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It has been recently realized [l] that the process of reheating after the inflationary 

era (21 may consist of different epochs. 

In the first stage, the effects of stimulated decays and annihilation may lead to an 

extremely effective explosive particle production. The energy is released in the form of in- 

flaton decay products, whose occupation numbers are extremely large, and have energies 

much smaller than the temperature that would have been obtained by an instantaneous 

conversion of the inflaton energy density into equilibrated radiation. 

Since it requires several scattering times for the low-energy decay products to form 

a thermal distribution, it is rather reasonable to consider the period in which most of 

the energy density of the Universe was in the form of non-thermal quanta produced by 

inflaton decay as a separate cosmological era. Following [l] we refer to the final stages 

of parametric resonance as the preheating epoch to distinguish it from the subsequent 

stages of particle decay and semiclassical thermalization (31 when the inflaton decay can 

be still efficient, but amplitudes of fluctuating fields became gradually smaller because 

of Universe expansion. 

Several aspects of the theory of explosive reheating have been studied in the case of 

slow-roll inflation [4] and first-order inflation [5]. In particular, the phenomenon of sym- 

metry restoration during the preheating era has been investigated recently by Kofman, 

Linde, and Starobinski [S] and by Tkachev [7] in the framework of typical chaotic infla- 

tionary models. It was shown that nonthermal symmetry restoration processes during 

the nonequilibrium stage of preheating may be very efficient with important implications 

for models containing relatively low scales like the invisible axion model or supersym- 

metry with Polonyi fields, and may be for Grand Unified Theories (GUT). For example, 

if a GUT symmetry is restored during the preheating epoch, the subsequent symmetry 

breaking phase transition will reintroduce the problems of monopoles [8] or domain walls 

[9]. In any case, if one askes whether particular high-energy symmetries are restored after 
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inflation or not, one has to study the non-equilibrium preheating epoch. 

We consider a model with the following potential 

vo(@, 9) = x4” + ; @12 - 9g2 + $P292 * (1) 

The field 4 corresponds to the inflaton. While inflaton self-coupling is restricted to be 

X GZ 10-13, there is no such severe restrictions on other couplings. Among products of 

the inflaton decay there can be different species, but for simplicity we assume here that 

quanta of the field 77 constitute the major channel of its decay, which means in particular 

that g >> X. We assume also that 77 transforms as a vector under the action of O(N), 

i.e. $- =qaqa with a= l,...,N. 

In previous papers (1],[6],[7] the effects of the coupling cy was neglected, which corre- 

sponds, in fact, to the one loop approximation. The importance of multiloop correction 

was noticed in Ref. [7]. We shall show here that they change the results dramatically 

when a >> g and the one-loop approximation actually breaks down in this region. 

We do not consider an implications of non-zero o on parametric resonance itself, but 

consider the effects of symmetry restoration only. We assume that at the end of the 

resonance stage the energy density which builds up in the fluctuations of field 77, and 

which we denote as p,,, is some fraction of inflaton energy density. Simple assumption 

would be that this fraction equals-to one half’[l]. Numerical integration of Ref. [3] for 

the case of simplest XC#J~ model confirms that the resonance ends when half of the energy 

is in fluctuations, however it might not be true for g > X. Morover, because of the 

expansion of the Universe during preheating, p,, is many orders of magnitude smaller 

than the initial inflaton energy density. Since this is model dependent, at present we 

keep ps as a free parameter. 

We can parametrize the distribution function of the created quanta at preheating as 

f 5 f(lc/k,) where k is particle momenta. What is important here is the smallness of 
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typical particle momenta, k,, with respect to the temperature that one would get in the 

case of istantaneous reheating neglecting the expansion of the Universe. In the extreme 

case when all inflaton couplings are not very different, k, is of order of inflaton mass, 

k, - 1013 GeV. For definitness, let us assume that the distribution function is of the 

form 

f(k) = A6 (P-4 - lk*l) - (2) 

Parametrically, and that is what we are interested in here, Eq. (2) will reproduce the 

correct unswer. Moreover, the distribution is really peaked at the end of the resonance 

stage in reasonably wide range of model parameters. 

The constant A (or its initial value in our problem) can be fixed by computing the 

energy density of q particles and setting it equal to p,,. Notice that, since the order 

parameter changes in time, e.g. during the process of symmetry restoration, the energy of 

particles coupled to it changes too, but three-momenta keep constant in an homogeneous 

background. Moreover, in this case the effective potential simply coincides with the 

energy density, which simplifies the calculations. To answer the question whether the 

symmetry tends to be restored or not, it is sufficient to consider homogeneous background 

only. 

As opposed to large-angle scattering processes, -forward-scattering processes do not 

alter the distribution function of the particles traversing a gas of quanta, but simply 

modify the dispersion relation. This remains true also in the case of a nonequilibrium 

system. Forward scattering is manifest, for example, as ensemble and scalar background 

corrections to the particle masses. Since the forward scattering rate is usually larger 

than the large-angle scattering rate responsible for establishing a thermal distribution, 

the nonequilibrium ensemble and scalar background corrections are present even before 

the initial distribution function relaxes to its thermal value. These considerations allow 
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us to impose k” =Jn k + m 77 as the dispersion relation for the particles created by 

the parametric resonance, where 4 is the order parameter, with ?j = 7]0 in vacuum, and 

m;($hab = a [(ii2 - 4)&b + 2%jjb] /3!. 

Let us first consider the case N = 1. We can not use the imaginary-time formalism 

to determine the effective potential for the scalar field q during the nonequilibrium pre- 

heating period since in the nonequilibrium case there is no relation between the density 

matrix of the system and the time evolution operator, which is of essential importance 

in the formalism. There is, however, the real-time formalism of Therm0 Field Dynamics 

(TFD), which suites our purposes [lo]. This approach leads to a 2 x 2 matrix structure 

for the free propagator (only the (ll)-component is physical) 

~IlW) &2(K) 

) ( 

A(K) 0 

021(K) &2(K) = 0 

f(k) e(ko> + f(k) 

A‘(K) et--ko) + f(k) f(k) 

x 27r6[K2 - m;(q)], (3) 

with the usual vacuum Feynman propagator 

A(K) = K2 ’ 
- 77q q) + ie - 

The one-loop effective potential I$($ can be easily obtained solving the equation 

W d4K 

dm2, 
=+‘/- 2 (c&)4 hW) = 2 Luo + 11) 1 

(4) 

(5) 

where 71 is the one-loop tadpole diagram which receives contribution only from the 

diagram in Fig. 1 (since the final external leg is tied to be that of the physical field) 

and we have separated the usual zero-temperature contribution from the one given by 

the gas of r)-quanta with distribution function f, Eq. (2). One then obtains 

lqfj) = v,(o) + v{f) = v/O’ + qJ=; 

where V,(O) is the one-loop zerotemperature effective potential. With the distribution 

function Eq. (2), the particle number density is 

/ d3k f(k) = 9, 
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and the particle-dependent part of the effective potential reads =72 JiGqmP. 
We would like to mention for the future use that Eq. (7) is valid only in the one-loop 

VI approximation . Expanding V, around jj = 0, we obtain that the coefficient of q2-term 

in the potential (or the effective mass of the field) is changed by interaction with the 

medium by an amount on/lk.l N crp,/jki12 [6], [7]. The presence of nonthermalized 

vquanta may lead to symmetry restoration if pV/Ik,j2 2 4. 

Our main concern in this Letter is on what happens when multi-loop corrections 

are included in the computation of the nonequilibrium effective potential. We will show 

that in certain range of parameters the effective potential gets large contributions at the 

twoloop level and higher orders of perturbation theory, even larger than the one-loop 

contribution. Perturbation theory is then lost unless a proper resummation can be done. 

We give an example in which the resummation can be performed exactly. 

Let us first consider the theory described by the potential in Eq. (1). By applying 

the rules of TFD we obtain the tweloop tadpole diagrams as drawn in Fig. 2 (plus 

counter-terms arising at one-loop). Underlined diagrams are identically zero since they 

contain a( fl - m2)6( (K - P)2 - m2)6( P2 - m2) = 0. 

We first consider the simplest case of diagram 2a 

- = y J $ / $$ [D:,(P) WK) - &2(P) 021(P) D22(K)] . dm2, (8) 

Observing that the tadpole does not have any imaginary part and that Re &l(K) = 

Re &(K), one can factorize the K-integral out and, using the mass-derivative formula 

[ll], obtain 

db4 ia -=- - 
drnfj 4 J d4K 

(W4 
Re Dll(K) (zr)4 d4p [A2(P) + f (A2(P) - (A*(P))2)] 

ia d4P =- 
4 I 

e Re &l(K) 
w4 

J p--+ A2(P) - i G 1 = yRe(Ie+If) J (0-i%), (9) 
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where we have defined JO = (27~)~~ j d4P A2(P). Eq. (9) shows the absence of pinch 

sungularities, or A( P)A*( P) t erms in the final result. The cancellation procedure works 

essentialy in the same way as in the equilibrium case and is totally independent of 

the distribution f [12]. After renormalization, the term proportional to If Jo gives a 

contribution N crlflnm: which is suppressed by 0(a) with respect to the one-loop result. 

One should not claim victory to soon, though. Let us extract the f-dependent part only: 

its contribution goes like Q If (al,/am~). Expanding such an expression around ?j = 0, 

we see that the contribution of diagrams of Fig. 2a is of order of (crp,/]k,14) with respect 

to the one-loop result. Since a may be N 1 and ]k,14/p,, < 1 at the preheating era, we 

discover that the contribution from the twoloop tadpole diagrams is much larger than 

the one-loop result by several orders of magnitude and perturbation theory is lost!. 

Things get even worse when we consider p-loop diagrams. The tadpole diagrams 

shown in Fig. 3 (p 2 2) contribute 

q3) 1 io P--l 
-=- - 

( > drnt 2 2 
Re (IO + If> ( -iG)‘-‘. Jo 

All the terms which contain a vacuum contribution are ultraviolet divergent and by 

cancellation with the counter-terms we are left with only the f-dependent part which 

has the following behaviour (with respect to the one-loop result) 

(11) 

It is possible to add the tadpoles in a different way. Let us consider the ploop 

contributions shown in Fig. 4, the so-called daisy diagrams. Using again the mass- 

derivative formula, we obtain the expression for a product of p 1 2 successive propagators 

p(Io+If). 02) 

This expression has also to be renormalized. For p 2 2 the ultraviolet singularities are 

resummed in 10 and are cancelled by adding a series of counter-terms arising at one-loop. 
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The result is 

dY4) dm2 + C.T. = 
‘I 

(13) 

It is clear that successive derivatives with respect to the squared mass give increasing 

inverse powers of the squared mass. The derivatives of 10 give a subleading contribution 

with respect to the f-dependent part. Extracting the f-dependent part and expanding 

such it around q = 0, we discover that the contribution of the ploop daisy diagrams is 

again of order of (Q p,/]k,j4)p >> 1 with respect to the one-loop result. 

The discussion above shows that in order to obtain a more accurate information 

about the issue of nonthermal symmetry restoration one must study an infinite series of 

diagrams in perturbation theory. This is exactly analogous to what happens in a simple 

Xv4 theory in equilibrium at finite temperature where the leading contributions to the 

effective potential in the infrared region come from the daisy and superdaisy multiloop 

graph 1131. 

To deal with this problem we need a self-consistent loop expansion of the effective 

potential in terms of the fvZ2 propagator. Such a technique was developed some time ago 

by Corwall, Jackiw and Tomboulis (CJT) in their effective action formalism for composite 

operators[l4] and may be also applied to nonequilibrium phenomena [15]. One considers 

a generalization I’[q, G’j of the usual effective action, tihich depends not only on q(z), but 

also on G(z, y), a possible expectation value of the time-ordered product (T q(x) q(y)). 

The physical solutions satisfy the stationary requirements 

aii, Gl = 0 

ew ’ 

6% G] 

6G(z,y) = 
o 

- (14) 

The conventional effective action I’[?] is given by X’[q, G] at the solution Go(q) of Eq. 

(14). In this formalism it is possible to sum a large class of ordinary perturbation- 
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series diagrams that contribute to the effective action I’[q], and the gap equation which 

determines the form of the full propagator is obtained by a variational technique. 

We now apply the CJT formalism in the limit of large N when the next-to-leading 

terms can be exactly summed. In each order we keep only the term dominant in N for 

large values of N. This allows us to resum exactly the series of the leading multiloop 

diagrams and to solve the gap equation for the full propagator without any approxima- 

tion. 

In order to obtain a series expansion of the effective action, one introduces the func- 

tional operator 

D,-b(fj, 2, y) = 62 I 
‘%a(+%b( 3) ’ 

(15) 

where I is the classical action. The required series obtained by CJT is then [14] 

riii, Gl = Q> + i Tr In DO G-' + f Tr [D-l G - I] + r2[q, q, (16) 

where DC’ = -(apap + m2)&bb4(z,g), and r2[ij,G] is a sum of all two-particle-irreducible 

vacuum graphs in the theory with vertices defined by the classical action with shifted 

fields 1[4 + 771 and propagators set equal to G(z, y). 

Previous calculations show that among the multiloop graphs contributing to the 

effective potential in the-O(N)&heory,.only the daisy.and superdaisy-diagrams survive 

in the limit of large N [16]. This enables us to consider in P&j, G] only the graph of 

O(a) given in Fig. 5. This is the Hartree-Fock approximation which is known to be 

exact in the many-body version of our large N limit. 

It is more convenient to concentrate on the effective masses rather than on the ef- 

fective potential. By stationarizing the effective action I’[q, G] with respect to Gd, we 

obtain the gap equation 

G,-,l(z, y) = D;‘(x, y) + 9 [‘f&b G&, 2) + 2 G&, 41 b4h Y>- 
(17) 
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This equation is exact in the limit of large, N and contains all the informations about 

the dominant N-contributions to the full propagator. Indeed, the exact Schwinger-Dyson 

equation reduces to Eq. (17) for large N. We Fourier-transform Eq. (17) and take q= = 0. 

The gap equation then reads [14] 

M2 =m2+~I~(M2)=m2+~ 
Ik* I2 

JppGF’ 
(18) 

We see that the one-loop results are stable when 1k.l’ >> M2, which translates to the 

condition pV < ]k.]“/ o, where now p,, indicates the total energy of the noninteracting 

gas (the sum over all 71,). In the opposite case the gap equation is approximately solved 

byM3” cr N A Ike]‘. Using p,, - Q N2 A2 ]k, 14/M2 we find 

M%$ig. (19) 

In other words, the strength of symmetry restoration measured in terms of the effective 

temperature 2’&/12 =< (r] - q)2 > is given by es/12 z M2/a = ,/z. This result 

and Eq. (19) are intuitively understandable. Indeed, in this regime the contribution 

to the energy from self-coupling is important and p,, is saturated by the self-interaction 

term in Eq. (1). This can be obtained in Hartree-Fock approximation directly applied 

to equations of motion for the v-r-field (in the large N-limit Hartree-Fock approximation 

becomes exact). 

To summarize. In the limit lk.1” >> op,, the one-loop results are stable and T& - 

P,J]k.12. Note that our parameters, ]k*] and p,, are outcome of the stage of resonant 

decay and depend on the couplings g and X in Eq. (1). For example, we can expect 

that ]k.j2 - m M;, [l]. In the opposite limit, ]k, I4 < op,,, we have found eE - 

d&. This is smaller then the one-loop result by a factor ]k.12/,/Z& This result 

remains valid when the inflaton decay products 7 and the order parameter in question 

correspond to different fields. The strength of the symmetry restoration in a highly 
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non-equilibrium state cannot be traced by the one-loop result in the case of sufficiently 

strong interaction of inflaton decay products. This can have important consequences on 

the issue of symmetry restoration of various simmetries during the preheating era. 
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