 + m? — m3)B1)(s, m1, ma)
1 m2+m: s
+ 5 Ao(m) + 1—2—2 -5 (D.41)
Ag(m) = m? (Am+1). (D.42)

The function F(s,m;, ms) can be found in [14].

D.3 The form factor describing the soft photon radiation

Performing the photon phase space integration in Eq. 3.21 leads to the following gauge invariant

form factors in the soft photon limit:

Rl (s)

with

and 4, from Eq. 3.26,

and

%r {QiQi' [8108 (ﬁ) [Lw + 8,(s)] — log® (—S?) log? (n:i,) - %7;2]

- 2} [2[LW + 65(s)] — log (%)] —2Q3 [i =1

+ 2Q:(Q: - Q) [2108 (

s w2
— ) [Lw +6,(8)] — = log (W) - —3—]

1

= 2Qu(Qi- Q) i = ¥1— 4 (@i = Q) [Lw + 5y(s) — 11} (D-43)

e (2 -2
W=18\"X" |Aw — 2/5AE

Flinal(g) = Fiitial(s) with [(i3'); Cw, 8] = [(f, ') log(zAE),O] (D.44)

Finterf-(s, 1)

A

a t2 9of s 9f{ 8
Z%{Q'Qf l‘“°g (m%n%) fw —log (m%) o8 (m%)

S 4 2
4Sp(1+?)—§ﬂ'}

2QuQp [(f,9) = (f,i)] - 2 QuQy [(1,1) = (i, )]
2Q:Qyp [(f,t) = ()]

S 7|'2
2Qi(Qf—Qyp) [2 log ( ) Lw - —log (m ) - ?]

2Qi(Qs—Qp) 1 =71 -2Q(Qi — Qi) [i = f]
2Qp(Qi—Qu) [i = f1+8(Qi — Qi) (Qf — Qp) [Cw — 1]} . (D.45)
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E The hard photon contribution

The differential cross section for the process i(p;)i'(pir) = f(ps)f'(ps)¥(k) reads in the CMS as
follows (with s = (¢°)2 and ¢° denotes the CM energy):

1 1 d%;dpy d3k

— §(p: S A 2 .
25 2mp  SplplA (i +pr —ps—ppr — k) ) _|Marl*, (E.1)

dop =

where the matrix element M pgg results from the application of the MSM Feynman-rules to the
bremsstrahlung diagrams shown in Fig. 3 (now without any restriction on the photon momentum

k; Aw=s—M3V)

. 1 _ —
Mpgr 22—82— vVira Z; {’U.szJ Q1 —75)’Ufl Ty (1 — v5)us
w
Aw = = (HP *
m [uf 7”(1 —’)/5) Vg vy G,- (1 "’75) 'uz'] Ep(k) ’ (E2)

where €, denotes the photon polarisation vector and

Wi+ KD @t B2 etk - g K

GI‘P — ,
f Qf kpf f kpfr kq
up ¥ (p— kE~°/2) =" K/ AP — kP + g K
G = Q - Qs = .
kp; kpi kq

(E.3)

The initial and final state currents are separately conserved: k, G‘;P =(Qf-Qp -1 =0
and k, G¥? = (Q: — Qs — 1)y* = 0. At first, the Lorentz-invariant 3-particle phase space

[ / &py dpp dk d3pf, d3k

S(pi+pi—p r—k E.4
87 70, 10 (p: f—pp —Fk) (E.4)

will be thoroughly discussed. Under consideration of the energy momentum conservation de-
scribed by the d-function the phase space integration will be rewritten, so that only the photon
phase space integration survives in order to gain the photon spectra describing hard photon
radiation. We follow the procedure suggested in [39],[38] and choose the following coordinate
system: the momenta p; and k are in the (1,3)-plane, with the photon momentum along the
third axis.

The spatial part of the §-function constraints the momenta in such a way, that in the CMS
(§ = p; + pw = 0) the relation |gf| = |y + k| = pY # holds and the phase space integral can be
written as follows

w |E|k0dk0 /1 Ph Ipf:|pf,dpf, 21r 1 ds
o [ R [P [ -0 s 03
T a2k ) ] 207, po(P pir = Ps py) (E.5)

with £ = cos [( ,Pi),2 = cos é(k pf) and ® denotes the azimuthal angle of ps with respect
to the (1,3)-plane. Since the soft photon contribution has already been discussed separately
the lower bound of photon phase space integration can be chosen to be |I:| = AF and no IR
singularities occur. Using

4(z — zo)

|f’(1')|rc=wo ’ (E5)

6(f(z)) =
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where f(z) is an arbitrary function with f(zg) = 0 (here: f(z) = p(})

Py

|kl 15|

6(z — 20)

5 +p) —pp — K0 —p}) =

=29
with
2|kl |ﬁf’| ZO = (qo - ko —P?I)2 - (k0)2 - (p?v)2 + m?: - m% 3

the phase space integral I(s) can be written as follows:

w 0 Ps dpYy, 27
I—1r/ dk/ /° Wy [ g (E.7)

The requirement —1 < zp < 1 leads to the following limits on the p f,-integration:

(® -k %k £ KO \/(n - 2m§,)2 - 4m3, m}
2 (k — m%, +m%)
(@92 = (ms +mp)?

w = 500 (E.9)

Dayp (E.8)

with
k= q°(¢° —2k0)+m%, —m% .
Finally, after introducing a new variable y
0
0 _ K k p
gt e v

the starting point for obtaining the hard photon spectra is reached (with ) =4¢%/2)

11 e dk°k° )
M) = T as [ o ["ay [ de Timan. (E.10)

The computation of the spin averaged squared matrix element leads to the initial state, final
state and interference contributions depending only on the scalar products of the involved four
momenta, which have to be expressed in terms of the integration variables, e.g.

pi pgr = P P + |Bil 1P| cos (E.11)

with

cosp = (zz+ V1 —22 V1 — 22 cos ®)|,=z -
Finally, the performance of all integrations up to the one over the photon energy yields the
following hard photon spectra (with k = 2k%/¢° and k., = 2AE /4°):
21—
2k

oimitial(s) = 50)(g) /kl dk‘A WAW {;3, (s) [1+(1—k)2]+“’;} (E.12)

. 1 a 2
oty = 50(s) /k,,. ‘;—: {ﬁ,(s) [1+(1-k)?+ - %
+ Q@) 1+ (1 - B logl1 - k)]} (E.13)
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— {3k-k>-2} (E.14)

12

Ldk [ A A
mterf — 0% / ar w w
) = 06T ), % [Aw—sk+A*W—sk]

The final state hard photon spectrum a,{i"al(s) coincides with the result obtained in [18]. From
the photon spectra the total cross sections describing hard photon radiation can be obtained

airtel(s) = &0(s) Ails) {‘Og ('sz—ffAf;m)

- M2 — 2
+ S M [arctan (g:%) — arctan <2\/§AE i MW)] } (E.15)
w

My TS My TS

o™ s) = 50s) {ﬂf<s) log (ﬁ)

[ 4 S 2
interf. _ -(0) 2AE\/_
op (s) = (8) -y [5(Q Qs +QuQys) +4QrQys + QpQi)] log Bw —2VsAE|)
(E.17)

Since we are interested on the contribution in the vicinity of the W resonance terms o< (s — Mg,)
and o< AE have been neglected.

The parametrisation of the 3-particle phase space in the course of the computation of hard
bremsstrahlung for the case of the W width is less complicated, since the orientation of the
dreibein made of the three outgoing momenta can be freely chosen: the solid angle 2 determines
the orientation of the photon momentum and & describes the rotation of the (7,5 )-system
around K. Thus, the hard photon contribution to the partial W width (in the CMS of the W
boson with ¢ = M%)

goh oL 1 dpfd3pf:d3k
W™ aMw (2m)3 8p%pGik?

8(a - pr—pp = ¥) LIMEET, (E-18)
turns into [38]

1 0/ / / fmal
[ do [ dzy E.
gy = 2Mw 2561r5 /AE & 72 Mbr (B19)

where w is given by Eq. E.9 and the substitution py p = £z +(Mw — k%)/2) has been performed.
The limits on the z-integration z4 are given by

m2—m2, ~ m m ¢ ~ ML f =— ML §r
zy = L{f___L(MW_kO)ikO\/(M__(_LL)E)(M_ (_f___f)z_)} (E.20)

2M 2Mw 2Mw 2Mwy

with M = Mw /2 — k%. The matrix element Mf inal 1oads as follows (7#: polarisation vector of
the W boson):

ma 2 — *
Mf L= L/-—(S)ﬂUsz’f (1 —ys)vpn*(q) ep(k) (E.21)
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with GZ’ s given by Eq. E.3, which leads to the same hard photon spectrum as for the case of
finale state bremsstrahlung in the 4-fermion process (— Eq. E.13)

L dk
oy = TWop [ 3 (B0 1+ -0
2
+ E;— % + —(Qf +Qf,) [1+(1-k)? log(1 - k)]}
= T, 0T (E.22)

Thus, the factor JF’}BR coincides with the one, which multiplies the Born-cross section in Eq. E.16
evaluated at s = M3,.

F Integrals

In the following, the explicit expressions for some special cases of scalar 2-, 3- and 4-point
integrals and of photon phase space integrals will be provided, which have been derived in course
of the calculation of the photonic corrections usually developing IR and/or on-shell singularities.
The dimensional regularisation enables the extraction of the UV-divergence occurring in the

scalar and vectorial 2-point integrals By 1 ([p = p*~P f 27r) )
16 TA2 0; Pu D1 Lm2)=H (27r)D [k2 - m%] [(k +p)2 - m%] ’ .
so that they can be written as follows [22]:
o AT “ : Yo e
- 2 2 2 _;
Bo(p mymg) = A- / dz log = % (o +m#2 ) +mf — e (F.2)
Bi(p%,my,mg) = E}? [M2(Am, +1) — m3(Am, +1)
+(m3 — mf — p?) Bo(p®, m1,ma)] . (F.3)
The following results for the scalar integrals have been used [22], [40]:
2 m? P
Bo(p*, A =0,m) = An +2+(;—-—1> log(l—m—ze) (F.4)
2
8Bo(p, 2, m) S [log (i) + 1] (F.5)
Op? o s m? m
pt=m

1
Gotsmpme N = [ [k2 = 22 [(k + pyr)? = m,][(k — py)? — m3]

-1 1 5 | E -f-llo2 2 —lo = +27r2—z'7rlo -/E
T s 8 mym g 8 s 4 & m% 4 g f, 3 J s

(F.6)
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1
Co(s, Mw,mg,A) = /D=4 [k2 — 22][(k — pf)2 — m%] [(k—q)2 - Mv2V]

= - [log( f)log( M2 -ze)—Sp(l—- . )_5108 (-;—- -5

(F.7)
Co(s = M‘?V,Mw,mf,,\) = -Ml—‘?v [2 log (Mf ) log (-A;W) + log? (-A%)} (F.8)
Co(1) = Co(t,m m'M)=/ =
O =TI T W p=4 [(k = p)2 = m3][(k = p)? — mf][(k — )2 — M)
2
= —% [Sp(l + tﬂ';f) - W—] (F.9)
CO(3v4) = CO(saMWu (mf’ mi)1 A) (F'IO)
1

Co(2) = Co(t,myp,mi, A) = /D=4 (k2 — N2 [(k — py)2 — m21[(k — pi)% — m2]

1| 2 Viog () Liog2 (B) 4 Liog? [ ) + Liog? (5 ) +
o B\ mEm2) B\ ) TR NE) T2 \mE) T2 ) T

(F.11)
Do(s,t,mg, mi, My, A) =/ 1
o D=4 2 = N[k = p7)? = mA [k = pi)? = mi][(k = 0)2 = M)
- i o ) e ) v () o (32)
+5pll+ tﬂigv )+ ﬂ (F.12)

In addition, the following soft photon phase space integrations have been performed ([, =

J __T_O' and Aw = s — M}, is considered to be complex):

2(27)° k
/ Aw |2pip;| =R N PYA A 2pip;)? log (2AE Aw ) 1
k (Aw — 2k9¢0) (kp:) (kp;) 2(2m)? p?p} A Aw —2ySAE) °F
(F.13)
with

(2pip;)? § ) 1. o < p? ) 1. o p12‘
I, = log log + —log : + = log
: ( pip; |2pip;| 12pipsl ] 2 |2pip;]
s 2 s 22 1r2}
o F{— =1, (F.14)
2pip; <|2Pipj|) { 373
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where the second term in the curly bracket has to be used, when one of the momenta p;, p; is
equal to the CM momentum q.

Aw p? 1 ?2AE  Aw -
/k(Aw—%oqﬂ)(kzo)2 = ez {21°g< > AW—MAE)‘I”} (F-15)

with
= s
I, =log (17) +{0;2}, (F.16)
where again the second term in the curly bracket has to be taken, when p = g holds.
2pip;  mi#e 1 (2pip;)? (2AE)
/k (kpi)(kp;) —  2(2m)? {21°g ( mim? )8\ ) T (F.17)
/ »? 1 {210 <2AE)_1: } F s
x (kp)2 — 2(27)2 E\ "X (- (F.18)

Finally, the functions o, vi; and 7;; used in order to describe the {;-dependence of the form
factors are defined as follows [35]:

vij (%) = o — 2Bii (g — ¢*mij(d®) (F.19)

with

i 1 :
A /D[k?—m?][khﬁim?]
) = bk = g
o2 Pild) = ¥ /D[k2"m?][k2_fim?] [(kJ+q)2—m?]
e = 1 (&= Dbk
e M) = /D[k2—m,2][k2—£,-m?][(k+q)2—m?] 29"”+[(k4{q)2—21m?]
(F.20)

D
where the abbreviations t** = (g*’ —¢*¢*/q®)/(D—=1) and [, = p*~P [ ((Zl_w)lcv have been used.
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